1
|
Mishra S, Mishra Y, Kumar A. Marine-derived bioactive compounds for neuropathic pain: pharmacology and therapeutic potential. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-024-03667-7. [PMID: 39797987 DOI: 10.1007/s00210-024-03667-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 11/22/2024] [Indexed: 01/13/2025]
Abstract
Neuropathic pain, a challenging condition often associated with diabetes, trauma, or chemotherapy, impairs patients' quality of life. Current treatments often provide inconsistent relief and notable adverse effects, highlighting the urgent need for safer and more effective alternatives. This review investigates marine-derived bioactive compounds as potential novel therapies for neuropathic pain management. Marine organisms, including fungi, algae, cone snails, sponges, soft corals, tunicates, and fish, produce a diverse range of secondary metabolites with significant pharmacological properties. These include peptides (e.g., conopeptides, piscidin 1), non-peptides (e.g., guanidinium toxins, astaxanthin, docosahexaenoic acid, fucoidan, apigenin, fumagillin, aaptamine, flexibilide, excavatolide B, capnellenes, austrasulfones, lemnalol), and crude extracts (e.g., Spirulina platensis, Dunaliella salina, Cliothosa aurivilli). These compounds exhibit diverse mechanisms of action, such as modulating ion channels (e.g., transient receptor potential channels, voltage-gated sodium, calcium, and potassium channels, and G protein-coupled inwardly rectifying potassium channels), interacting with cell-surface receptors (e.g., nicotinic acetylcholine, NMDA, kainate, GABAB, and neurotensin receptors), inhibiting norepinephrine transporters, reducing oxidative stress, and attenuating neuroinflammation. These effects collectively contribute to alleviating nerve degeneration and symptoms of neuropathic pain, including hyperalgesia, allodynia, and associated psychomotor disturbances. Marine-derived bioactive compounds represent promising alternatives to conventional neuropathic pain treatments, to advance their development and assess their integration into neuropathic pain management strategies.
Collapse
Affiliation(s)
- Swapnil Mishra
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Kolkata, West Bengal, India
| | - Yogesh Mishra
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, Punjab, India
| | - Ashutosh Kumar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, Punjab, India.
| |
Collapse
|
2
|
Bharal B, Ruchitha C, Kumar P, Pandey R, Rachamalla M, Niyogi S, Naidu R, Kaundal RK. Neurotoxicity of per- and polyfluoroalkyl substances: Evidence and future directions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:176941. [PMID: 39454776 DOI: 10.1016/j.scitotenv.2024.176941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/28/2024] [Accepted: 10/12/2024] [Indexed: 10/28/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are synthetic chemicals widely used in various products, including food packaging, textiles, and firefighting foam, owing to their unique properties such as amphiphilicity and strong CF bonds. Despite their widespread use, concerns have arisen due to their resistance to degradation and propensity for bioaccumulation in both environmental and human systems. Emerging evidence suggests a potential link between PFAS exposure and neurotoxic effects, spanning cognitive deficits, neurodevelopmental disorders, and neurodegenerative diseases. This review comprehensively synthesizes current knowledge on PFAS neurotoxicity, drawing insights from epidemiological studies, animal experiments, and mechanistic investigations. PFAS, known for their lipophilic nature, tend to accumulate in lipid-rich tissues, including the brain, breaching biological barriers such as the blood-brain barrier (BBB). The accumulation of PFAS within the central nervous system (CNS) has been implicated in a spectrum of neurological maladies. Neurotoxicity induced by PFAS manifests through a multitude of direct and indirect mechanisms. A growing body of research associated PFAS exposure with BBB disruption, calcium dysregulation, neurotransmitter alterations, neuroinflammation, oxidative stress, and mitochondrial dysfunction, all contributing to neuronal impairment. Despite notable strides in research, significant lacunae persist, necessitating further exploration to elucidate the full spectrum of PFAS-mediated neurotoxicity. Prospective research endeavors should prioritize developing biomarkers, delineating sensitive exposure windows, and exploring mitigation strategies aimed at safeguarding neurological integrity within populations vulnerable to PFAS exposure.
Collapse
Affiliation(s)
- Bhagyashree Bharal
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research-Raebareli (NIPER-R), Transit Campus, Bijnor-Sisendi Road, Sarojini Nagar, Near CRPF Base Camp, Lucknow, UP 226002, India
| | - Chanda Ruchitha
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research-Raebareli (NIPER-R), Transit Campus, Bijnor-Sisendi Road, Sarojini Nagar, Near CRPF Base Camp, Lucknow, UP 226002, India
| | - Paarth Kumar
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research-Raebareli (NIPER-R), Transit Campus, Bijnor-Sisendi Road, Sarojini Nagar, Near CRPF Base Camp, Lucknow, UP 226002, India
| | - Rukmani Pandey
- Department of Psychiatry, Center for Molecular Biology and Genetics of Neurodegeneration, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States of America
| | - Mahesh Rachamalla
- Department of Biology, University of Saskatchewan, Saskatoon, SK S7N 5E2, Canada
| | - Som Niyogi
- Department of Biology, University of Saskatchewan, Saskatoon, SK S7N 5E2, Canada; Toxicology Centre, University of Saskatchewan, 44 Campus Drive, Saskatoon, SK S7N 5B3, Canada
| | - Ravi Naidu
- Global Centre for Environmental Remediation (GCER), University of Newcastle, Callaghan, NSW 2308, Australia; CRC for Contamination Assessment and Remediation of the Environment (CRC CARE), University of Newcastle, Callaghan, NSW 2308, Australia.
| | - Ravinder K Kaundal
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research-Raebareli (NIPER-R), Transit Campus, Bijnor-Sisendi Road, Sarojini Nagar, Near CRPF Base Camp, Lucknow, UP 226002, India; Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research-Raebareli (NIPER-R), Transit Campus, Bijnor-Sisendi Road, Sarojini Nagar, Near CRPF Base Camp, Lucknow, UP 226002, India.
