1
|
Weiss F, Caruso V, De Rosa U, Beatino MF, Barbuti M, Nicoletti F, Perugi G. The role of NMDA receptors in bipolar disorder: A systematic review. Bipolar Disord 2023; 25:624-636. [PMID: 37208966 DOI: 10.1111/bdi.13335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
OBJECTIVES Glutamatergic transmission and N-methyl-D-aspartate receptors (NMDARs) have been implicated in the pathophysiology schizophrenic spectrum and major depressive disorders. Less is known about the role of NMDARs in bipolar disorder (BD). The present systematic review aimed to investigate the role of NMDARs in BD, along with its possible neurobiological and clinical implications. METHODS We performed a computerized literature research on PubMed in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement, using the following string: (("Bipolar Disorder"[Mesh]) OR (manic-depressive disorder[Mesh]) OR ("BD") OR ("MDD")) AND ((NMDA [Mesh]) OR (N-methyl-D-aspartate) OR (NMDAR[Mesh]) OR (N-methyl-D-aspartate receptor)). RESULTS Genetic studies yield conflicting results, and the most studied candidate for an association with BD is the GRIN2B gene. Postmortem expression studies (in situ hybridization and autoradiographic and immunological studies) are also contradictory but suggest a reduced activity of NMDARs in the prefrontal, superior temporal cortex, anterior cingulate cortex, and hippocampus. CONCLUSIONS Glutamatergic transmission and NMDARs do not appear to be primarily involved in the pathophysiology of BD, but they might be linked to the severity and chronicity of the disorder. Disease progression could be associated with a long phase of enhanced glutamatergic transmission, with ensuing excitotoxicity and neuronal damage, resulting into a reduced density of functional NMDARs.
Collapse
Affiliation(s)
- Francesco Weiss
- Psychiatry 2 Unit, Department of Clinical and Experimental Medicine, University Hospital of Pisa, Pisa, Italy
| | - Valerio Caruso
- Psychiatry 2 Unit, Department of Clinical and Experimental Medicine, University Hospital of Pisa, Pisa, Italy
| | - Ugo De Rosa
- Psychiatry 2 Unit, Department of Clinical and Experimental Medicine, University Hospital of Pisa, Pisa, Italy
| | - Maria Francesca Beatino
- Psychiatry 2 Unit, Department of Clinical and Experimental Medicine, University Hospital of Pisa, Pisa, Italy
| | - Margherita Barbuti
- Psychiatry 2 Unit, Department of Clinical and Experimental Medicine, University Hospital of Pisa, Pisa, Italy
| | - Ferdinando Nicoletti
- Department of Physiology and Pharmacology, University Sapienza of Rome, Rome, Italy
- IRCCS Neuromed, Pozzilli, Italy
| | - Giulio Perugi
- Psychiatry 2 Unit, Department of Clinical and Experimental Medicine, University Hospital of Pisa, Pisa, Italy
| |
Collapse
|
2
|
Zhu Y, Luo M, Bai X, Lou Y, Nie P, Jiang S, Li J, Li B, Luo P. Administration of mesenchymal stem cells in diabetic kidney disease: mechanisms, signaling pathways, and preclinical evidence. Mol Cell Biochem 2022; 477:2073-2092. [PMID: 35469057 DOI: 10.1007/s11010-022-04421-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 03/22/2022] [Indexed: 02/07/2023]
Abstract
Diabetic kidney disease (DKD) is a serious microvascular complication of diabetes. Currently, the prevalence and mortality of DKD are increasing annually. However, with no effective drugs to prevent its occurrence and development, the primary therapeutic option is to control blood sugar and blood pressure. Therefore, new and effective drugs/methods are imperative to prevent the development of DKD in patients with diabetes. Mesenchymal stem cells (MSCs) with multi-differentiation potential and paracrine function have received extensive attention as a new treatment option for DKD. However, their role and mechanism in the treatment of DKD remain unclear, and clinical applications are still being explored. Given this, we here provide an unbiased review of recent advances in MSCs for the treatment of DKD in the last decade from the perspectives of the pathogenesis of DKD, biological characteristics of MSCs, and different molecular and signaling pathways. Furthermore, we summarize information on combination therapy strategies using MSCs. Finally, we discuss the challenges and prospects for clinical application.
