1
|
Shamsoddini SM, Davoudi M, Shahbazi S, Karizi SZ. Green synthesis of silver nanoparticles using Acroptilon repens aqueous extract and their antibacterial efficacy against multidrug-resistant Acinetobacter baumannii. Mol Biol Rep 2024; 52:47. [PMID: 39666200 DOI: 10.1007/s11033-024-10156-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 12/06/2024] [Indexed: 12/13/2024]
Abstract
BACKGROUND Acinetobacter baumannii is a critical pathogen associated with hospital-acquired infections, particularly in burn and intensive care unit (ICU) patients, and is notorious for its high level of antibiotic resistance. This study aims to evaluate the antibacterial potential of silver nanoparticles (AgNPs) synthesized using Acroptilon repens extract as a promising alternative treatment for combating multidrug-resistant A. baumannii. METHODS AND RESULTS Twelve clinical isolates of A. baumannii were identified through biochemical testing. Antibiotic susceptibility testing using the Kirby-Bauer disk diffusion method revealed universal resistance to ceftazidime, amikacin, imipenem, gentamicin, ciprofloxacin, and piperacillin-tazobactam, while all isolates remained sensitive to colistin (p ≤ 0.05). AgNPs were synthesized using A. repens extract and characterized through transmission electron microscopy (TEM), scanning electron microscopy (SEM), particle size analysis (PSA), UV-Vis spectroscopy, X-ray diffraction (XRD), and Fourier-transform infrared spectroscopy (FT-IR). TEM analysis showed that the AgNPs had a spherical morphology with an average particle size of approximately 30 nm, while SEM confirmed their spherical shape and size distribution, ranging from 10 to 130 nm, with a mean size of 38.89 nm. UV-Vis spectroscopy confirmed the successful formation of AgNPs, indicated by a distinct broad absorption peak between 400 and 480 nm. XRD analysis validated the crystalline nature of the nanoparticles, with characteristic peaks at 2θ values of 38.21°, 46.28°, 64.57°, and 77.49°, corresponding to the (111), (200), (220), and (311) planes of face-centered cubic (fcc) silver. Antibacterial activity was evaluated by determining the minimum inhibitory concentration (MIC), which ranged from 50 to 400 µg/mL. The highest inhibitory activity was observed at 400 µg/mL. Gene expression analysis using quantitative real-time PCR (qRT-PCR) demonstrated downregulation of the oprD and carO porin genes following AgNP treatment. However, these reductions were not statistically significant (p = 0.302 and p = 0.198, respectively). CONCLUSIONS AgNPs synthesized from A. repens demonstrated strong antibacterial activity against multidrug-resistant A. baumannii. While downregulation of porin genes was observed, further investigation is required to elucidate the underlying mechanisms of action and assess their potential clinical applications. These findings support the potential of AgNPs as an alternative therapeutic strategy for addressing A. baumannii infections resistant to conventional antibiotics.
Collapse
Affiliation(s)
- Seyed Mahdi Shamsoddini
- Department of Biology, Varamin- Pishva Branch, Islamic Azad University, Varamin, 33817-74895, Iran
| | - Mahdieh Davoudi
- Department of Biology, Varamin- Pishva Branch, Islamic Azad University, Varamin, 33817-74895, Iran
| | - Shahla Shahbazi
- Infectious Diseases Research Center, Health Policy and Promotion Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Shohreh Zare Karizi
- Department of Biology, Varamin- Pishva Branch, Islamic Azad University, Varamin, 33817-74895, Iran.
| |
Collapse
|
2
|
Sykes EME, Mateo-Estrada V, Engelberg R, Muzaleva A, Zhanel G, Dettman J, Chapados J, Gerdis S, Akineden Ö, Khan IUH, Castillo-Ramírez S, Kumar A. Phylogenomic and phenotypic analyses highlight the diversity of antibiotic resistance and virulence in both human and non-human Acinetobacter baumannii. mSphere 2024; 9:e0074123. [PMID: 38440986 PMCID: PMC10964423 DOI: 10.1128/msphere.00741-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 02/15/2024] [Indexed: 03/06/2024] Open
Abstract
Acinetobacter baumannii is a Gram-negative, opportunistic pathogen that causes infections in the immunocompromised. With a high incidence of muti-drug resistance, carbapenem-resistant A. baumannii is designated as a priority 1 pathogen by the WHO. The current literature has expertly characterized clinical isolates of A. baumannii. As the challenge of these infections has recently been classified as a One Health issue, we set out to explore the diversity of isolates from human and non-clinical sources, such as agricultural surface water, urban streams, various effluents from wastewater treatment plants, and food (tank milk); and, importantly, these isolates came from a wide geographic distribution. Phylogenomic analysis considering almost 200 isolates showed that our diverse set is well-differentiated from the main international clones of A. baumannii. We discovered novel sequence types in both hospital and non-clinical settings and five strains that overexpress the resistance-nodulation-division efflux pump adeIJK without changes in susceptibility reflected by this overexpression. Furthermore, we detected a bla ADC-79 in a non-human isolate despite its sensitivity to all antibiotics. There was no significant differentiation between the virulence profiles of clinical and non-clinical isolates in the Galleria mellonella insect model of virulence, suggesting that virulence is neither dependent on geographic origin nor isolation source. The detection of antibiotic resistance and virulence genes in non-human strains suggests that these isolates may act as a genetic reservoir for clinical strains. This endorses the notion that in order to combat multi-drug-resistant infection caused by A. baumannii, a One Health approach is required, and a deeper understanding of non-clinical strains must be achieved.IMPORTANCEThe global crisis of antibiotic resistance is a silent one. More and more bacteria are becoming resistant to all antibiotics available for treatment, leaving no options remaining. This includes Acinetobacter baumannii. This Gram-negative, opportunistic pathogen shows a high frequency of multi-drug resistance, and many strains are resistant to the last-resort drugs carbapenem and colistin. Research has focused on strains of clinical origin, but there is a knowledge gap regarding virulence traits, particularly how A. baumannii became the notorious pathogen of today. Antibiotic resistance and virulence genes have been detected in strains from animals and environmental locations such as grass and soil. As such, A. baumannii is a One Health concern, which includes the health of humans, animals, and the environment. Thus, in order to truly combat the antibiotic resistance crisis, we need to understand the antibiotic resistance and virulence gene reservoirs of this pathogen under the One Health continuum.
Collapse
Affiliation(s)
- Ellen M. E. Sykes
- Department of Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Valeria Mateo-Estrada
- Programa de Genómica Evolutiva, Centro de Ciencias Génomicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Raelene Engelberg
- Department of Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Anna Muzaleva
- Department of Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - George Zhanel
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Jeremy Dettman
- Ottawa Research and Development Centre (ORDC), Agriculture and Agri-Food Canada, Ottawa, Ontario, Canada
| | - Julie Chapados
- Ottawa Research and Development Centre (ORDC), Agriculture and Agri-Food Canada, Ottawa, Ontario, Canada
| | - Suzanne Gerdis
- Ottawa Research and Development Centre (ORDC), Agriculture and Agri-Food Canada, Ottawa, Ontario, Canada
| | - Ömer Akineden
- Dairy Sciences, Institute of Veterinary Food Science, Justus-Liebig, University of Giessen, Giessen, Germany
| | - Izhar U. H. Khan
- Ottawa Research and Development Centre (ORDC), Agriculture and Agri-Food Canada, Ottawa, Ontario, Canada
| | - Santiago Castillo-Ramírez
- Programa de Genómica Evolutiva, Centro de Ciencias Génomicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Ayush Kumar
- Department of Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
3
|
Bombaywala S, Bajaj A, Dafale NA. Deterministic effect of oxygen level variation on shaping antibiotic resistome. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133047. [PMID: 38000281 DOI: 10.1016/j.jhazmat.2023.133047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/23/2023] [Accepted: 11/18/2023] [Indexed: 11/26/2023]
Abstract
An increase in acquisition of antibiotic resistance genes (ARGs) by pathogens under antibiotic selective pressure poses public health threats. Sub-inhibitory antibiotics induce bacteria to generate reactive oxygen species (ROS) dependent on dissolved oxygen (DO) levels, while molecular connection between ROS-mediated ARG emergence through DNA damage and metabolic changes remains elusive. Thus, the study investigates antibiotic resistome dynamics, microbiome shift, and pathogen distribution in hyperoxic (5-7 mg L-1), normoxic (2-4 mg L-1), and hypoxic (0.5-1 mg L-1) conditions using lab-scale bioreactor. Composite inoculums in the reactor were designed to represent comprehensive microbial community and AR profile from selected activated sludge. RT-qPCR and metagenomic analysis showed an increase in ARG count (100.98 ppm) with enrichment of multidrug efflux pumps (acrAB, mexAB) in hyperoxic condition. Conversely, total ARGs decreased (0.11 ppm) under hypoxic condition marked by a major decline in int1 abundance. Prevalence of global priority pathogens increased in hyperoxic (22.5%), compared to hypoxic (0.9%) wherein major decrease were observed in Pseudomonas, Shigella, and Borrelia. The study observed an increase in superoxide dismutase (sodA, sodB), DNA repair genes (nfo, polA, recA, recB), and ROS (10.4 µmol L-1) in adapted biomass with spiked antibiotics. This suggests oxidative damage that facilitates stress-induced mutagenesis providing evidence for observed hyperoxic enrichment of ARGs. Moreover, predominance of catalase (katE, katG) likely limit oxidative damage that deplete ARG breeding in hypoxic condition. The study proposes a link between oxygen levels and AR development that offers insights into mitigation and intervention of AR by controlling oxygen-related stress and strategic selection of bacterial communities.