| |
Collapse
|
3
|
Hung 洪瑋辰 WC, Chen 陳志成 CC, Yen 嚴震東 CT, Min 閔明源 MY. Presynaptic Enhancement of Transmission from Nociceptors Expressing Nav1.8 onto Lamina-I Spinothalamic Tract Neurons by Spared Nerve Injury in Mice. eNeuro 2024; 11:ENEURO.0087-24.2024. [PMID: 39256039 PMCID: PMC11391502 DOI: 10.1523/eneuro.0087-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 08/19/2024] [Accepted: 08/23/2024] [Indexed: 09/12/2024] Open
Abstract
Alteration of synaptic function in the dorsal horn (DH) has been implicated as a cellular substrate for the development of neuropathic pain, but certain details remain unclear. In particular, the lack of information on the types of synapses that undergo functional changes hinders the understanding of disease pathogenesis from a synaptic plasticity perspective. Here, we addressed this issue by using optogenetic and retrograde tracing ex vivo to selectively stimulate first-order nociceptors expressing Nav1.8 (NRsNav1.8) and record the responses of spinothalamic tract neurons in spinal lamina I (L1-STTNs). We found that spared nerve injury (SNI) increased excitatory postsynaptic currents (EPSCs) in L1-STTNs evoked by photostimulation of NRsNav1.8 (referred to as Nav1.8-STTN EPSCs). This effect was accompanied by a significant change in the failure rate and paired-pulse ratio of synaptic transmission from NRsNav1.8 to L1-STTN and in the frequency (not amplitude) of spontaneous EPSCs recorded in L1-STTNs. However, no change was observed in the ratio of AMPA to NMDA receptor-mediated components of Nav1.8-STTN EPSCs or in the amplitude of unitary EPSCs constituting Nav1.8-STTN EPSCs recorded with extracellular Ca2+ replaced by Sr2+ In addition, there was a small increase (approximately 10%) in the number of L1-STTNs showing immunoreactivity for phosphorylated extracellular signal-regulated kinases in mice after SNI compared with sham. Similarly, only a small percentage of L1-STTNs showed a lower action potential threshold after SNI. In conclusion, our results show that SNI induces presynaptic modulation at NRNav1.8 (consisting of both peptidergic and nonpeptidergic nociceptors) synapses on L1-STTNs forming the lateral spinothalamic tract.
Collapse
Affiliation(s)
- Wei-Chen Hung 洪瑋辰
- Department of Life Science, College of Life Science, National Taiwan University, Taipei 10617, Taiwan
- Neurobiology and Cognitive Science Centre, National Taiwan University, Taipei 10617, Taiwan
| | | | - Cheng-Tung Yen 嚴震東
- Department of Life Science, College of Life Science, National Taiwan University, Taipei 10617, Taiwan
- Neurobiology and Cognitive Science Centre, National Taiwan University, Taipei 10617, Taiwan
| | - Ming-Yuan Min 閔明源
- Department of Life Science, College of Life Science, National Taiwan University, Taipei 10617, Taiwan
- Neurobiology and Cognitive Science Centre, National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|
4
|
Shin H, Kim J, Choi SR, Kang DW, Moon JY, Roh DH, Bae M, Hwang J, Kim HW. Antinociceptive effect of intermittent fasting via the orexin pathway on formalin-induced acute pain in mice. Sci Rep 2023; 13:20245. [PMID: 37985842 PMCID: PMC10661460 DOI: 10.1038/s41598-023-47278-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 11/11/2023] [Indexed: 11/22/2023] Open
Abstract
It has been suggested that stress responses induced by fasting have analgesic effects on nociception by elevating the levels of stress-related hormones, while there is limited understanding of pain control mechanisms. Here, we investigated whether acute or intermittent fasting alleviates formalin-induced pain in mice and whether spinal orexin A (OXA) plays a role in this process. 6, 12, or 24 h acute fasting (AF) and 12 or 24 h intermittent fasting (IF) decreased the second phase of pain after intraplantar formalin administration. There was no difference in walking time in the rota-rod test and distance traveld in the open field test in all groups. Plasma corticosterone level and immobility time in the forced swim test were increased after 12 h AF, but not after 12 h IF. 12 h AF and IF increased not only the activation of OXA neurons in the lateral hypothalamus but also the expression of OXA in the lateral hypothalamus and spinal cord. Blockade of spinal orexin 1 receptor with SB334867 restored formalin-induced pain and spinal c-Fos immunoreactivity that were decreased after 12 h IF. These results suggest that 12 h IF produces antinociceptive effects on formalin-induced pain not by corticosterone elevation but by OXA-mediated pathway.
Collapse
Affiliation(s)
- Hyunjin Shin
- Department of Physiology and Medical Science, College of Medicine and Brain Research Institute, Chungnam National University, 266 Munhwa-ro, Jung-gu, Daejeon, 35015, Korea
| | - Jaehyuk Kim
- Department of Physiology and Medical Science, College of Medicine and Brain Research Institute, Chungnam National University, 266 Munhwa-ro, Jung-gu, Daejeon, 35015, Korea
- CNS Team, N-DIC, Hwaseong, 18469, Korea
| | - Sheu-Ran Choi
- Department of Pharmacology, Catholic Kwandong University College of Medicine, Gangneung, 25601, Korea
| | - Dong-Wook Kang
- Department of Physiology and Medical Science, College of Medicine and Brain Research Institute, Chungnam National University, 266 Munhwa-ro, Jung-gu, Daejeon, 35015, Korea
| | - Ji-Young Moon
- Animal Protection and Welfare Division, Animal and Plant Quarantine Agency, Gimcheon, 39660, Korea
| | - Dae-Hyun Roh
- Department of Oral Physiology, School of Dentistry, Kyung Hee University, Seoul, 02447, Korea
| | - Miok Bae
- Preclinical Research Center, Chungnam National University Hospital, Daejeon, 35015, Korea
| | - Jungmo Hwang
- Department of Orthopaedic Surgery, College of Medicine, Chungnam National University, 266 Munhwa-ro, Jung-gu, Daejeon, 35015, Korea.
| | - Hyun-Woo Kim
- Department of Physiology and Medical Science, College of Medicine and Brain Research Institute, Chungnam National University, 266 Munhwa-ro, Jung-gu, Daejeon, 35015, Korea.
| |
Collapse
|
5
|
Laksono RM, Kalim H, Rohman MS, Widodo N, Ahmad MR, Halim W. Pulsed Radiofrequency Decreases pERK and Affects Intracellular Ca 2+ Influx, Cytosolic ATP Level, and Mitochondrial Membrane Potential in the Sensitized Dorsal Root Ganglion Neuron Induced by N-Methyl D-Aspartate. J Pain Res 2023; 16:1697-1711. [PMID: 37252110 PMCID: PMC10216856 DOI: 10.2147/jpr.s409658] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 05/08/2023] [Indexed: 05/31/2023] Open
Abstract
Background The molecular mechanism of pulsed radiofrequency (PRF) in chronic pain management is not fully understood. Chronic pain involves the activation of specific N-Methyl D-Aspartate receptors (NMDAR) to induce central sensitization. This study aims to determine the effect of PRF on central sensitization biomarker phosphorylated extracellular signal-regulated kinase (pERK), Ca2+ influx, cytosolic ATP level, and mitochondrial membrane potential (Δψm) of the sensitized dorsal root ganglion (DRG) neuron following NMDAR activation. Methods This study is a true experimental in-vitro study on a sensitized DRG neuron induced with 80 µM NMDA. There are six treatment groups including control, NMDA 80 µM, Ketamine 100 µM, PRF 2Hz, NMDA 80 µM + PRF 2 Hz, and NMDA 80 µM + PRF 2 Hz + ketamine 100 µM. We use PRF 2 Hz 20 ms for 360 seconds. Statistical analysis was performed using the One-Way ANOVA and the Pearson correlation test with α=5%. Results In the sensitized DRG neuron, there is a significant elevation of pERK. There is a strong correlation between Ca2+, cytosolic ATP level, and Δψm with pERK intensity (p<0.05). PRF treatment decreases pERK intensity from 108.48 ± 16.95 AU to 38.57 ± 5.20 AU (p<0.05). PRF exposure to sensitized neurons also exhibits a Ca2+ influx, but still lower than in the unexposed neuron. PRF exposure in sensitized neurons has a higher cytosolic ATP level (0.0458 ± 0.0010 mM) than in the unexposed sensitized neuron (0.0198 ± 0.0004 mM) (p<0.05). PRF also decreases Δψm in the sensitized neuron from 109.24 ± 6.43 AU to 33.21 ± 1.769 AU (p<0.05). Conclusion PRF mechanisms related to DRG neuron sensitization are by decreasing pERK, altering Ca2+ influx, increasing cytosolic ATP level, and decreasing Δψm which is associated with neuron sensitization following NMDAR activation.