Collapse
Affiliation(s)
- Yuexin Zhu
- Department of Nephrology, The Second Hospital of Jilin University, 218 ZiQiang Street, Changchun, 130041, Jilin, People's Republic of China
| | - Manyu Luo
- Department of Nephrology, The Second Hospital of Jilin University, 218 ZiQiang Street, Changchun, 130041, Jilin, People's Republic of China
| | - Xue Bai
- Department of Nephrology, The Second Hospital of Jilin University, 218 ZiQiang Street, Changchun, 130041, Jilin, People's Republic of China
| | - Yan Lou
- Department of Nephrology, The Second Hospital of Jilin University, 218 ZiQiang Street, Changchun, 130041, Jilin, People's Republic of China
| | - Ping Nie
- Department of Nephrology, The Second Hospital of Jilin University, 218 ZiQiang Street, Changchun, 130041, Jilin, People's Republic of China
| | - Shan Jiang
- Department of Nephrology, The Second Hospital of Jilin University, 218 ZiQiang Street, Changchun, 130041, Jilin, People's Republic of China
| | - Jicui Li
- Department of Nephrology, The Second Hospital of Jilin University, 218 ZiQiang Street, Changchun, 130041, Jilin, People's Republic of China
| | - Bing Li
- Department of Nephrology, The Second Hospital of Jilin University, 218 ZiQiang Street, Changchun, 130041, Jilin, People's Republic of China.
| | - Ping Luo
- Department of Nephrology, The Second Hospital of Jilin University, 218 ZiQiang Street, Changchun, 130041, Jilin, People's Republic of China.
| |
Collapse
|
3
|
Nobile M, Maggioni E, Mauri M, Garzitto M, Piccin S, Bonivento C, Giorda R, Girometti R, Tomasino B, Molteni M, Fabbro F, Brambilla P. Brain Anatomical Mediators of GRIN2B Gene Association with Attention/Hyperactivity Problems: An Integrated Genetic-Neuroimaging Study. Genes (Basel) 2021; 12:genes12081193. [PMID: 34440367 PMCID: PMC8394308 DOI: 10.3390/genes12081193] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/19/2021] [Accepted: 07/28/2021] [Indexed: 12/02/2022] Open
Abstract
This study aims to investigate the genetic and neural determinants of attention and hyperactivity problems. Using a proof-of-concept imaging genetics mediation design, we explore the relationship between the glutamatergic GRIN2B gene variants and inattention/hyperactivity with neuroanatomical measures as intermediates. Fifty-eight children and adolescents were evaluated for behavioral problems at three time points over approximately 7 years. The final assessment included blood drawing for genetic analyses and 3T magnetic resonance imaging. Attention/hyperactivity problems based on the Child Behavior Checklist/6-18, six GRIN2B polymorphisms and regional cortical thickness, and surface area and volume were estimated. Using general linear model (GLM) and mediation analyses, we tested whether GRIN2B exerted an influence on stable inattention/hyperactivity over development, and to what extent this effect was mediated by brain morphology. GLM results enlightened the relation between GRIN2B rs5796555-/A, volume in the left cingulate isthmus and inferior parietal cortices and inattention/hyperactivity. The mediation results showed that rs5796555-/A effect on inattention/hyperactivity was partially mediated by volume in the left isthmus of the cingulate cortex, suggesting a key role of this region in translating glutamatergic GRIN2B variations to attention/hyperactivity problems. This evidence can have important implications in the management of neurodevelopmental and psychiatric disorders.
Collapse
Affiliation(s)
- Maria Nobile
- Child Psychopathology Unit, Scientific Institute, IRCCS Eugenio Medea, 22040 Bosisio Parini, Italy; (M.N.); (M.M.); (M.M.)
| | - Eleonora Maggioni
- Department of Neurosciences and Mental Health, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy;
| | - Maddalena Mauri
- Child Psychopathology Unit, Scientific Institute, IRCCS Eugenio Medea, 22040 Bosisio Parini, Italy; (M.N.); (M.M.); (M.M.)