Collapse
Affiliation(s)
- Sakina Bombaywala
- Environmental Biotechnology & Genomics Division, CSIR-National Environmental Engineering Research Institute (NEERI), Nehru Marg, Nagpur 440020, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Abhay Bajaj
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India; CSIR-Indian Institute of Toxicology Research, 31 Mahatma Gandhi Marg, Lucknow 226001, India
| | - Nishant A Dafale
- Environmental Biotechnology & Genomics Division, CSIR-National Environmental Engineering Research Institute (NEERI), Nehru Marg, Nagpur 440020, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
4
|
Hamami E, Huo W, Neal K, Neisewander I, Geisinger E, Isberg RR. Identification of essential genes that support fitness of Acinetobacter baumannii efflux pump overproducers in the presence of fluoroquinolone. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.04.574119. [PMID: 38260615 PMCID: PMC10802289 DOI: 10.1101/2024.01.04.574119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Acinetobacter baumannii is a nosocomial pathogen often associated with multidrug resistance (MDR) infections. Fluoroquinolone resistance (FQR) due to drug target site mutations and elevated expression of RND drug transporters is common among clinical isolates. We describe here a CRISPRi platform that identifies hypomorphic mutations that preferentially altered drug sensitivity in RND pump overproducers. An sgRNA library against essential genes of A. baumannii was constructed with single and double nucleotide mutations that produced titratable knockdown efficiencies and introduced into multiple strain backgrounds. Other than nusG depletions, there were few candidates in the absence of drug treatment that showed lowered fitness specifically in strains overexpressing clinically relevant RND efflux pumps AdeAB, AdeIJK, or AdeFGH. In the presence of ciprofloxacin, the hypomorphs causing hypersensitivity were predicted to result in outer membrane dysfunction, to which the AdeFGH overproducer appeared particularly sensitive. Depletions of either the outer membrane assembly BAM complex, LOS biogenesis proteins, or Lpt proteins involved in LOS transport to the outer membrane caused drug hypersensitivity in at least two of the three pump overproducers. On the other hand, depletions of translation-associated proteins, as well as components of the proton-pumping ATP synthase pump resulted in fitness benefits for at least two pump-overproducing strains in the presence of the drug. Therefore, pump overproduction exacerbated stress caused by defective outer membrane integrity, while the efficacy of drug resistance in efflux overproducers was enhanced by slowed translation or defects in ATP synthesis linked to the control of proton movement across the bacterial membrane.
Collapse
Affiliation(s)
- Efrat Hamami
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, 150 Harrison Ave., Boston, MA 02111, USA
| | - Wenwen Huo
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, 150 Harrison Ave., Boston, MA 02111, USA
| | - Katherine Neal
- Department of Biochemistry, Curry College, Milton, MA, USA
| | - Isabelle Neisewander
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, 150 Harrison Ave., Boston, MA 02111, USA
| | - Edward Geisinger
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, 150 Harrison Ave., Boston, MA 02111, USA
- Department of Biology, Northeastern University, Boston, MA, 02115, USA
| | - Ralph R Isberg
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, 150 Harrison Ave., Boston, MA 02111, USA
| |
Collapse
|
5
|
Nageeb WM, AlHarbi N, Alrehaili AA, Zakai SA, Elfadadny A, Hetta HF. Global genomic epidemiology of chromosomally mediated non-enzymatic carbapenem resistance in Acinetobacter baumannii: on the way to predict and modify resistance. Front Microbiol 2023; 14:1271733. [PMID: 37869654 PMCID: PMC10587612 DOI: 10.3389/fmicb.2023.1271733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 09/05/2023] [Indexed: 10/24/2023] Open
Abstract
Introduction Although carbapenemases are frequently reported in resistant A. baumannii clinical isolates, other chromosomally mediated elements of resistance that are considered essential are frequently underestimated. Having a wide substrate range, multidrug efflux pumps frequently underlie antibiotic treatment failure. Recognizing and exploiting variations in multidrug efflux pumps and penicillin-binding proteins (PBPs) is an essential approach in new antibiotic drug discovery and engineering to meet the growing challenge of multidrug-resistant Gram-negative bacteria. Methods A total of 980 whole genome sequences of A. baumannii were analyzed. Nucleotide sequences for the genes studied were queried against a custom database of FASTA sequences using the Bacterial and Viral Bioinformatics Resource Center (BV-BRC) system. The correlation between different variants and carbapenem Minimum Inhibitory Concentrations (MICs) was studied. PROVEAN and I-Mutant predictor suites were used to predict the effect of the studied amino acid substitutions on protein function and protein stability. Both PsiPred and FUpred were used for domain and secondary structure prediction. Phylogenetic reconstruction was performed using SANS serif and then visualized using iTOL and Phandango. Results Exhibiting the highest detection rate, AdeB codes for an important efflux-pump structural protein. T48V, T584I, and P660Q were important variants identified in the AdeB-predicted multidrug efflux transporter pore domains. These can act as probable targets for designing new efflux-pump inhibitors. Each of AdeC Q239L and AdeS D167N can also act as probable targets for restoring carbapenem susceptibility. Membrane proteins appear to have lower predictive potential than efflux pump-related changes. OprB and OprD changes show a greater effect than OmpA, OmpW, Omp33, and CarO changes on carbapenem susceptibility. Functional and statistical evidence make the variants T636A and S382N at PBP1a good markers for imipenem susceptibility and potential important drug targets that can modify imipenem resistance. In addition, PBP3_370, PBP1a_T636A, and PBP1a_S382N may act as potential drug targets that can be exploited to counteract imipenem resistance. Conclusion The study presents a comprehensive epidemiologic and statistical analysis of potential membrane proteins and efflux-pump variants related to carbapenem susceptibility in A. baumannii, shedding light on their clinical utility as diagnostic markers and treatment modification targets for more focused studies of candidate elements.
Collapse
Affiliation(s)
- Wedad M. Nageeb
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Nada AlHarbi
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Amani A. Alrehaili
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
| | - Shadi A. Zakai
- Department of Clinical Microbiology and Immunology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ahmed Elfadadny
- Department of Animal Internal Medicine, Faculty of Veterinary Medicine, Damanhour University, Damanhour, El-Beheira, Egypt
| | - Helal F. Hetta
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Assiut University, Assiut, Egypt
| |
Collapse
|
6
|
Kirk A, Stavrinides J. A replica plating method for efficient, high-throughput screening of antibiotic gene clusters in bacteria uncovers a holomycin-like cluster in the clinical isolate, Pantoea agglomerans 20KB447973. J Microbiol Methods 2023; 213:106822. [PMID: 37708943 DOI: 10.1016/j.mimet.2023.106822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/11/2023] [Accepted: 09/11/2023] [Indexed: 09/16/2023]
Abstract
Bacterial natural products remain a major untapped source for novel antimicrobial scaffolds. Many of these products are encoded by biosynthetic gene clusters (BGCs), which can be identified using functional genomics. We developed a replica-plating approach to quickly screen for antibiotic production mutants from transposon mutant libraries and identify candidate antibiotic BGCs. In this technique, filter paper is used to transfer up to 200 mutants simultaneously onto a soft agar overlay or spread plate containing a target microbe to identify antibiotic-production mutants. These mutants can then be analyzed to identify disrupted genes and antibiotic BGCs. We first tested and optimized this technique by screening for previously characterized BGCs in Pantoea. We then applied the technique to uncover the gene cluster responsible for the production of an unknown broad-spectrum antibiotic from P. agglomerans 20KB447973, which we call Pantoea Natural Product 5 (PNP-5). Analysis of the predicted gene cluster for PNP-5 showed similarity to previously identified gene clusters for the broad-spectrum dithiolopyrrolone antibiotic, holomycin. Analysis of the spectrum of activity of PNP-5 showed activity against members of the Enterobacteriaceae, Erwiniaceae, and Streptococcaceae, including clinically relevant pathogens such as Klebsiella sp. and Escherichia coli. We also identified the production of a second antibiotic, pantocin A. Our findings demonstrate the utility of our replica-plating mutant transfer method in exploring unknown antibiotic BGCs. Adoption of this technique may accelerate the identification of potentially novel antimicrobial BGCs within strain collections, advancing the search for novel antimicrobials that can be used to treat multi-drug resistant infections.