Collapse
Affiliation(s)
- Ristiawan Muji Laksono
- Doctoral Program in Biomedical Science, Faculty of Medicine, Brawijaya University, Malang, Indonesia
- Department of Anesthesiology and Intensive Therapy, Faculty of Medicine, Brawijaya University, Malang, Indonesia
| | - Handono Kalim
- Department of Internal Medicine, Faculty of Medicine, Brawijaya University, Malang, Indonesia
| | - Mohammad Saifur Rohman
- Department of Cardiology and Vascular Medicine, Faculty of Medicine, Brawijaya University, Malang, Indonesia
| | - Nashi Widodo
- Department of Biology, Faculty of Mathematics and Natural Science, Brawijaya University, Malang, Indonesia
| | - Muhammad Ramli Ahmad
- Department of Anesthesiology, Intensive Care and Pain Management, Faculty of Medicine, Hasanuddin University, Makassar, Indonesia
| | - Willy Halim
- Faculty of Medicine, Brawijaya University, Malang, Indonesia
| |
Collapse
|
6
|
Kainate receptor subunit 1 (GRIK1) risk variants and GRIK1 deficiency were detected in the Indian ADHD probands. Sci Rep 2022; 12:18449. [PMID: 36323684 PMCID: PMC9630447 DOI: 10.1038/s41598-022-21948-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 10/06/2022] [Indexed: 11/30/2022] Open
Abstract
Executive dysfunctions caused by structural and functional abnormalities of the prefrontal cortex were reported in patients with Attention deficit hyperactivity disorder (ADHD). Owing to a higher expression of the glutamate ionotropic receptor kainate type subunit 1 (GluK1), encoded by the GRIK1 gene, in brain regions responsible for learning and memory, we hypothesized that GRIK1 might have a role in ADHD. GRIK1 variants rs363504 and rs363538, affecting the receptor function, were analyzed by case-control and family-based methods to identify the association with ADHD. The impact of these variants on ADHD-associated traits and pharmacological intervention were also analyzed. GRIK1 expression was quantified in the peripheral blood. The probands and their fathers had a higher frequency of rs363504 'CC' and rs363538 'CA' genotypes. Family-based investigation revealed maternal over transmission of rs363504 'C' and rs363538 'A' alleles to the probands. Quantitative trait analysis exhibited an association of rs363504 'TT' and rs363538 'AA' genotypes with higher hyperactivity scores of the probands. In the presence of rs363504 'TT' and rs363538 'CC' genotypes, MPH treatment improved hyperactivity and inattention, respectively. GRIK1 expression was significantly downregulated in the probands. We infer that GRIK1 affects ADHD etiology, warranting further in-depth investigation involving a larger cohort and more functional variants.
Collapse
|
7
|
Glutamate Signaling and Filopodiagenesis of Astrocytoma Cells in Brain Cancers: Survey and Questions. Cells 2022; 11:cells11172657. [PMID: 36078065 PMCID: PMC9454653 DOI: 10.3390/cells11172657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 08/19/2022] [Accepted: 08/24/2022] [Indexed: 11/22/2022] Open
Abstract
Astrocytes are non-excitable cells in the CNS that can cause life-threatening astrocytoma tumors when they transform to cancerous cells. Perturbed homeostasis of the neurotransmitter glutamate is associated with astrocytoma tumor onset and progression, but the factors that govern this phenomenon are less known. Herein, we review possible mechanisms by which glutamate may act in facilitating the growth of projections in astrocytic cells. This review discusses the similarities and differences between the morphology of astrocytes and astrocytoma cells, and the role that dysregulation in glutamate and calcium signaling plays in the aberrant morphology of astrocytoma cells. Converging reports suggest that ionotropic glutamate receptors and voltage-gated calcium channels expressed in astrocytes may be responsible for the abnormal filopodiagenesis or process extension leading to astrocytoma cells’ infiltration throughout the brain.
Collapse
|
8
|
Mirabelli E, Elkabes S. Neuropathic Pain in Multiple Sclerosis and Its Animal Models: Focus on Mechanisms, Knowledge Gaps and Future Directions. Front Neurol 2022; 12:793745. [PMID: 34975739 PMCID: PMC8716468 DOI: 10.3389/fneur.2021.793745] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 11/17/2021] [Indexed: 12/22/2022] Open
Abstract
Multiple sclerosis (MS) is a multifaceted, complex and chronic neurological disease that leads to motor, sensory and cognitive deficits. MS symptoms are unpredictable and exceedingly variable. Pain is a frequent symptom of MS and manifests as nociceptive or neuropathic pain, even at early disease stages. Neuropathic pain is one of the most debilitating symptoms that reduces quality of life and interferes with daily activities, particularly because conventional pharmacotherapies do not adequately alleviate neuropathic pain. Despite advances, the mechanisms underlying neuropathic pain in MS remain elusive. The majority of the studies investigating the pathophysiology of MS-associated neuropathic pain have been performed in animal models that replicate some of the clinical and neuropathological features of MS. Experimental autoimmune encephalomyelitis (EAE) is one of the best-characterized and most commonly used animal models of MS. As in the case of individuals with MS, rodents affected by EAE manifest increased sensitivity to pain which can be assessed by well-established assays. Investigations on EAE provided valuable insights into the pathophysiology of neuropathic pain. Nevertheless, additional investigations are warranted to better understand the events that lead to the onset and maintenance of neuropathic pain in order to identify targets that can facilitate the development of more effective therapeutic interventions. The goal of the present review is to provide an overview of several mechanisms implicated in neuropathic pain in EAE by summarizing published reports. We discuss current knowledge gaps and future research directions, especially based on information obtained by use of other animal models of neuropathic pain such as nerve injury.