- School of Medicine and Surgery, University of Milano-Bicocca, 20126 Milan, Italy
| | - Marco Garzitto
- Scientific Institute, IRCCS E. Medea, San Vito al Tagliamento, 33170 Pordenone, Italy; (M.G.); (C.B.); (B.T.); (F.F.)
| | - Sara Piccin
- Unit of Psychiatry, Department of Medicine (DAME), University of Udine, 33100 Udine, Italy;
| | - Carolina Bonivento
- Scientific Institute, IRCCS E. Medea, San Vito al Tagliamento, 33170 Pordenone, Italy; (M.G.); (C.B.); (B.T.); (F.F.)
| | - Roberto Giorda
- Molecular Biology Laboratory, Scientific Institute, IRCCS Eugenio Medea, 22040 Bosisio Parini, Italy;
| | - Rossano Girometti
- Institute of Radiology, Department of Medicine, University of Udine, 33100 Udine, Italy;
| | - Barbara Tomasino
- Scientific Institute, IRCCS E. Medea, San Vito al Tagliamento, 33170 Pordenone, Italy; (M.G.); (C.B.); (B.T.); (F.F.)
| | - Massimo Molteni
- Child Psychopathology Unit, Scientific Institute, IRCCS Eugenio Medea, 22040 Bosisio Parini, Italy; (M.N.); (M.M.); (M.M.)
| | - Franco Fabbro
- Scientific Institute, IRCCS E. Medea, San Vito al Tagliamento, 33170 Pordenone, Italy; (M.G.); (C.B.); (B.T.); (F.F.)
| | - Paolo Brambilla
- Department of Neurosciences and Mental Health, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy;
- Department of Pathophysiology and Transplantation, University of Milan, 20122 Milan, Italy
- Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
- Correspondence: ; Tel.: +39-02-5503-2717
| |
Collapse
|
4
|
Pereira LP, Köhler CA, de Sousa RT, Solmi M, de Freitas BP, Fornaro M, Machado-Vieira R, Miskowiak KW, Vieta E, Veronese N, Stubbs B, Carvalho AF. The relationship between genetic risk variants with brain structure and function in bipolar disorder: A systematic review of genetic-neuroimaging studies. Neurosci Biobehav Rev 2017; 79:87-109. [DOI: 10.1016/j.neubiorev.2017.05.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 04/27/2017] [Accepted: 05/01/2017] [Indexed: 12/21/2022]
|
5
|
Genetic variation within GRIN2B in adolescents with alcohol use disorder may be associated with larger left posterior cingulate cortex volume. Acta Neuropsychiatr 2017; 29:252-258. [PMID: 27498914 PMCID: PMC5478461 DOI: 10.1017/neu.2016.41] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Brain structure differences and adolescent alcohol dependence both show substantial heritability. However, exactly which genes are responsible for brain volume variation in adolescents with substance abuse disorders are currently unknown. The aim of this investigation was to determine whether genetic variants previously implicated in psychiatric disorders are associated with variation in brain volume in adolescents with alcohol use disorder (AUD). METHODS The cohort consisted of 58 adolescents with DSM-IV AUD and 58 age and gender-matched controls of mixed ancestry ethnicity. An Illumina Infinium iSelect custom 6000 bead chip was used to genotype 5348 single nucleotide polymorphisms (SNPs) in 378 candidate genes. Magnetic resonance images were acquired and volumes of global and regional structures were estimated using voxel-based morphometry. To determine whether any of the genetic variants were associated with brain volume, association analysis was conducted using linear regression in Plink. RESULTS From the exploratory analysis, the GRIN2B SNP rs219927 was associated with brain volume in the left posterior cingulate cortex (p<0.05), whereby having a G-allele was associated with a bigger volume. CONCLUSION The GRIN2B gene is involved in glutamatergic signalling and may be associated with developmental differences in AUD in brain regions such as the posterior cingulate cortex. Such differences may play a role in risk for AUD, and deserve more detailed investigation.