Collapse
Affiliation(s)
- Ashlyn Kirk
- Department of Biology, University of Regina, 3737 Wascana Parkway, Regina, Saskatchewan S4S 0A2, Canada
| | - John Stavrinides
- Department of Biology, University of Regina, 3737 Wascana Parkway, Regina, Saskatchewan S4S 0A2, Canada.
| |
Collapse
|
7
|
Gan C, Langa E, Valenzuela A, Ballestero D, Pino-Otín MR. Synergistic Activity of Thymol with Commercial Antibiotics against Critical and High WHO Priority Pathogenic Bacteria. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12091868. [PMID: 37176927 PMCID: PMC10180827 DOI: 10.3390/plants12091868] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/28/2023] [Accepted: 04/29/2023] [Indexed: 05/15/2023]
Abstract
The use of synergistic combinations between natural compounds and commercial antibiotics may be a good strategy to fight against microbial resistance, with fewer side effects on human, animal and environmental, health. The antimicrobial capacity of four compounds of plant origin (thymol and gallic, salicylic and gentisic acids) was analysed against 14 pathogenic bacteria. Thymol showed the best antimicrobial activity, with MICs ranging from 125 µg/mL (for Acinetobacter baumannii, Pasteurella aerogenes, and Salmonella typhimurium) to 250 µg/mL (for Bacillus subtilis, Klebsiella aerogenes, Klebsiella pneumoniae, Serratia marcescens, Staphylococcus aureus, and Streptococcus agalactiae). Combinations of thymol with eight widely used antibiotics were studied to identify combinations with synergistic effects. Thymol showed synergistic activity with chloramphenicol against A. baumannii (critical priority by the WHO), with streptomycin and gentamicin against Staphylococcus aureus (high priority by the WHO), and with streptomycin against Streptococcus agalactiae, decreasing the MICs of these antibiotics by 75% to 87.5%. The kinetics of these synergies indicated that thymol alone at the synergy concentration had almost no effect on the maximum achievable population density and very little effect on the growth rate. However, in combination with antibiotics at the same concentration, it completely inhibited growth, confirming its role in facilitating the action of the antibiotic. The time-kill curves indicated that all the combinations with synergistic effects were mainly bactericidal.
Collapse
Affiliation(s)
- Cristina Gan
- Faculty of Health Sciences, Universidad San Jorge, 50830 Villanueva de Gállego, Zaragoza, Spain
| | - Elisa Langa
- Faculty of Health Sciences, Universidad San Jorge, 50830 Villanueva de Gállego, Zaragoza, Spain
| | - Antonio Valenzuela
- Faculty of Health Sciences, Universidad San Jorge, 50830 Villanueva de Gállego, Zaragoza, Spain
| | - Diego Ballestero
- Faculty of Health Sciences, Universidad San Jorge, 50830 Villanueva de Gállego, Zaragoza, Spain
| | - M Rosa Pino-Otín
- Faculty of Health Sciences, Universidad San Jorge, 50830 Villanueva de Gállego, Zaragoza, Spain
| |
Collapse
|
8
|
Abd El-Rahman OA, Rasslan F, Hassan SS, Ashour HM, Wasfi R. The RND Efflux Pump Gene Expression in the Biofilm Formation of Acinetobacter baumannii. Antibiotics (Basel) 2023; 12:antibiotics12020419. [PMID: 36830328 PMCID: PMC9952185 DOI: 10.3390/antibiotics12020419] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/08/2023] [Accepted: 02/09/2023] [Indexed: 02/22/2023] Open
Abstract
Multidrug resistant (MDR) Acinetobacter baumannii is a critical opportunistic pathogen in healthcare-associated infections (HAI). This is attributed to several factors, including its ability to develop biofilms that can enhance antimicrobial resistance (AMR) in addition to creating an environment for horizontal transfer of antibiotic resistance genes. The role of the efflux pump in biofilm formation is important for studies on alternative treatments for biofilms. One of the significant efflux pump families is the RND efflux pump family, which is common in Gram negative bacteria. The aim is to study the role of the RND efflux pump in biofilm formation by A. baumannii. The biofilm formation potential of thirty-four MDR A. baumannii isolates was evaluated by crystal violet assays. The effect of efflux pump inhibition and activation was studied using the efflux pump inhibitor carbonyl cyanide 3-chlorophenylhydrazone (CCCP) and the RND efflux pump substrate levofloxacin (at sub-MIC), respectively. The isolates were genotypically grouped by enterobacterial repetitive intergenic consensus (ERIC) typing and the expression of adeABC, adeFGH, and adeIJK efflux pump genes was measured by qPCR. Overall, 88.2% (30/34) of isolates were biofilm producers (the phenotype was variable including strong and weak producers). Efflux pump inhibition by CCCP reduced the biofilm formation significantly (p < 0.05) in 17.6% (6/34) of some isolates, whereas sub-MICs of the substrate levofloxacin increased biofilm formation in 20.5% (7/34) of other isolates. Overexpression of the three RND efflux pump genes was detected in five out of eleven selected isolates for qPCR with remarkable overexpression in the adeJ gene. No correlation was detected between the biofilm phenotype pattern and the RND efflux pump gene expression in biofilm cells relative to planktonic cells. In conclusion, the role of the RND efflux pumps AdeABC, AdeFGH, and AdeIJK in biofilm formation does not appear to be pivotal and the expression differs according to the genetic background of each strain. Thus, these pumps may not be a promising target for biofilm inhibition.
Collapse
Affiliation(s)
- Ola A. Abd El-Rahman
- Department of Microbiology and Immunology, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo 11751, Egypt
| | - Fatma Rasslan
- Department of Microbiology and Immunology, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo 11751, Egypt
| | - Safaa S. Hassan
- Department of Clinical Pathology, National Cancer Institute, Cairo University, Cairo 11796, Egypt
| | - Hossam M. Ashour
- Department of Integrative Biology, College of Arts and Sciences, University of South Florida, St. Petersburg, FL 33701, USA
- Correspondence:
| | - Reham Wasfi
- Department of Microbiology and Immunology, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), Giza 12451, Egypt
| |
Collapse
|
9
|
Kornelsen V, Unger M, Kumar A. Atorvastatin does not display an antimicrobial activity on its own nor potentiates the activity of other antibiotics against Acinetobacter baumannii ATCC17978 or A. baumannii AB030. Access Microbiol 2021; 3:000288. [PMID: 35018330 PMCID: PMC8742588 DOI: 10.1099/acmi.0.000288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 10/08/2021] [Indexed: 11/18/2022] Open
Abstract
With the current arsenal of antibiotics increasingly becoming ineffective against bacteria, there is an increasing interest in the possibility of using previously approved non-antibiotic drugs as antimicrobials. Statins have recently been investigated for their antimicrobial activity and their ability to potentially synergize with current treatment options. Atorvastatin had been shown previously to be the most promising candidate for effectivity against Acinetobacter baumannii ATCC17978. In this study, we tested atorvastatin for its activity against an extensively drug-resistant (XDR) strain A. baumannii AB030. However, our data show that atorvastatin has no effect A. baumannii AB030. Intriguingly, atorvastatin was also ineffective against our laboratory's A. baumannii ATCC17978. This lack of atorvastatin activity against A. baumannii ATCC17978 cannot be attributed to RND efflux pumps as a strain deficient in the three most clinically relevant RND efflux systems in A. baumannii showed no change in susceptibility compared to its parent strain ATCC17978. Further, atorvastatin failed to potentiate the activity of tobramycin and ciprofloxacin. While it is not clear to us why atorvastatin is not active against A. baumannii ATCC17978 used in our study, our study shows that evaluation of compounds for their antibacterial activity should involve multiple strains to account for strain-to-strain variation.
Collapse
Affiliation(s)
| | - Mark Unger
- University of Manitoba, Winnipeg, Manitoba, Canada
| | - Ayush Kumar
- University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
10
|
Abstract
Acinetobacter spp. have become of increased clinical importance as studies have shown the antimicrobial resistant potential of these species. Efflux pumps can lead to reduced susceptibility to a variety of antibiotics and are present in large number across Acinetobacter spp. There are six families of efflux pumps that have been shown to be of clinical relevance: the major facilitator superfamily (MFS), small multidrug resistance (SMR) family, ATP-binding cassette (ABC) family, multidrug and toxic compound extrusion (MATE) family, proteobacterial antimicrobial compound efflux (PACE) family, and the resistance-nodulation-division (RND) family. Much work has been done for understanding and characterizing the roles these efflux pumps play in relation to antimicrobial resistance and the physiology of these bacteria. RND efflux pumps, with their expansive substrate profiles, are a major component of Acinetobacter spp. antimicrobial resistance. New discoveries over the last decade have shed light on the complex regulation of these efflux pumps, leading to greater understanding and the potential of slowing the reduced susceptibility seen in these bacterial species.
Collapse
|
11
|
Sykes EME, Deo S, Kumar A. Recent Advances in Genetic Tools for Acinetobacter baumannii. Front Genet 2020; 11:601380. [PMID: 33414809 PMCID: PMC7783400 DOI: 10.3389/fgene.2020.601380] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 11/30/2020] [Indexed: 12/26/2022] Open
Abstract
Acinetobacter baumannii is classified as a top priority pathogen by the World Health Organization (WHO) because of its widespread resistance to all classes of antibiotics. This makes the need for understanding the mechanisms of resistance and virulence critical. Therefore, tools that allow genetic manipulations are vital to unravel the mechanisms of multidrug resistance (MDR) and virulence in A. baumannii. A host of current strategies are available for genetic manipulations of A. baumannii laboratory-strains, including ATCC® 17978TM and ATCC® 19606T, but depending on susceptibility profiles, these strategies may not be sufficient when targeting strains newly obtained from clinic, primarily due to the latter's high resistance to antibiotics that are commonly used for selection during genetic manipulations. This review highlights the most recent methods for genetic manipulation of A. baumannii including CRISPR based approaches, transposon mutagenesis, homologous recombination strategies, reporter systems and complementation techniques with the spotlight on those that can be applied to MDR clinical isolates.