Collapse
Affiliation(s)
- Ersilia Mirabelli
- Reynolds Family Spine Laboratory, Department of Neurosurgery, New Jersey Medical School, Rutgers the State University of New Jersey, Newark, NJ, United States.,Department of Biology and Chemistry, School of Health Sciences, Liberty University, Lynchburg, VA, United States
| | - Stella Elkabes
- Reynolds Family Spine Laboratory, Department of Neurosurgery, New Jersey Medical School, Rutgers the State University of New Jersey, Newark, NJ, United States
| |
Collapse
|
9
|
Azeez IA, Igado OO, Olopade JO. An overview of the orexinergic system in different animal species. Metab Brain Dis 2021; 36:1419-1444. [PMID: 34224065 DOI: 10.1007/s11011-021-00761-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 06/06/2021] [Indexed: 01/13/2023]
Abstract
Orexin (hypocretin), is a neuropeptide produced by a subset of neurons in the lateral hypothalamus. From the lateral hypothalamus, the orexin-containing neurons project their fibres extensively to other brain structures, and the spinal cord constituting the central orexinergic system. Generally, the term ''orexinergic system'' usually refers to the orexin peptides and their receptors, as well as to the orexin neurons and their projections to different parts of the central nervous system. The extensive networks of orexin axonal fibres and their terminals allow these neuropeptidergic neurons to exert great influence on their target regions. The hypothalamic neurons containing the orexin neuropeptides have been implicated in diverse functions, especially related to the control of a variety of homeostatic functions including feeding behaviour, arousal, wakefulness stability and energy expenditure. The broad range of functions regulated by the orexinergic system has led to its description as ''physiological integrator''. In the last two decades, the orexinergic system has been a topic of great interest to the scientific community with many reports in the public domain. From the documentations, variations exist in the neuroanatomical profile of the orexinergic neuron soma, fibres and their receptors from animal to animal. Hence, this review highlights the distinct variabilities in the morphophysiological aspects of the orexinergic system in the vertebrate animals, mammals and non-mammals, its presence in other brain-related structures, including its involvement in ageing and neurodegenerative diseases. The presence of the neuropeptide in the cerebrospinal fluid and peripheral tissues, as well as its alteration in different animal models and conditions are also reviewed.
Collapse
Affiliation(s)
- Idris A Azeez
- Department of Veterinary Anatomy, University of Jos, Jos, Nigeria
| | - Olumayowa O Igado
- Department of Veterinary Anatomy, University of Ibadan, Ibadan, Nigeria
| | - James O Olopade
- Department of Veterinary Anatomy, University of Ibadan, Ibadan, Nigeria.
| |
Collapse
|
10
|
Nedic Erjavec G, Sagud M, Nikolac Perkovic M, Svob Strac D, Konjevod M, Tudor L, Uzun S, Pivac N. Depression: Biological markers and treatment. Prog Neuropsychopharmacol Biol Psychiatry 2021; 105:110139. [PMID: 33068682 DOI: 10.1016/j.pnpbp.2020.110139] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 10/06/2020] [Accepted: 10/10/2020] [Indexed: 12/14/2022]
Abstract
Nowadays depression is considered as a systemic illness with different biological mechanisms involved in its etiology, including inflammatory response, hypothalamic-pituitary-adrenal (HPA) axis dysregulation and neurotransmitter and neurotrophic systems imbalance. Novel "omics" approaches, such as metabolomics and glycomics provide information about altered metabolic pathways and metabolites, as well as disturbances in glycosylation processes affected by or causing the development of depression. The clinical diagnosis of depression continues to be established based on the presence of the specific symptoms, but due to its heterogeneous underlying biological background, that differs according to the disease stage, there is an unmet need for treatment response biomarkers which would facilitate the process of appropriate treatment selection. This paper provides an overview of the role of major stress response system, the HPA axis, and its dysregulation in depression, possible involvement of neurotrophins, especially brain-derived neurotrophic factor, glial cell line-derived neurotrophic factor and insulin-like growth factor-1, in the development of depression. Article discusses how activated inflammation processes and increased cytokine levels, as well as disturbed neurotransmitter systems can contribute to different stages of depression and could specific metabolomic and glycomic species be considered as potential biomarkers of depression. The second part of the paper includes the most recent findings about available medical treatment of depression. The described biological factors impose an optimistic conclusion that they could represent easy obtainable biomarkers potentially predicting more personalized treatment and diagnostic options.
Collapse
Affiliation(s)
- Gordana Nedic Erjavec
- Rudjer Boskovic Institute, Division of Molecular Medicine, Bijenicka cesta 54, 10000 Zagreb, Croatia
| | - Marina Sagud
- The University of Zagreb School of Medicine, Salata 3, 10000 Zagreb, Croatia; University Hospital Center Zagreb, Department of Psychiatry, Kispaticeva 12, 10000 Zagreb, Croatia
| | - Matea Nikolac Perkovic
- Rudjer Boskovic Institute, Division of Molecular Medicine, Bijenicka cesta 54, 10000 Zagreb, Croatia
| | - Dubravka Svob Strac
- Rudjer Boskovic Institute, Division of Molecular Medicine, Bijenicka cesta 54, 10000 Zagreb, Croatia
| | - Marcela Konjevod
- Rudjer Boskovic Institute, Division of Molecular Medicine, Bijenicka cesta 54, 10000 Zagreb, Croatia
| | - Lucija Tudor
- Rudjer Boskovic Institute, Division of Molecular Medicine, Bijenicka cesta 54, 10000 Zagreb, Croatia
| | - Sandra Uzun
- University Hospital Center Zagreb, Department for Anesthesiology, Reanimatology, and Intensive Care, Kispaticeva 12, 10000 Zagreb, Croatia
| | - Nela Pivac
- Rudjer Boskovic Institute, Division of Molecular Medicine, Bijenicka cesta 54, 10000 Zagreb, Croatia.
| |
Collapse
|
11
|
Kang X, Tang H, Liu Y, Yuan Y, Wang M. Research progress on the mechanism of orexin in pain regulation in different brain regions. Open Life Sci 2021; 16:46-52. [PMID: 33817297 PMCID: PMC7874592 DOI: 10.1515/biol-2021-0001] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 09/22/2020] [Accepted: 10/04/2020] [Indexed: 02/07/2023] Open
Abstract
Orexin is a neuropeptide that is primarily synthesized and secreted by the lateral hypothalamus (LH) and includes two substances derived from the same precursor (orexin A [OXA] and orexin B [OXB]). Studies have shown that orexin is not only involved in the regulation of eating, the sleep–wake cycle, and energy metabolism, but also closely associated with various physiological functions, such as cardiovascular control, reproduction, stress, reward, addiction, and the modulation of pain transmission. At present, studies that have been performed both domestically and abroad have confirmed that orexin and its receptors are closely associated with pain regulation. In this article, the research progress on acute pain regulation involving orexin is reviewed.