Collapse
|
6
|
Genetic Studies on the Tripartite Glutamate Synapse in the Pathophysiology and Therapeutics of Mood Disorders. Neuropsychopharmacology 2017; 42:787-800. [PMID: 27510426 PMCID: PMC5312057 DOI: 10.1038/npp.2016.149] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 07/14/2016] [Accepted: 08/02/2016] [Indexed: 02/08/2023]
Abstract
Both bipolar disorder (BD) and major depressive disorder (MDD) have high morbidity and share a genetic background. Treatment options for these mood disorders are currently suboptimal for many patients; however, specific genetic variables may be involved in both pathophysiology and response to treatment. Agents such as the glutamatergic modulator ketamine are effective in treatment-resistant mood disorders, underscoring the potential importance of the glutamatergic system as a target for improved therapeutics. Here we review genetic studies linking the glutamatergic system to the pathophysiology and therapeutics of mood disorders. We screened 763 original genetic studies of BD or MDD that investigated genes encoding targets of the pathway/mediators related to the so-called tripartite glutamate synapse, including pre- and post-synaptic neurons and glial cells; 60 papers were included in this review. The findings suggest the involvement of glutamate-related genes in risk for mood disorders, treatment response, and phenotypic characteristics, although there was no consistent evidence for a specific gene. Target genes of high interest included GRIA3 and GRIK2 (which likely play a role in emergent suicidal ideation after antidepressant treatment), GRIK4 (which may influence treatment response), and GRM7 (which potentially affects risk for mood disorders). There was stronger evidence that glutamate-related genes influence risk for BD compared with MDD. Taken together, the studies show a preliminary relationship between glutamate-related genes and risk for mood disorders, suicide, and treatment response, particularly with regard to targets on metabotropic and ionotropic receptors.
Collapse
|
7
|
Che F, Zhang Y, Wang G, Heng X, Liu S, Du Y. The role of GRIN2B in Tourette syndrome: Results from a transmission disequilibrium study. J Affect Disord 2015; 187:62-5. [PMID: 26321256 DOI: 10.1016/j.jad.2015.07.036] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Revised: 07/21/2015] [Accepted: 07/29/2015] [Indexed: 11/27/2022]
Abstract
BACKGROUND Previous studies have indicated that dopamine interacts with glutamatergic projection neurons and that N-methyl-d-aspartate (NMDA) receptors might be involved in the pathogenesis of Tourette syndrome (TS). In this study, we examined whether two functional polymorphisms (rs1805476 and rs1805502) in the 3'UTR of the NMDA receptor 2B subunit gene (GRIN2B) were associated with TS in Chinese Han trios. METHODS DNA samples collected from 261 TS nuclear families were genotyped by PCR and direct sequencing technology. Haplotype relative risk (HRR), transmission disequilibrium test (TDT) and Haplotype-based haplotype relative risk (HHRR) analyses were performed on the genotype data. RESULTS We found an over-transmission of the A allele in rs1805476 and the T allele in rs1805502 from parents to their affected children, using the HRR (rs1805476: HRR=0.696, χ(2)=4.161, P=0.041, 95% CI: 0.491-0.986; rs1805502: HRR=0.697, χ(2)=3.954, P=0.047, 95% CI: 0.488-0.995). There was also strong evidence for a linkage between polymorphisms and TS using the TDT (rs1805476: TDT=5.447, df=1, P=0.024; rs1805502: TDT=5.233, df=1, P=0.027). LIMITATIONS The sample is small and the current population is just limited to the Chinese Han population. CONCLUSIONS These data support the hypothesis that GRIN2B might play a major role in the pathogenesis of TS in Chinese Han trios. However, these results need to be replicated using larger datasets collected from different populations.
Collapse
Affiliation(s)
- Fengyuan Che
- Departmen of Neurology, Provincial Hospital affiliated Shandong University, No. 44 wenhua west road, Jinan, Shandong 250012, PR China; Department of Neurology, Linyi People's Hospital, Shandong University No. 27 Jiefang Road, Linyi, Shandong 276003, PR China
| | - Ying Zhang
- Child Healthcare Department, The Affiliated Hospital of Qingdao University, Qingdao 266003, PR China
| | - Guiju Wang
- Child Healthcare Department, Rizhao people's Hospital, Shandong, PR China
| | - Xueyuan Heng
- Department of Neurology, Linyi People's Hospital, Shandong University No. 27 Jiefang Road, Linyi, Shandong 276003, PR China
| | - Shiguo Liu
- Prenatal diagnosis center, The Affiliated Hospital of Qingdao University, Qingdao 266003, PR China.
| | - Yifeng Du
- Departmen of Neurology, Provincial Hospital affiliated Shandong University, No. 44 wenhua west road, Jinan, Shandong 250012, PR China.
| |
Collapse
|