Collapse
Affiliation(s)
| | | | - Ayush Kumar
- Department of Microbiology, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
12
|
Singh M, De Silva PM, Al-Saadi Y, Switala J, Loewen PC, Hausner G, Chen W, Hernandez I, Castillo-Ramirez S, Kumar A. Characterization of Extremely Drug-Resistant and Hypervirulent Acinetobacter baumannii AB030. Antibiotics (Basel) 2020; 9:antibiotics9060328. [PMID: 32560407 PMCID: PMC7345994 DOI: 10.3390/antibiotics9060328] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 06/12/2020] [Accepted: 06/15/2020] [Indexed: 12/21/2022] Open
Abstract
Acinetobacter baumannii is an important nosocomial bacterial pathogen. Multidrug-resistant isolates of A. baumannii are reported worldwide. Some A. baumannii isolates display resistance to nearly all antibiotics, making treatment of infections very challenging. As the need for new and effective antibiotics against A. baumannii becomes increasingly urgent, there is a need to understand the mechanisms of antibiotic resistance and virulence in this organism. In this work, comparative genomics was used to understand the mechanisms of antibiotic resistance and virulence in AB030, an extremely drug-resistant and hypervirulent strain of A. baumannii that is a representative of a recently emerged lineage of A. baumannii International Clone V. In order to characterize AB030, we carried out a genomic and phenotypic comparison with LAC-4, a previously described hyper-resistant and hypervirulent isolate. AB030 contains a number of antibiotic resistance- and virulence-associated genes that are not present in LAC-4. A number of these genes are present on mobile elements. This work shows the importance of characterizing the members of new lineages of A. baumannii in order to determine the development of antibiotic resistance and virulence in this organism.
Collapse
Affiliation(s)
- Manu Singh
- Department of Microbiology, University of Manitoba, Winnipeg, MB R3T 2N2, Canada; (M.S.); (P.M.D.S.); (Y.A.-S.); (J.S.); (P.C.L.); (G.H.)
| | - P. Malaka De Silva
- Department of Microbiology, University of Manitoba, Winnipeg, MB R3T 2N2, Canada; (M.S.); (P.M.D.S.); (Y.A.-S.); (J.S.); (P.C.L.); (G.H.)
| | - Yasser Al-Saadi
- Department of Microbiology, University of Manitoba, Winnipeg, MB R3T 2N2, Canada; (M.S.); (P.M.D.S.); (Y.A.-S.); (J.S.); (P.C.L.); (G.H.)
| | - Jacek Switala
- Department of Microbiology, University of Manitoba, Winnipeg, MB R3T 2N2, Canada; (M.S.); (P.M.D.S.); (Y.A.-S.); (J.S.); (P.C.L.); (G.H.)
| | - Peter C. Loewen
- Department of Microbiology, University of Manitoba, Winnipeg, MB R3T 2N2, Canada; (M.S.); (P.M.D.S.); (Y.A.-S.); (J.S.); (P.C.L.); (G.H.)
| | - Georg Hausner
- Department of Microbiology, University of Manitoba, Winnipeg, MB R3T 2N2, Canada; (M.S.); (P.M.D.S.); (Y.A.-S.); (J.S.); (P.C.L.); (G.H.)
| | - Wangxue Chen
- Human Health Therapeutics, National Research Council Canada, 100 Sussex Drive, Ottawa, ON K1A 0R6, Canada;
| | - Ismael Hernandez
- Programa de Genómica Evolutiva, Centro de Ciencias Génomicas, Universidad Nacional Autónoma de México, Cuernavaca 62210, Mexico; (I.H.); (S.C.-R.)
| | - Santiago Castillo-Ramirez
- Programa de Genómica Evolutiva, Centro de Ciencias Génomicas, Universidad Nacional Autónoma de México, Cuernavaca 62210, Mexico; (I.H.); (S.C.-R.)
| | - Ayush Kumar
- Department of Microbiology, University of Manitoba, Winnipeg, MB R3T 2N2, Canada; (M.S.); (P.M.D.S.); (Y.A.-S.); (J.S.); (P.C.L.); (G.H.)
- Correspondence:
| |
Collapse
|
13
|
Mi R, Patidar R, Farenhorst A, Cai Z, Sepehri S, Khafipour E, Kumar A. Detection of fecal bacteria and antibiotic resistance genes in drinking water collected from three First Nations communities in Manitoba, Canada. FEMS Microbiol Lett 2020; 366:5454741. [PMID: 30980671 DOI: 10.1093/femsle/fnz067] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 04/05/2019] [Indexed: 12/11/2022] Open
Abstract
This study analyzed the microbiological quality of drinking and source water from three First Nations communities in Manitoba, Canada that vary with respect to the source, storage and distribution of drinking water. Community A relies on an aquifer and Community B on a lake as source water to their water treatment plants. Community C does not have a water treatment plant and uses well water. Quantification of free residual chlorine and fecal bacterial (E. coli and coliforms), as well as detection of antibiotic resistance genes (sul, ampC, tet(A), mecA, vanA, blaSHV, blaTEM, blaCTX-M, blaOXA-1, blaCYM-2, blaKPC, blaOXA-48, blaNDM, blaVIM, blaGES and blaIMP) was carried out. While water treatment plants were found to be working properly, as post-treatment water did not contain E. coli or coliforms, once water entered the distribution system, a decline in the chlorine concentration with a concomitant increase in bacterial counts was observed. In particular, water samples from cisterns not only contained high number of E. coli and coliforms, but were also found to contain antibiotic resistance genes. This work shows that proper maintenance of the distribution and storage systems in First Nations communities is essential in order to provide access to clean and safe drinking water.
Collapse
Affiliation(s)
- Ruidong Mi
- Department of Soil Science, University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada
| | - Rakesh Patidar
- Department of Microbiology, University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada
| | - Annemieke Farenhorst
- Department of Soil Science, University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada
| | - Zhangbin Cai
- Department of Animal Science, University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada
| | - Shadi Sepehri
- Department of Animal Science, University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada
| | - Ehsan Khafipour
- Department of Animal Science, University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada.,Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada
| | - Ayush Kumar
- Department of Microbiology, University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada
| |
Collapse
|
14
|
Williams AN, Stavrinides J. Pantoea Natural Product 3 is encoded by an eight-gene biosynthetic gene cluster and exhibits antimicrobial activity against multi-drug resistant Acinetobacter baumannii and Pseudomonas aeruginosa. Microbiol Res 2020; 234:126412. [PMID: 32062363 DOI: 10.1016/j.micres.2020.126412] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 12/22/2019] [Accepted: 01/10/2020] [Indexed: 01/08/2023]
Abstract
Multi-drug resistant Acinetobacter baumannii and Pseudomonas aeruginosa continue to pose a serious health threat worldwide. Two Pantoea agglomerans strains, 3581 and SN01080, produce an antibiotic effective against these pathogens. To identify the antibiotic biosynthetic gene clusters, independent genetic screens were conducted for each strain using a mini-Tn5 transposon, which resulted in the identification of the same conserved eight-gene cluster. We have named this antibiotic Pantoea Natural Product 3 (PNP-3). The PNP-3 biosynthetic cluster is composed of genes encoding two Major Facilitator Superfamily (MFS) transporters, an ArsR family regulator, and five predicted enzymes. The biosynthetic gene cluster is found in only a few Pantoea strains and is not present within the antiSMASH and BAGEL4 databases, suggesting it may be novel. In strain 3581, PNP-3 production is linked to pantocin A production, where loss of pantocin A production results in a larger PNP-3 zone of inhibition. To evaluate the spectrum of activity, PNP-3 producers, including several PNP-3 mutants and pantocin A site-directed mutants, were tested against a collection of clinical, drug-resistant strains of A. baumannii and P. aeruginosa, as well as, Klebsiella, Escherichia coli, Enterobacter, Staphylococcus aureus, and Streptococcus mutans. PNP-3 was found to be effective against all strains except vancomycin-resistant Enterococcus under the tested conditions. Heterologous expression of the four predicted biosynthetic genes in Erwinia amylovora resulted in antibiotic production, providing a means for future overexpression and purification. PNP-3 is a natural product that is effective against drug-resistant A. baumannii, P. aeruginosa, and enteric species for which there are currently few treatment options.