Collapse
Affiliation(s)
- Xianhui Kang
- Department of Anesthesiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province 310003, China
| | - Hongli Tang
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou City, Zhejiang Province 325000, China
| | - Yao Liu
- Department of Pain Management, Jiangnan University, No.1000 Hefeng Road, Binhu District, Wuxi, Jiangsu Province 214000, People’s Republic of China
| | - Yan Yuan
- Department of Anesthesiology, The Affiliated Hospital of Xuzhou Medical University, No. 84 Huaihai West Road, Quanshan District, Xuzhou, Jiangsu Province 221002, People’s Republic of China
| | - Mi Wang
- Department of Anesthesiology, The Affiliated Hospital of Xuzhou Medical University, No. 84 Huaihai West Road, Quanshan District, Xuzhou, Jiangsu Province 221002, People’s Republic of China
| |
Collapse
|
12
|
Kwak DG, Lee DG. Sequential Activation of AMPA Receptors and Glial Cells in a Pain Model of Lumbar Spine Disc Herniation. Ann Rehabil Med 2020; 44:343-352. [PMID: 32986944 PMCID: PMC7655227 DOI: 10.5535/arm.19202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 03/11/2020] [Indexed: 12/01/2022] Open
Abstract
Objective To investigate the glial cell and AMPA (alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid) receptor activity after surgery for disc herniation pain model. Methods In total, 83 Sprague-Dawley rats were randomly assigned to the following groups: control (n=16), sham-operated (n=4), rats for pain behavior evaluation (n=3), nucleus pulposus-exposed groups for AMPA receptors (n=30), and glial cell (n=30). The rats were tested for mechanical allodynia; immunohistochemical staining for AMPA receptors (GluA1 and GluA2) and glial cells (OX-42 and glial fibrillary acid protein [GFAP]) in the spinal dorsal horn was performed on postoperative days 3, 7, and 14. Results Mechanical withdrawal thresholds decreased after surgery, and this effect was maintained for up to 14 days. Immunohistochemical expression of GluA1 and GluA2 in the spinal dorsal horn had increased quantitatively on postoperative days 3 and 7 (p<0.05) to levels similar to that of the controls on postoperative day 14. Moreover, immunohistochemical expression of OX-42 and GFAP showed similar changes to AMPA receptors after surgery. Although the activity of AMPA receptors and glial cells achieved normalcy, the mechanical withdrawal threshold of the hind paw remained decreased 38 days after surgery. Conclusion The rat model of lumbar disc herniation showed increased expression of AMPA receptor and glial cell activity in the spinal dorsal horn 3 and 7 days after surgery, which deceased to control levels at 14 days. The AMPA receptors and glial cell activations showed similar patterns after disc herniation surgery.
Collapse
Affiliation(s)
- Dong Gyu Kwak
- Department of Physical Medicine and Rehabilitation, Yeungnam University College of Medicine, Daegu, Korea
| | - Dong Gyu Lee
- Department of Physical Medicine and Rehabilitation, Yeungnam University College of Medicine, Daegu, Korea
| |
Collapse
|
13
|
Cho JH, Lee DG. Translocation of AMPA Receptors in the Dorsal Horn of the Spinal Cord Corresponding to Long-term Depression Following Pulsed Radiofrequency Stimulation at the Dorsal Root Ganglion. PAIN MEDICINE 2019; 21:1913-1920. [DOI: 10.1093/pm/pnz307] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Abstract
Objective
Pulsed radiofrequency stimulation at the dorsal root ganglion is used for treatment of radicular pain; however, its mechanism for neuropathic pain treatment has not been fully elucidated. Here, we investigated whether pulsed radiofrequency stimulation affects the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors, which play a critical role in synaptic plasticity.
Methods
Neuropathic pain was studied using a radicular neuropathic pain model (43 female Sprague-Dawley rats; 200–250 g). In total, 28 rats were assigned to the following groups for fraction analysis: a control group, a control + pulsed radiofrequency stimulation group, a disc pain group, and a disc pain + pulsed radiofrequency stimulation group. For nonfraction analysis of Glutamate A1 (GluA1) and GluA2 subunits, a total of 15 female Sprague-Dawley rats were assigned to a control group, a disc pain group, and a disc pain + pulsed radiofrequency stimulation group. Pulsed radiofrequency stimulation and subsequent analysis were conducted three days after surgery.
Results
AMPA receptor subunits, GluA1 and GluA2, in the radicular neuropathic pain model were upregulated compared with those in the control group three days after surgery. Pulsed radiofrequency stimulation induced the translocation of GluA1 and GluA2 subunits from the synaptosome to cytosol without a change in the total amount of AMPA receptors in the dorsal horn.
Conclusions
Our results demonstrated that pulsed radiofrequency stimulation affected the synaptic plasticity corresponding to long-term depression. Thus, we show that long-term depression from pulsed radiofrequency stimulation is associated with analgesic effects in the radicular neuropathic pain model following peripheral inflammation.
Collapse
Affiliation(s)
- Jang Hyuk Cho
- Department of Physical Medicine and Rehabilitation, College of Medicine, Yeungnam University, Daegu, Republic of Korea
| | - Dong Gyu Lee
- Department of Physical Medicine and Rehabilitation, College of Medicine, Yeungnam University, Daegu, Republic of Korea
| |
Collapse
|
14
|
Gong N, Park J, Luo ZD. Injury-induced maladaptation and dysregulation of calcium channel α 2 δ subunit proteins and its contribution to neuropathic pain development. Br J Pharmacol 2018; 175:2231-2243. [PMID: 28646556 PMCID: PMC5980513 DOI: 10.1111/bph.13930] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 06/05/2017] [Accepted: 06/12/2017] [Indexed: 01/12/2023] Open
Abstract
Voltage-gated calcium channels (VGCCs) play important roles in physiological functions including the modulation of neurotransmitter release, neuronal network activities, intracellular signalling pathways and gene expression. Some pathological conditions, including nerve injuries, can cause the dysregulation of VGCCs and their subunits. This in turn can lead to a functional maladaptation of VGCCs and their subunits, which can contribute to the development of disorders such as pain sensations. This review has summarized recent findings related to maladaptive changes in the dysregulated VGCC α2 δ1 subunit (Cav α2 δ1 ) with a focus on exploring the mechanisms underlying the contribution of Cav α2 δ1 to pain signal transduction. At least under neuropathic pain conditions, the dysregulated Cav α2 δ1 can modulate VGCC functions as well as other plasticity changes. The latter includes abnormal excitatory synaptogenesis resulting from its interactions with injury-induced extracellular matrix glycoprotein molecule thrombospondins, which is independent of the VGCC functions. Blocking Cav α2 δ1 with gabapentinoids can reverse neuropathic pain significantly with relatively mild side effects, but only in a small population of neuropathic pain patients due to reasons yet to be explored. There are emerging data suggesting that early preventive treatment with gabapentinoids can prevent aberrant excitatory synapse formation and the development of chronic pain. If these findings are confirmed clinically, this could be an attractive approach for neuropathic pain management. LINKED ARTICLES This article is part of a themed section on Recent Advances in Targeting Ion Channels to Treat Chronic Pain. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v175.12/issuetoc.
Collapse
Affiliation(s)
- Nian Gong
- Department of Anesthesiology & Perioperative CareSchool of Medicine, University of California IrvineIrvineCAUSA
| | - John Park
- Department of Pharmacology, School of MedicineUniversity of California IrvineIrvineCAUSA
| | - Z David Luo
- Department of Anesthesiology & Perioperative CareSchool of Medicine, University of California IrvineIrvineCAUSA
- Department of Pharmacology, School of MedicineUniversity of California IrvineIrvineCAUSA
| |
Collapse
|
15
|
Bellessort B, Bachelot A, Grouthier V, De Lombares C, Narboux-Neme N, Garagnani P, Pirazzini C, Astigiano S, Mastracci L, Fontaine A, Alfama G, Duvernois-Berthet E, Levi G. Comparative analysis of molecular signatures suggests the use of gabapentin for the management of endometriosis-associated pain. J Pain Res 2018; 11:715-725. [PMID: 29692624 PMCID: PMC5903492 DOI: 10.2147/jpr.s163611] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Background It has been repetitively shown that the transcription factors DLX5 and DLX6 are drastically downregulated in endometriotic lesions when compared with eutopic endometrium. These findings suggest that regulatory cascades involving DLX5/6 might be at the origin of endometriosis symptoms such as chronic pelvic pain (CPP). We have shown that inactivation of Dlx5 and Dlx5/6 in the mouse uterus results in an endometrial phenotype reminiscent of endometriosis. Methods We focused on genes that present a similar deregulation in endometriosis and in Dlx5/6-null mice in search of new endometriosis targets. Results We confirmed a strong reduction of DLX5 expression in endometriosis implants. We identified a signature of 30 genes similarly deregulated in human endometriosis implants and in Dlx5/6-null mouse uteri, reinforcing the notion that the downregulation of Dlx5/6 is an early event in the progress of endometriosis. CACNA2D3, a component of the α2δ family of voltage-dependent calcium channel complex, was strongly overexpressed both in mutant mouse uteri and in endometriosis implants, were also CACNA2D1 and CACNA2D2, other members of the α2δ family involved in nociception, are upregulated. Conclusion Comparative analysis of gene expression signatures from endometriosis and mouse models showed that calcium channel subunits α2δ involved in nociception can be targets for the treatment of endometriosis-associated pain. CACNA2D3 has been associated with pain sensitization and heat nociception in animal models. In patients, CACNA2D3 variants were associated with reduced sensitivity to acute noxious stimuli. As α2δs were targets of gabapentinoid analgesics, the results suggested the use of these drugs for the treatment of endometriosis-associated pain. Indeed, recent small-scale clinical studies have shown that gabapentin could be effective in women with CPP. The findings of this study reinforce the need for a large definitive trial.
Collapse
Affiliation(s)
- Brice Bellessort
- Evolution of Endocrine Regulations, Department AVIV, National Museum of Natural History, Paris, France
| | - Anne Bachelot
- Evolution of Endocrine Regulations, Department AVIV, National Museum of Natural History, Paris, France.,AP-HP, Department of Endocrinology and Reproductive Medicine, Reference Center for Rare Endocrine Diseases, Pitié-Salpêtrière Hospital, UPMC, Paris, France
| | - Virginie Grouthier
- AP-HP, Department of Endocrinology and Reproductive Medicine, Reference Center for Rare Endocrine Diseases, Pitié-Salpêtrière Hospital, UPMC, Paris, France
| | - Camille De Lombares
- Evolution of Endocrine Regulations, Department AVIV, National Museum of Natural History, Paris, France
| | - Nicolas Narboux-Neme
- Evolution of Endocrine Regulations, Department AVIV, National Museum of Natural History, Paris, France
| | - Paolo Garagnani
- Department of Experimental, Diagnostic and Specialty Medicine, Alma Mater Studiorum, University of Bologna, Bologna, Italy.,Interdepartmental Center "L. Galvani", University of Bologna, Bologna, Italy
| | - Chiara Pirazzini
- Department of Experimental, Diagnostic and Specialty Medicine, Alma Mater Studiorum, University of Bologna, Bologna, Italy.,Interdepartmental Center "L. Galvani", University of Bologna, Bologna, Italy
| | - Simonetta Astigiano
- Department of Integrated Oncological Therapies, San Martino Hospital, Genova, Italy
| | - Luca Mastracci
- Department of Experimental Medicine and Center of Excellence for Biomedical Research, University of Genoa, Genova, Italy.,Division of Anatomic Pathology, Department of Surgical Science and Integrated Diagnostics, University of Genoa, Genova, Italy
| | - Anastasia Fontaine
- Evolution of Endocrine Regulations, Department AVIV, National Museum of Natural History, Paris, France
| | - Gladys Alfama
- Evolution of Endocrine Regulations, Department AVIV, National Museum of Natural History, Paris, France
| | - Evelyne Duvernois-Berthet
- Evolution of Endocrine Regulations, Department AVIV, National Museum of Natural History, Paris, France
| | - Giovanni Levi
- Evolution of Endocrine Regulations, Department AVIV, National Museum of Natural History, Paris, France
| |
Collapse
|
16
|
Lian YN, Lu Q, Chang JL, Zhang Y. The role of glutamate and its receptors in central nervous system in stress-induced hyperalgesia. Int J Neurosci 2017; 128:283-290. [DOI: 10.1080/00207454.2017.1387112] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Yan-Na Lian
- Department of Physiology, Harbin Medical University, Harbin, P. R. China
| | - Qi Lu
- Department of Physiology, Harbin Medical University, Harbin, P. R. China
| | - Jin-Long Chang
- Department of Physiology, Harbin Medical University, Harbin, P. R. China
| | - Ying Zhang
- Department of Physiology, Harbin Medical University, Harbin, P. R. China
| |
Collapse
|
17
|
Regulation of Nociceptive Plasticity Threshold and DARPP-32 Phosphorylation in Spinal Dorsal Horn Neurons by Convergent Dopamine and Glutamate Inputs. PLoS One 2016; 11:e0162416. [PMID: 27610622 PMCID: PMC5017751 DOI: 10.1371/journal.pone.0162416] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 08/22/2016] [Indexed: 01/19/2023] Open
Abstract
Dopamine can influence NMDA receptor function and regulate glutamate-triggered long-term changes in synaptic strength in several regions of the CNS. In spinal cord, regulation of the threshold of synaptic plasticity may determine the proneness to undergo sensitization and hyperresponsiveness to noxious input. In the current study, we increased endogenous dopamine levels in the dorsal horn by using re-uptake inhibitor GBR 12935. During the so-induced hyperdopaminergic transmission, conditioning low-frequency (1 Hz) stimulation (LFS) to the sciatic nerve induced long-term potentiation (LTP) of C-fiber-evoked potentials in dorsal horn neurons. The magnitude of LTP was attenuated by blockade of either dopamine D1-like receptors (D1LRs) by with SCH 23390 or NMDA receptor subunit NR2B with antagonist Ro25-6981. Conditioning LFS during GBR 12935 administration increased phosphorylation of dopamine- and cAMP-regulated phosphoprotein of Mr 32kDa (DARPP-32) at threonine 34 residue in synaptosomal (P3) fraction of dorsal horn homogenates, as assessed by Western blot analysis, which was partially prevented by NR2B blockade prior to conditioning stimulation. Conditioning LFS also was followed by higher co-localization of phosphorylated form of NR2B at tyrosine 1472 and pDARPP-32Thr34- with postsynaptic marker PSD-95 in transverse L5 dorsal horn sections. Such increase could be significantly attenuated by D1LR blockade with SCH 23390. The current results support that coincidental endogenous recruitment of D1LRs and NR2B in dorsal horn synapses plays a role in regulating afferent-induced nociceptive plasticity. Parallel increases in DARPP-32 phosphorylation upon LTP induction suggests a role for this phosphoprotein as intracellular detector of convergent D1L- and NMDA receptor activation.