Collapse
Affiliation(s)
- Ashley N Williams
- Department of Biology, University of Regina, 3737 Wascana Parkway, Regina, Saskatchewan, S4S0A2, Canada
| | - John Stavrinides
- Department of Biology, University of Regina, 3737 Wascana Parkway, Regina, Saskatchewan, S4S0A2, Canada.
| |
Collapse
|
15
|
Santos-Lopez A, Marshall CW, Scribner MR, Snyder DJ, Cooper VS. Evolutionary pathways to antibiotic resistance are dependent upon environmental structure and bacterial lifestyle. eLife 2019; 8:e47612. [PMID: 31516122 PMCID: PMC6814407 DOI: 10.7554/elife.47612] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 09/13/2019] [Indexed: 12/11/2022] Open
Abstract
Bacterial populations vary in their stress tolerance and population structure depending upon whether growth occurs in well-mixed or structured environments. We hypothesized that evolution in biofilms would generate greater genetic diversity than well-mixed environments and lead to different pathways of antibiotic resistance. We used experimental evolution and whole genome sequencing to test how the biofilm lifestyle influenced the rate, genetic mechanisms, and pleiotropic effects of resistance to ciprofloxacin in Acinetobacter baumannii populations. Both evolutionary dynamics and the identities of mutations differed between lifestyle. Planktonic populations experienced selective sweeps of mutations including the primary topoisomerase drug targets, whereas biofilm-adapted populations acquired mutations in regulators of efflux pumps. An overall trade-off between fitness and resistance level emerged, wherein biofilm-adapted clones were less resistant than planktonic but more fit in the absence of drug. However, biofilm populations developed collateral sensitivity to cephalosporins, demonstrating the clinical relevance of lifestyle on the evolution of resistance.
Collapse
Affiliation(s)
- Alfonso Santos-Lopez
- Department of Microbiology and Molecular GeneticsUniversity of PittsburghPittsburghUnited States
- Center for Evolutionary Biology and MedicineUniversity of PittsburghPittsburghUnited States
| | - Christopher W Marshall
- Department of Microbiology and Molecular GeneticsUniversity of PittsburghPittsburghUnited States
- Center for Evolutionary Biology and MedicineUniversity of PittsburghPittsburghUnited States
| | - Michelle R Scribner
- Department of Microbiology and Molecular GeneticsUniversity of PittsburghPittsburghUnited States
- Center for Evolutionary Biology and MedicineUniversity of PittsburghPittsburghUnited States
| | - Daniel J Snyder
- Department of Microbiology and Molecular GeneticsUniversity of PittsburghPittsburghUnited States
- Center for Evolutionary Biology and MedicineUniversity of PittsburghPittsburghUnited States
- Microbial Genome Sequencing CenterUniversity of PittsburghPittsburghUnited States
| | - Vaughn S Cooper
- Department of Microbiology and Molecular GeneticsUniversity of PittsburghPittsburghUnited States
- Center for Evolutionary Biology and MedicineUniversity of PittsburghPittsburghUnited States
- Microbial Genome Sequencing CenterUniversity of PittsburghPittsburghUnited States
| |
Collapse
|
16
|
Geisinger E, Huo W, Hernandez-Bird J, Isberg RR. Acinetobacter baumannii: Envelope Determinants That Control Drug Resistance, Virulence, and Surface Variability. Annu Rev Microbiol 2019; 73:481-506. [DOI: 10.1146/annurev-micro-020518-115714] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Acinetobacter baumannii has emerged as an important nosocomial pathogen, particularly for patients in intensive care units and with invasive indwelling devices. The most recent clinical isolates are resistant to several classes of clinically important antibiotics, greatly restricting the ability to effectively treat critically ill patients. The bacterial envelope is an important driver of A. baumannii disease, both at the level of battling against antibiotic therapy and at the level of protecting from host innate immune function. This review provides a comprehensive overview of key features of the envelope that interface with both the host and antimicrobial therapies. Carbohydrate structures that contribute to protecting from the host are detailed, and mutations that alter these structures, resulting in increased antimicrobial resistance, are explored. In addition, protein complexes involved in both intermicrobial and host-microbe interactions are described. Finally we discuss regulatory mechanisms that control the nature of the cell envelope and its impact on host innate immune function.
Collapse
Affiliation(s)
- Edward Geisinger
- Department of Biology, Northeastern University, Boston, Massachusetts 02115, USA
| | - Wenwen Huo
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts 02111, USA
| | - Juan Hernandez-Bird
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts 02111, USA
| | - Ralph R. Isberg
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts 02111, USA
| |
Collapse
|
17
|
The Landscape of Phenotypic and Transcriptional Responses to Ciprofloxacin in Acinetobacter baumannii: Acquired Resistance Alleles Modulate Drug-Induced SOS Response and Prophage Replication. mBio 2019; 10:mBio.01127-19. [PMID: 31186328 PMCID: PMC6561030 DOI: 10.1128/mbio.01127-19] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The emergence of fluoroquinolone resistance in nosocomial pathogens has restricted the clinical efficacy of this antibiotic class. In Acinetobacter baumannii, the majority of clinical isolates now show high-level resistance due to mutations in gyrA (DNA gyrase) and parC (topoisomerase IV [topo IV]). To investigate the molecular basis for fluoroquinolone resistance, an exhaustive mutation analysis was performed in both drug-sensitive and -resistant strains to identify loci that alter ciprofloxacin sensitivity. To this end, parallel fitness tests of over 60,000 unique insertion mutations were performed in strains with various alleles in genes encoding the drug targets. The spectra of mutations that altered drug sensitivity were found to be similar in the drug-sensitive and gyrA parC double-mutant backgrounds, having resistance alleles in both genes. In contrast, the introduction of a single gyrA resistance allele, resulting in preferential poisoning of topo IV by ciprofloxacin, led to extreme alterations in the insertion mutation fitness landscape. The distinguishing feature of preferential topo IV poisoning was enhanced induction of DNA synthesis in the region of two endogenous prophages, with DNA synthesis associated with excision and circularization of the phages. Induction of the selective DNA synthesis in the gyrA background was also linked to heightened prophage gene transcription and enhanced activation of the mutagenic SOS response relative to that observed in either the wild-type (WT) or gyrA parC double mutant. Therefore, the accumulation of mutations that result in the stepwise evolution of high ciprofloxacin resistance is tightly connected to modulation of the SOS response and endogenous prophage DNA synthesis.IMPORTANCE Fluoroquinolones have been extremely successful antibiotics due to their ability to target multiple bacterial enzymes critical to DNA replication, the topoisomerases DNA gyrase and topo IV. Unfortunately, mutations lowering drug affinity for both enzymes are now widespread, rendering these drugs ineffective for many pathogens. To undermine this form of resistance, we examined how bacteria with target alterations differentially cope with fluoroquinolone exposures. We studied this problem in the nosocomial pathogen A. baumannii, which causes drug-resistant life-threatening infections. Employing genome-wide approaches, we uncovered numerous pathways that could be exploited to raise fluoroquinolone sensitivity independently of target alteration. Remarkably, fluoroquinolone targeting of topo IV in specific mutants caused dramatic hyperinduction of prophage replication and enhanced the mutagenic DNA damage response, but these responses were muted in strains with DNA gyrase as the primary target. This work demonstrates that resistance evolution via target modification can profoundly modulate the antibiotic stress response, revealing potential resistance-associated liabilities.
Collapse
|
18
|
Ducas-Mowchun K, De Silva PM, Crisostomo L, Fernando DM, Chao TC, Pelka P, Schweizer HP, Kumar A. Next Generation of Tn 7-Based Single-Copy Insertion Elements for Use in Multi- and Pan-Drug-Resistant Strains of Acinetobacter baumannii. Appl Environ Microbiol 2019; 85:e00066-19. [PMID: 30902859 PMCID: PMC6532044 DOI: 10.1128/aem.00066-19] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 03/20/2019] [Indexed: 12/20/2022] Open
Abstract
The purpose of this study was to create single-copy gene expression systems for use in genomic manipulations of multidrug-resistant (MDR) and extensively drug-resistant (XDR) clinical isolates of Acinetobacter baumannii In this study, mini-Tn7 vectors with zeocin and apramycin selection markers were created by cloning the ble and aac(3)-IV genes, respectively, enabling either inducible gene expression (pUC18T-mini-Tn7T-Zeo-LAC and pUC18T-mini-Tn7T-Apr-LAC) or expression from native or constitutive promoters (pUC18T-mini-Tn7T-Zeo and pUC18T-mini-Tn7T-Apr). The selection markers of these plasmids are contained within a Flp recombinase target (FRT) cassette, which can be used to obtain unmarked mini-Tn7 insertions upon introduction of a source of Flp recombinase. To this end, site-specific excision vectors pFLP2A and pFLP2Z (containing apramycin and zeocin selection markers, respectively) were created in this study as an accessory to the mini-Tn7 vectors described above. Combinations of these novel mini-Tn7 plasmids and their compatible pFLP2Z or pFLP2A accessory plasmid were used to generate unmarked insertions in MDR clinical isolates of A. baumannii In addition, several fluorescent markers were cloned and inserted into MDR and XDR clinical isolates of A. baumannii via these apramycin and zeocin mini-Tn7 constructs to demonstrate their application.IMPORTANCEAcinetobacter baumannii is a high-priority pathogen for which research on mechanisms of resistance and virulence is a critical need. Commonly used antibiotic selection markers are not suitable for use in MDR and XDR isolates of A. baumannii due to the high antibiotic resistance of these isolates, which poses a barrier to the study of this pathogen. This study demonstrates the practical potential of using apramycin and zeocin mini-Tn7- and Flp recombinase-encoded constructs to carry out genomic manipulations in clinical isolates of A. baumannii displaying MDR and XDR phenotypes.