Collapse
|
18
|
Meleine M, Boudieu L, Gelot A, Muller E, Lashermes A, Matricon J, Silberberg C, Theodorou V, Eschalier A, Ardid D, Carvalho FA. Comparative effects of α2δ-1 ligands in mouse models of colonic hypersensitivity. World J Gastroenterol 2016; 22:7111-7123. [PMID: 27610021 PMCID: PMC4988313 DOI: 10.3748/wjg.v22.i31.7111] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 06/09/2016] [Accepted: 07/06/2016] [Indexed: 02/07/2023] Open
Abstract
AIM: To investigate anti-hypersensitive effects of α2δ-1 ligands in non-inflammatory and inflammation-associated colonic hypersensitivity (CHS) mouse models.
METHODS: To induce an inflammation-associated CHS, 1% dextran sulfate sodium (DSS) was administered to C57Bl/6J male mice, in drinking water, for 14 d. Regarding the non-inflammatory neonatal maternal separation (NMS) -induced CHS model, wild-type C57BI/6J pups were isolated from their mother from day 2 to day 14 (P2 to P14), three hours per day (from 9:00 a.m. to 12:00 p.m.). Colorectal distension was performed by inflating distension probe from 20 μL to 100 μL by 20 μL increment step every 10 s. After a first colorectal distension (CRD), drugs were administered subcutaneously, in a cumulative manner, (Gabapentin at 30 mg/kg and 100 mg/kg; Pregabalin at 10 mg/kg and 30 mg/kg; Carbamazepine at 10 mg/kg and 30 mg/kg) and a second CRD was performed one hour after each injection.
RESULTS: The visceromotor response (VMR) to CRD was increased by our NMS paradigm protocol in comparison to non-handled (NH) mice, considering the highest distension volumes (80 μL: 0.783 ± 0.056 mV/s vs 0.531 ± 0.034 mV/s, P < 0.05 and 100 μL: 1.087 ± 0.056 mV/s vs 0.634 ± 0.038 mV/s, P < 0.05 for NMS and NH mice, respectively). In the inflammation-associated CHS, DSS-treated mice showed a dramatic and significant increase in VMR at 60 and 80 μL distension volumes when compared to control mice (60 μL: 0.920 ± 0.079 mV/s vs 0.426 ± 0.100 mV/s P < 0.05 and 80 μL: 1.193 ± 0.097 mV/s vs 0.681 ± 0.094 mV/s P < 0.05 for DSS- and Water-treated mice, respectively). Carbamazepine failed to significantly reduce CHS in both models. Gabapentin significantly reduced CHS in the DSS-induced model for both subcutaneous injections at 30 or 100 mg/kg. Pregabalin significantly reduced VMR to CRD in the non-inflammatory NMS-induced CHS model for the acute subcutaneous administration of the highest cumulative dose (30 mg/kg) and significantly reduced CHS in low-dose DSS-treated mice in a dose-dependent manner. Finally, the percent decrease of AUC induced by acute GBP or Pregabalin treatment were higher in the inflammatory DSS-induced CHS model in comparison to the non-inflammatory NMS-induced CHS model.
CONCLUSION: This preclinical study demonstrates α2δ-1 ligands efficacy on inflammation-associated CHS, highlighting their potential clinical interest in patients with chronic abdominal pain and moderate intestinal inflammation.
Collapse
|
19
|
Chindo BA, Schröder H, Koeberle A, Werz O, Becker A. Analgesic potential of standardized methanol stem bark extract of Ficus platyphylla in mice: Mechanisms of action. JOURNAL OF ETHNOPHARMACOLOGY 2016; 184:101-106. [PMID: 26945978 DOI: 10.1016/j.jep.2016.03.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Revised: 02/24/2016] [Accepted: 03/01/2016] [Indexed: 06/05/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Extracts of the stem bark of Ficus platyphylla (FP) have been used in traditional the Nigerian medicine to treat psychoses, depression, epilepsy, pain and inflammation. Previous studies have revealed the analgesic and anti-inflammatory effects of FP in different assays including acetic acid-induced writhing, formalin-induced nociception, and albumin-induced oedema. PURPOSE/METHODS In this study, we assessed the effects of the standardised extract of FP on hot plate nociceptive threshold and vocalisation threshold in response to electrical stimulation of the tail root in order to confirm its acclaimed analgesic properties. We also investigated the molecular mechanisms underlying these effects, with the focus on opiate receptor binding and the key enzymes of eicosanoid biosynthesis, namely cyclooxygenase (COX) and 5-lipoxygenase (5-LO). RESULTS FP (i) increased the hot plate nociceptive threshold and vocalisation threshold. The increase in hot plate nociceptive threshold was detectable over a period of 30min whereas the increase in vocalisation threshold persisted over a period of 90min. (ii) FP showed an affinity for µ opiate receptors but not for δ or κ opiate receptors, and (iii) FP inhibited the activities of COX-2 and 5-LO but not of COX-1. CONCLUSIONS We provided evidence supporting the use of FP in Nigerian folk medicine for the treatment of different types of pain, and identified opioid and non-opioid targets. It is interesting to note that the dual inhibition of COX-2 and 5-LO appears favourable in terms of both efficacy and side effect profile.