Collapse
Affiliation(s)
| | - P Malaka De Silva
- Department of Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Leandro Crisostomo
- Department of Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Dinesh M Fernando
- Department of Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Tzu-Chiao Chao
- Department of Biology, University of Regina, Regina, Saskatchewan, Canada
| | - Peter Pelka
- Department of Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Herbert P Schweizer
- University of Florida, College of Medicine, Department of Molecular Genetics and Microbiology, Emerging Pathogens Institute, Gainesville, Florida, USA
| | - Ayush Kumar
- Department of Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada
- Manitoba Chemosensory Biology Group, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
19
|
Distribution and Expression of Efflux Pump Gene and Antibiotic Resistance in Acinetobacter baumannii. ARCHIVES OF CLINICAL INFECTIOUS DISEASES 2018. [DOI: 10.5812/archcid.67143] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
20
|
Leus IV, Weeks JW, Bonifay V, Smith L, Richardson S, Zgurskaya HI. Substrate Specificities and Efflux Efficiencies of RND Efflux Pumps of Acinetobacter baumannii. J Bacteriol 2018; 200:e00049-18. [PMID: 29661860 PMCID: PMC5996695 DOI: 10.1128/jb.00049-18] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 04/09/2018] [Indexed: 12/19/2022] Open
Abstract
Antibiotic-resistant Acinetobacter baumannii causes infections that are extremely difficult to treat. A significant role in these resistance profiles is attributed to multidrug efflux pumps, especially those belonging to the resistance-nodulation-cell division (RND) superfamily of transporters. In this study, we analyzed functions and properties of RND efflux pumps in A. baumannii ATCC 17978. This strain is susceptible to antibiotics and does not contain mutations that are commonly selected upon exposure to high concentrations of antibiotics. We constructed derivatives of ATCC 17978 lacking chromosomally encoded RND pumps and complemented these strains by the plasmid-borne genes. We analyzed the substrate selectivities and efficiencies of the individual pumps in the context of native outer membranes and their hyperporinated variants. Our results show that inactivation of AdeIJK provides the strongest potentiation of antibiotic activities, whereas inactivation of AdeFGH triggers the overexpression of AdeAB. The plasmid-borne overproduction complements the hypersusceptible phenotypes of the efflux deletion mutants to the levels of the parental ATCC 17978. Only a few antibiotics strongly benefitted from the overproduction of efflux pumps and antibacterial activities of some of those depended on the synergistic interaction with the low permeability barrier of the outer membrane. Either overproduction or inactivation of efflux pumps change dramatically the lipidome of ATCC 17978. We conclude that efflux pumps of A. baumannii are tightly integrated into physiology of this bacterium and that clinical levels of antibiotic resistance in A. baumannii isolates are unlikely to be reached solely due to the overproduction of RND efflux pumps.IMPORTANCE RND-type efflux pumps are important contributors in development of clinical antibiotic resistance in A. baumannii However, their specific roles and the extent of contribution to antibiotic resistance remain unclear. We analyzed antibacterial activities of antibiotics in strains with different permeability barriers and found that the role of active efflux in antibiotic resistance of A. baumannii is limited to a few select antibiotics. Our results further show that the impact of efflux pump overproduction on antibiotic susceptibility is significantly lower than the previously reported for clinical isolates. Additional mechanisms of resistance, in particular those that improve the permeability barriers of bacterial cells and act synergistically with active efflux pumps are likely involved in antibiotic resistance of clinical A. baumannii isolates.
Collapse
Affiliation(s)
- Inga V Leus
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma, USA
| | - Jon W Weeks
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma, USA
| | - Vincent Bonifay
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma, USA
| | - Lauren Smith
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma, USA
| | - Sophie Richardson
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma, USA
| | - Helen I Zgurskaya
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma, USA
| |
Collapse
|
21
|
Cecchini T, Yoon EJ, Charretier Y, Bardet C, Beaulieu C, Lacoux X, Docquier JD, Lemoine J, Courvalin P, Grillot-Courvalin C, Charrier JP. Deciphering Multifactorial Resistance Phenotypes in Acinetobacter baumannii by Genomics and Targeted Label-free Proteomics. Mol Cell Proteomics 2017; 17:442-456. [PMID: 29259044 DOI: 10.1074/mcp.ra117.000107] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 09/22/2017] [Indexed: 12/19/2022] Open
Abstract
Resistance to β-lactams in Acinetobacter baumannii involves various mechanisms. To decipher them, whole genome sequencing (WGS) and real-time quantitative polymerase chain reaction (RT-qPCR) were complemented by mass spectrometry (MS) in selected reaction monitoring mode (SRM) in 39 clinical isolates. The targeted label-free proteomic approach enabled, in one hour and using a single method, the quantitative detection of 16 proteins associated with antibiotic resistance: eight acquired β-lactamases (i.e. GES, NDM-1, OXA-23, OXA-24, OXA-58, PER, TEM-1, and VEB), two resident β-lactamases (i.e. ADC and OXA-51-like) and six components of the two major efflux systems (i.e. AdeABC and AdeIJK). Results were normalized using "bacterial quantotypic peptides," i.e. peptide markers of the bacterial quantity, to obtain precise protein quantitation (on average 8.93% coefficient of variation for three biological replicates). This allowed to correlate the levels of resistance to β-lactam with those of the production of acquired as well as resident β-lactamases or of efflux systems. SRM detected enhanced ADC or OXA-51-like production and absence or increased efflux pump production. Precise protein quantitation was particularly valuable to detect resistance mechanisms mediated by regulated genes or by overexpression of chromosomal genes. Combination of WGS and MS, two orthogonal and complementary techniques, allows thereby interpretation of the resistance phenotypes at the molecular level.
Collapse
Affiliation(s)
- Tiphaine Cecchini
- From the ‡Technology Research Department, Innovation Unit, bioMérieux SA, Marcy l'Etoile, France.,§UMR 5280, Institut des Sciences Analytiques, Université de Lyon, Lyon 1, Villeurbanne, France
| | - Eun-Jeong Yoon
- ¶Institut Pasteur, Unité des Agents Antibactériens, Paris, France
| | - Yannick Charretier
- From the ‡Technology Research Department, Innovation Unit, bioMérieux SA, Marcy l'Etoile, France.,§UMR 5280, Institut des Sciences Analytiques, Université de Lyon, Lyon 1, Villeurbanne, France
| | - Chloé Bardet
- From the ‡Technology Research Department, Innovation Unit, bioMérieux SA, Marcy l'Etoile, France.,§UMR 5280, Institut des Sciences Analytiques, Université de Lyon, Lyon 1, Villeurbanne, France
| | - Corinne Beaulieu
- From the ‡Technology Research Department, Innovation Unit, bioMérieux SA, Marcy l'Etoile, France
| | - Xavier Lacoux
- ‖R&D ImmunoAssays, bioMérieux SA, Marcy l'Etoile, France
| | | | - Jerome Lemoine
- §UMR 5280, Institut des Sciences Analytiques, Université de Lyon, Lyon 1, Villeurbanne, France
| | | | | | - Jean-Philippe Charrier
- From the ‡Technology Research Department, Innovation Unit, bioMérieux SA, Marcy l'Etoile, France;
| |
Collapse
|
22
|
Singh M, Yau YCW, Wang S, Waters V, Kumar A. MexXY efflux pump overexpression and aminoglycoside resistance in cystic fibrosis isolates of Pseudomonas aeruginosa from chronic infections. Can J Microbiol 2017; 63:929-938. [PMID: 28922614 DOI: 10.1139/cjm-2017-0380] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In this study, we analyzed 15 multidrug-resistant cystic fibrosis isolates of Pseudomonas aeruginosa from chronic lung infections for expression of 4 different multidrug efflux systems (MexAB-OprM, MexCD-OprJ, MexEF-OprN, and MexXY), using quantitative reverse transcriptase PCR. Overexpression of MexXY pump was observed in all of the isolates tested. Analysis of regulatory genes that control the expression of these 4 efflux pumps revealed a number of previously uncharacterized mutations. Our work shows that MexXY pump overexpression is common in cystic fibrosis isolates and could be contributing to their reduced aminoglycoside susceptibility. Further, we also identified novel mutations in the regulatory genes of the 4 abovementioned Resistance-Nodulation-Division superfamily pumps that may be involved in the overexpression of these pumps.
Collapse
Affiliation(s)
- Manu Singh
- a Department of Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Yvonne C W Yau
- b Division of Microbiology, Department of Paediatric Laboratory Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Shirley Wang
- a Department of Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Valerie Waters
- c Division of Infectious Diseases, Department of Paediatrics, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Ayush Kumar
- a Department of Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada.,d Manitoba Chemosensory Biology Group, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
23
|
Sheikhalizadeh V, Hasani A, Ahangarzadeh Rezaee M, Rahmati-yamchi M, Hasani A, Ghotaslou R, Goli HR. Comprehensive study to investigate the role of various aminoglycoside resistance mechanisms in clinical isolates of Acinetobacter baumannii. J Infect Chemother 2017; 23:74-79. [DOI: 10.1016/j.jiac.2016.09.012] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 09/21/2016] [Accepted: 09/29/2016] [Indexed: 11/24/2022]
|
24
|
Fernando DM, Khan IUH, Patidar R, Lapen DR, Talbot G, Topp E, Kumar A. Isolation and Characterization of Acinetobacter baumannii Recovered from Campylobacter Selective Medium. Front Microbiol 2016; 7:1871. [PMID: 27917170 PMCID: PMC5114274 DOI: 10.3389/fmicb.2016.01871] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 11/07/2016] [Indexed: 11/29/2022] Open
Abstract
Acinetobacter baumannii, a Gram-negative opportunistic pathogen, is known to cause multidrug resistant infections. This organism has primarily been isolated from clinical environments and its environmental reservoirs remain largely unknown. In the present study, we recovered seven isolates of A. baumannii growing under conditions selective for Campylobacter spp. (microaerophilic at 42°C and in the presence of antibiotics) from dairy cattle manure storage tank or surface water impacted by livestock effluents. Antibiotic susceptibility tests revealed that all of these isolates were less susceptible to at least two different clinically relevant antibiotics, compared to the type strain A. baumannii ATCC17978. Expression of resistance-nodulation-division efflux pumps, an important mechanism of intrinsic resistance in these organisms, was analyzed, and adeB was found to be overexpressed in one and adeJ was overexpressed in three isolates. Comparison of these isolates using genomic DNA Macro-Restriction Fragment Pattern Analysis (MRFPA) revealed relatively low relatedness among themselves or with some of the clinical isolates from previous studies. This study suggests that A. baumannii isolates are capable of growing under selective conditions for Campylobacter spp. and that this organism can be present in manure and water.
Collapse
Affiliation(s)
- Dinesh M Fernando
- Department of Microbiology, University of Manitoba , Winnipeg, MB, Canada
| | - Izhar U H Khan
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada , Ottawa, ON, Canada
| | - Rakesh Patidar
- Department of Microbiology, University of Manitoba , Winnipeg, MB, Canada
| | - David R Lapen
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada , Ottawa, ON, Canada
| | - Guylaine Talbot
- Sherbrooke Research and Development Centre, Agriculture and Agri-Food Canada , Sherbrooke, QC, Canada
| | - Edward Topp
- London Research and Development Centre, Agriculture and Agri-Food Canada , London, ON, Canada
| | - Ayush Kumar
- Department of Microbiology, University of Manitoba, Winnipeg, MB, Canada; Department of Medical Microbiology, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
25
|
Correlation between the number of Pro-Ala repeats in the EmrA homologue of Acinetobacter baumannii and resistance to netilmicin, tobramycin, imipenem and ceftazidime. J Glob Antimicrob Resist 2016; 7:145-149. [PMID: 27835840 DOI: 10.1016/j.jgar.2016.09.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 08/30/2016] [Accepted: 09/12/2016] [Indexed: 11/20/2022] Open
Abstract
Acinetobacter baumannii coccobacilli are dangerous to patients in intensive care units because of their multidrug resistance to antibiotics, developed mainly in the past decade. This study aimed to examine whether there is a significant correlation between the number of Pro-Ala repeats in the CAP01997 protein, the EmrA homologue of A. baumannii, and resistance to antibiotics. A total of 79 multidrug-resistant A. baumannii strains isolated from patients were analysed. Resistance to antibiotics was determined on Mueller-Hinton agar plates using the Kirby-Bauer disk diffusion method. The number of CCTGCA repeats encoding Pro-Ala repeats in CAP01997 was determined by PCR and capillary electrophoresis. The 3D models of CAP01997 containing Pro-Ala repeats were initially generated using RaptorX Structure Prediction server and were assembled with EasyModeller 4.0. The models were embedded in a model bacterial membrane based on structural information from homologous proteins and were refined using 100-ns molecular dynamics simulations. The results of this research show significant correlation between susceptibility to netilmicin, tobramycin and imipenem and the number of repeated Pro-Ala sequences in the CAP01997 protein, a homologue of the Escherichia coli transporter EmrA. Predicted structures suggest potential mechanisms that confer drug resistance by reshaping the cytoplasmic interface between CAP01997 protein and the critical component of the multidrug efflux pump homologous to EmrB. Based on these results, we can conclude that the CAP01997 protein, an EmrA homologue of A. baumannii, confers resistance to netilmicin, tobramycin and imipenem, depending on the number of Pro-Ala repeats.
Collapse
|
26
|
Hernando-Amado S, Blanco P, Alcalde-Rico M, Corona F, Reales-Calderón JA, Sánchez MB, Martínez JL. Multidrug efflux pumps as main players in intrinsic and acquired resistance to antimicrobials. Drug Resist Updat 2016; 28:13-27. [PMID: 27620952 DOI: 10.1016/j.drup.2016.06.007] [Citation(s) in RCA: 120] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 05/31/2016] [Accepted: 06/23/2016] [Indexed: 12/31/2022]
Abstract
Multidrug efflux pumps constitute a group of transporters that are ubiquitously found in any organism. In addition to other functions with relevance for the cell physiology, efflux pumps contribute to the resistance to compounds used for treating different diseases, including resistance to anticancer drugs, antibiotics or antifungal compounds. In the case of antimicrobials, efflux pumps are major players in both intrinsic and acquired resistance to drugs currently in use for the treatment of infectious diseases. One important aspect not fully explored of efflux pumps consists on the identification of effectors able to induce their expression. Indeed, whereas the analysis of clinical isolates have shown that mutants overexpressing these resistance elements are frequently found, less is known on the conditions that may trigger expression of efflux pumps, hence leading to transient induction of resistance in vivo, a situation that is barely detectable using classical susceptibility tests. In the current article we review the structure and mechanisms of regulation of the expression of bacterial and fungal efflux pumps, with a particular focus in those for which a role in clinically relevant resistance has been reported.
Collapse
Affiliation(s)
- Sara Hernando-Amado
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología, CSIC, Darwin 3, Cantoblanco, 28049 Madrid, Spain
| | - Paula Blanco
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología, CSIC, Darwin 3, Cantoblanco, 28049 Madrid, Spain
| | - Manuel Alcalde-Rico
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología, CSIC, Darwin 3, Cantoblanco, 28049 Madrid, Spain
| | - Fernando Corona
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología, CSIC, Darwin 3, Cantoblanco, 28049 Madrid, Spain
| | - Jose A Reales-Calderón
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología, CSIC, Darwin 3, Cantoblanco, 28049 Madrid, Spain
| | - María B Sánchez
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología, CSIC, Darwin 3, Cantoblanco, 28049 Madrid, Spain
| | - José L Martínez
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología, CSIC, Darwin 3, Cantoblanco, 28049 Madrid, Spain.
| |
Collapse
|
27
|
Li XZ, Plésiat P, Nikaido H. The challenge of efflux-mediated antibiotic resistance in Gram-negative bacteria. Clin Microbiol Rev 2015; 28:337-418. [PMID: 25788514 PMCID: PMC4402952 DOI: 10.1128/cmr.00117-14] [Citation(s) in RCA: 969] [Impact Index Per Article: 96.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The global emergence of multidrug-resistant Gram-negative bacteria is a growing threat to antibiotic therapy. The chromosomally encoded drug efflux mechanisms that are ubiquitous in these bacteria greatly contribute to antibiotic resistance and present a major challenge for antibiotic development. Multidrug pumps, particularly those represented by the clinically relevant AcrAB-TolC and Mex pumps of the resistance-nodulation-division (RND) superfamily, not only mediate intrinsic and acquired multidrug resistance (MDR) but also are involved in other functions, including the bacterial stress response and pathogenicity. Additionally, efflux pumps interact synergistically with other resistance mechanisms (e.g., with the outer membrane permeability barrier) to increase resistance levels. Since the discovery of RND pumps in the early 1990s, remarkable scientific and technological advances have allowed for an in-depth understanding of the structural and biochemical basis, substrate profiles, molecular regulation, and inhibition of MDR pumps. However, the development of clinically useful efflux pump inhibitors and/or new antibiotics that can bypass pump effects continues to be a challenge. Plasmid-borne efflux pump genes (including those for RND pumps) have increasingly been identified. This article highlights the recent progress obtained for organisms of clinical significance, together with methodological considerations for the characterization of MDR pumps.
Collapse
Affiliation(s)
- Xian-Zhi Li
- Human Safety Division, Veterinary Drugs Directorate, Health Products and Food Branch, Health Canada, Ottawa, Ontario, Canada
| | - Patrick Plésiat
- Laboratoire de Bactériologie, Faculté de Médecine-Pharmacie, Centre Hospitalier Régional Universitaire, Université de Franche-Comté, Besançon, France
| | - Hiroshi Nikaido
- Department of Molecular and Cell Biology, University of California, Berkeley, California, USA
| |
Collapse
|
28
|
Genome Sequence of a Tigecycline-Resistant Clinical Isolate of Acinetobacter baumannii Strain AB031 Obtained from a Bloodstream Infection. GENOME ANNOUNCEMENTS 2014; 2:2/5/e01036-14. [PMID: 25323714 PMCID: PMC4200152 DOI: 10.1128/genomea.01036-14] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We report here the 3.8-Mbp genome sequence of a blood isolate of Acinetobacter baumannii strain AB031.
Collapse
|
29
|
Genome Sequence of an Extremely Drug-Resistant Clinical Isolate of Acinetobacter baumannii Strain AB030. GENOME ANNOUNCEMENTS 2014; 2:2/5/e01035-14. [PMID: 25323713 PMCID: PMC4200151 DOI: 10.1128/genomea.01035-14] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We report the 4.3-Mbp genome sequence of a blood isolate of Acinetobacter baumannii strain AB030.