Collapse
Affiliation(s)
- Ben A Chindo
- Department of Pharmacology and Toxicology, Faculty of Pharmaceutical Sciences, Kaduna State University, Kaduna, Nigeria; Institute of Pharmacology and Toxicology, Faculty of Medicine, Otto-von-Guericke University, Leipziger Str. 44, 39120 Magdeburg, Germany; Department of Pharmacology and Toxicology, National Institute for Pharmaceutical Research and Development, P. M. B. 21, Abuja, Nigeria
| | - Helmut Schröder
- Institute of Pharmacology and Toxicology, Faculty of Medicine, Otto-von-Guericke University, Leipziger Str. 44, 39120 Magdeburg, Germany
| | - Andreas Koeberle
- Chair of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich-Schiller-University Jena, Philosophenweg 14, 07743 Jena, Germany
| | - Oliver Werz
- Chair of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich-Schiller-University Jena, Philosophenweg 14, 07743 Jena, Germany
| | - Axel Becker
- Institute of Pharmacology and Toxicology, Faculty of Medicine, Otto-von-Guericke University, Leipziger Str. 44, 39120 Magdeburg, Germany.
| |
Collapse
|
20
|
The modulatory effect of CA1 GABAb receptors on ketamine-induced spatial and non-spatial novelty detection deficits with respect to Ca2+. Neuroscience 2015; 305:157-68. [DOI: 10.1016/j.neuroscience.2015.07.083] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Revised: 07/24/2015] [Accepted: 07/30/2015] [Indexed: 11/18/2022]
|
21
|
Jeon Y, Park KB, Pervin R, Kim TW, Youn DH. Orexin-A modulates excitatory synaptic transmission and neuronal excitability in the spinal cord substantia gelatinosa. Neurosci Lett 2015; 604:128-33. [PMID: 26254164 DOI: 10.1016/j.neulet.2015.08.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2015] [Revised: 07/22/2015] [Accepted: 08/03/2015] [Indexed: 10/23/2022]
Abstract
Although intrathecal orexin-A has been known to be antinociceptive in various pain models, the role of orexin-A in antinociception is not well characterized. In the present study, we examined whether orexin-A modulates primary afferent fiber-mediated or spontaneous excitatory synaptic transmission using transverse spinal cord slices with attached dorsal root. Bath-application of orexin-A (100nM) reduced the amplitude of excitatory postsynaptic currents (EPSCs) evoked by electrical stimulation of Aδ- or C-primary afferent fibers. The magnitude of reduction was much larger for EPSCs evoked by polysynaptic C-fibers than polysynaptic Aδ-fibers, whereas it was similar in EPSCs evoked by monosynaptic Aδ- or C-fibers. SB674042, an orexin-1 receptor antagonist, but not EMPA, an orexin-2 receptor antagonist, significantly inhibited the orexin-A-induced reduction in EPSC amplitude from mono- or polysynaptic Aδ-fibers, as well as from mono- or polysynaptic C-fibers. Furthermore, orexin-A significantly increased the frequency of spontaneous EPSCs but not the amplitude. This increase was almost completely blocked by both SB674042 and EMPA. On the other hand, orexin-A produced membrane oscillations and inward currents in the SG neurons that were partially or completely inhibited by SB674042 or EMPA, respectively. Thus, this study suggests that the spinal actions of orexin-A underlie orexin-A-induced antinociceptive effects via different subtypes of orexin receptors.
Collapse
Affiliation(s)
- Younghoon Jeon
- Department of Anesthesiology and Pain Medicine, School of Dentistry, Kyungpook National University, Daegu 700-706, Republic of Korea
| | - Ki Bum Park
- Department of Anesthesiology and Pain Medicine, School of Medicine, Kyungpook National University, Daegu 700-721, Republic of Korea.
| | - Rokeya Pervin
- Department of Physiology, College of Veterinary Medicine, Kyungpook National University, Daegu 702-701, Republic of Korea
| | - Tae Wan Kim
- Department of Physiology, College of Veterinary Medicine, Kyungpook National University, Daegu 702-701, Republic of Korea
| | - Dong-ho Youn
- Department of Oral Physiology, School of Dentistry, Kyungpook National University, Daegu 700-706, Republic of Korea.
| |
Collapse
|
22
|
Glutamatergic Transmission: A Matter of Three. Neural Plast 2015; 2015:787396. [PMID: 26345375 PMCID: PMC4539489 DOI: 10.1155/2015/787396] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 03/18/2015] [Indexed: 12/11/2022] Open
Abstract
Glutamatergic transmission in the vertebrate brain requires the involvement of glia cells, in a continuous molecular dialogue. Glial glutamate receptors and transporters are key molecules that sense synaptic activity and by these means modify their physiology in the short and long term. Posttranslational modifications that regulate protein-protein interactions and modulate transmitter removal are triggered in glial cells by neuronal released glutamate. Moreover, glutamate signaling cascades in these cells are linked to transcriptional and translational control and are critically involved in the control of the so-called glutamate/glutamine shuttle and by these means in glutamatergic neurotransmission. In this contribution, we summarize our current understanding of the biochemical consequences of glutamate synaptic activity in their surrounding partners and dissect the molecular mechanisms that allow neurons to take control of glia physiology to ensure proper glutamate-mediated neuronal communication.
Collapse
|
23
|
Fornasari D. Pain pharmacology: focus on opioids. CLINICAL CASES IN MINERAL AND BONE METABOLISM : THE OFFICIAL JOURNAL OF THE ITALIAN SOCIETY OF OSTEOPOROSIS, MINERAL METABOLISM, AND SKELETAL DISEASES 2014; 11:165-168. [PMID: 25568646 PMCID: PMC4269136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The incidence of chronic pain is estimated to be 20-25% worldwide. Although major improvements in pain control have been obtained, more than 50% of the patients reports inadequate relief. It is accepted that chronic pain, if not adequately and rapidly treated, can become a disease in itself, often intractable and maybe irreversible. This is mainly due to neuroplasticity of pain pathways. In the present review I will discuss about pain depicting the rational for the principal pharmacological interventions and finally focusing on opioids, that represent a primary class of drug to treat pain.
Collapse
Affiliation(s)
- Diego Fornasari
- Address for correspondence: Diego Fornasari, MD, PhD, Department of Medical Biotechnology and Translational, Medicine, University of Milan, Via Vanvitelli 32, 20129 Milan, Italy, Phone: +39 02 50316960, E-mail:
| |
Collapse
|
24
|
Song JH, Youn DH. Theta-burst stimulation induces LTP at excitatory and inhibitory synapses in the spinal trigeminal subnucleus interpolaris. Neurosci Lett 2014; 574:1-5. [DOI: 10.1016/j.neulet.2014.05.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Revised: 05/01/2014] [Accepted: 05/08/2014] [Indexed: 10/25/2022]
|