Collapse
|
30
|
Asai S, Umezawa K, Iwashita H, Ohshima T, Ohashi M, Sasaki M, Hayashi H, Matsui M, Shibayama K, Inokuchi S, Miyachi H. An outbreak of blaOXA-51-like- and blaOXA-66-positive Acinetobacter baumannii ST208 in the emergency intensive care unit. J Med Microbiol 2014; 63:1517-1523. [PMID: 25142965 PMCID: PMC4209737 DOI: 10.1099/jmm.0.077503-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
A series of clinical isolates of drug-resistant (DR) Acinetobacter baumannii with diverse drug susceptibility was detected from eight patients in the emergency intensive care unit of Tokai University Hospital. The initial isolate was obtained in March 2010 (A. baumannii Tokai strain 1); subsequently, seven isolates were obtained from patients (A. baumannii Tokai strains 2–8) and one isolate was obtained from an air-fluidized bed used by five of the patients during the 3 months from August to November 2011. The isolates were classified into three types of antimicrobial drug resistance patterns (RRR, SRR and SSR) according to their susceptibility (S) or resistance (R) to imipenem, amikacin and ciprofloxacin, respectively. Genotyping of these isolates by multilocus sequence typing revealed one sequence type, ST208, whilst that by a DiversiLab analysis revealed two subtypes. All the isolates were positive for blaOXA-51-like and blaOXA-66, as assessed by PCR and DNA sequencing. A. baumannii Tokai strains 1–8 and 10 (RRR, SRR and SSR) had quinolone resistance-associated mutations in gyrA/parC, as revealed by DNA sequencing. The ISAba1 upstream of blaOXA-51-like and aminoglycoside resistance-associated gene, armA, were detected in A. baumannii Tokai strains 1–7 and 10 (RRR and SRR) as assessed by PCR. Among the genes encoding resistance–nodulation–division family pumps (adeB, adeG and adeJ) and outer-membrane porins (oprD and carO), overexpression of adeB and adeJ and suppression of oprD and carO were seen in isolates of A. baumannii Tokai strain 2 (RRR), as assessed by real-time PCR. Thus, the molecular characterization of a series of isolates of DR A. baumannii revealed the outbreak of ST208 and diverse antimicrobial drug susceptibilities, which almost correlated with differential gene alterations responsible for each type of drug resistance.
Collapse
Affiliation(s)
- Satomi Asai
- Infection Control Division, Tokai University Hospital, 143 Shimokasuya, Isehara 259-1193, Japan.,Department of Laboratory Medicine, Tokai University School of Medicine, 143 Shimokasuya, Isehara 259-1193, Japan
| | - Kazuo Umezawa
- Department of Critical Care and Emergency Medicine, Tokai University School of Medicine, 143 Shimokasuya, Isehara 259-1193, Japan
| | - Hideo Iwashita
- Department of Laboratory Medicine, Tokai University School of Medicine, 143 Shimokasuya, Isehara 259-1193, Japan
| | - Toshio Ohshima
- Infection Control Division, Tokai University Hospital, 143 Shimokasuya, Isehara 259-1193, Japan
| | - Maya Ohashi
- Infection Control Division, Tokai University Hospital, 143 Shimokasuya, Isehara 259-1193, Japan
| | - Mika Sasaki
- Infection Control Division, Tokai University Hospital, 143 Shimokasuya, Isehara 259-1193, Japan
| | - Hideki Hayashi
- Support Center for Medical Research and Education, Tokai University School of Medicine, 143 Shimokasuya, Isehara 259-1193, Japan
| | - Mari Matsui
- Department of Bacteriology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Keigo Shibayama
- Department of Bacteriology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Sadaki Inokuchi
- Department of Critical Care and Emergency Medicine, Tokai University School of Medicine, 143 Shimokasuya, Isehara 259-1193, Japan
| | - Hayato Miyachi
- Infection Control Division, Tokai University Hospital, 143 Shimokasuya, Isehara 259-1193, Japan.,Department of Laboratory Medicine, Tokai University School of Medicine, 143 Shimokasuya, Isehara 259-1193, Japan
| |
Collapse
|
31
|
Triclosan can select for an AdeIJK-overexpressing mutant of Acinetobacter baumannii ATCC 17978 that displays reduced susceptibility to multiple antibiotics. Antimicrob Agents Chemother 2014; 58:6424-31. [PMID: 25136007 DOI: 10.1128/aac.03074-14] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
In order to determine if triclosan can select for mutants of Acinetobacter baumannii ATCC 17978 that display reduced susceptibilities to antibiotics, we isolated a triclosan-resistant mutant, A. baumannii AB042, by serial passaging of A. baumannii ATCC 17978 in growth medium supplemented with triclosan. The antimicrobial susceptibility of AB042 was analyzed by the 2-fold serial dilution method. Expression of five different resistance-nodulation-division (RND) pump-encoding genes (adeB, adeG, adeJ, A1S_2818, and A1S_3217), two outer membrane porin-encoding genes (carO and oprD), and the MATE family pump-encoding gene abeM was analyzed using quantitative reverse transcriptase (qRT) PCR. A. baumannii AB042 exhibited elevated resistance to multiple antibiotics, including piperacillin-tazobactam, doxycycline, moxifloxacin, ceftriaxone, cefepime, meropenem, doripenem, ertapenem, ciprofloxacin, aztreonam, tigecycline, and trimethoprim-sulfamethoxazole, in addition to triclosan. Genome sequencing of A. baumannii AB042 revealed a (116)G→V mutation in fabI, the gene encoding the target enzyme for triclosan. Expression analysis of efflux pumps showed overexpression of the AdeIJK pump, and sequencing of adeN, the gene that encodes the repressor of the adeIJK operon, revealed a 73-bp deletion which would cause a premature termination of translation, resulting in an inactive truncated AdeN protein. This work shows that triclosan can select for mutants of A. baumannii that display reduced susceptibilities to multiple antibiotics from chemically distinct classes in addition to triclosan resistance. This multidrug resistance can be explained by the overexpression of the AdeIJK efflux pump.
Collapse
|
32
|
Bazyleu A, Kumar A. Incubation temperature, osmolarity, and salicylate affect the expression of resistance-nodulation-division efflux pumps and outer membrane porins in Acinetobacter baumannii ATCC19606T. FEMS Microbiol Lett 2014; 357:136-43. [PMID: 25039371 DOI: 10.1111/1574-6968.12530] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2014] [Revised: 05/20/2014] [Accepted: 07/01/2014] [Indexed: 11/30/2022] Open
Abstract
In this study, we examined the impact of various environmental conditions on the expression of resistance-nodulation-division (RND) efflux pumps and outer membrane (OM) porins, two key determinants of Acinetobacter baumannii's intrinsic resistance, an organism known to cause various multidrug resistant infections in immunocompromised individuals. Quantitative RT-PCR was used to analyze the expression of adeB, adeG, and adeJ (genes encoding RND pumps) and 33 kDa, carO, and oprD (genes encoding OM porins) of A. baumannii ATCC19606(T) under different incubation temperatures (30, 37, and 42 °C) and in the presence of high osmolarity and salicylate. Downregulation of all three RND pumps was observed at 30 °C, while downregulation of all three porins tested was observed at increased osmolarity. Downregulation of RND efflux pumps, particularly AdeABC, was consistent with increased susceptibility to antibiotics that are substrates of this pump. Expression of the adeR response regulator gene of the AdeRS system, the activator of the AdeABC pump, was also analyzed. Our work shows that various environmental stress conditions can influence the expression of RND pumps and porins in A. baumannii ATCC19606(T) and thus may play a role in the modulation of its antibiotic resistance.
Collapse
Affiliation(s)
- Andrei Bazyleu
- Department of Microbiology, University of Manitoba, Winnipeg, MB, Canada
| | | |
Collapse
|
33
|
Tilley D, Law R, Warren S, Samis JA, Kumar A. CpaA a novel protease fromAcinetobacter baumanniiclinical isolates deregulates blood coagulation. FEMS Microbiol Lett 2014; 356:53-61. [DOI: 10.1111/1574-6968.12496] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Accepted: 05/30/2014] [Indexed: 01/01/2023] Open
Affiliation(s)
- Derek Tilley
- Centennial College; School of Engineering Technology and Applied Science; Toronto ON Canada
- CancerControl; Alberta Health Services; Richmond Road Diagnostic & Treatment Centre; Calgary AB Canada
| | - Robert Law
- Centennial College; School of Engineering Technology and Applied Science; Toronto ON Canada
| | - Sarah Warren
- Antimicrobial Resistance Research Group; Applied Biosciences Program; Faculty of Health Sciences; University of Ontario Institute of Technology; Oshawa ON Canada
| | - John A. Samis
- Antimicrobial Resistance Research Group; Applied Biosciences Program; Faculty of Health Sciences; University of Ontario Institute of Technology; Oshawa ON Canada
- Medical Laboratory Science Program; Faculty of Health Sciences; University of Ontario Institute of Technology; Oshawa ON Canada
| | - Ayush Kumar
- Antimicrobial Resistance Research Group; Applied Biosciences Program; Faculty of Health Sciences; University of Ontario Institute of Technology; Oshawa ON Canada
- Department of Microbiology; University of Manitoba; Winnipeg MB Canada
| |
Collapse
|