1
|
Wang X, Zhao M, Ju C, Gao H, Wang W. Protective Mechanisms of Juncus effusus and Carbonized Juncus effusus against D-Galactosamine-Induced Acute Liver Injury in Mice. Chem Pharm Bull (Tokyo) 2024; 72:280-285. [PMID: 38325836 DOI: 10.1248/cpb.c23-00578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
This study investigated the hepatoprotective effects of Juncus effusus (J. effusus) and Carbonized J. effusus against liver injury caused by D-galactosamine (D-GalN) in mice. J. effusus and Carbonized J. effusus were administered by gavage once daily starting seven days before the D-GalN treatment. The results of the study indicated that J. effusus and Carbonized J. effusus suppressed the D-GalN-induced generation of serum alanine transaminase (ALT), aspartate aminotransferase (AST), hepatic malondialdehyde (MDA) and tumor necrosis factor-alpha (TNF-α) was observed. The values of superoxide dismutase (SOD) exhibited an increase. In addition, J. effusus and Carbonized J. effusus promoted the protein expression of nuclear factor erythroid 2-related factor 2 (Nrf2), NADPH quinone oxidoreductase-1 (NQO-1), heme oxygenase-1 (HO-1) as well as the mRNA expression of Nrf2, HO-1, NQO-1 and Glutamate cysteine ligase catalytic subunit (GCLC). The compressed Carbonized J. effusus demonstrated the optimum impact. These results suggest that J. effusus and Carbonized J. effusus protect against D-GalN-induced acute liver injury through the activation of the Nrf2 pathway.
Collapse
Affiliation(s)
- Xiangming Wang
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine
| | - Menghui Zhao
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine
| | - Chengguo Ju
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine
| | - Hui Gao
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine
| | - Wei Wang
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine
| |
Collapse
|
2
|
Konstantinidou F, Budani MC, Sarra A, Stuppia L, Tiboni GM, Gatta V. Impact of Cigarette Smoking on the Expression of Oxidative Stress-Related Genes in Cumulus Cells Retrieved from Healthy Women Undergoing IVF. Int J Mol Sci 2021; 22:ijms222313147. [PMID: 34884952 PMCID: PMC8658611 DOI: 10.3390/ijms222313147] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/30/2021] [Accepted: 12/02/2021] [Indexed: 02/06/2023] Open
Abstract
The female reproductive system represents a sensitive target of the harmful effects of cigarette smoke, with folliculogenesis as one of the ovarian processes most affected by this exposure. The aim of this study was to analyze the impact of tobacco smoking on expression of oxidative stress-related genes in cumulus cells (CCs) from smoking and non-smoking women undergoing IVF techniques. Real time PCR technology was used to analyze the gene expression profile of 88 oxidative stress genes enclosed in a 96-well plate array. Statistical significance was assessed by one-way ANOVA. The biological functions and networks/pathways of modulated genes were evidenced by ingenuity pathway analysis software. Promoter methylation analysis was performed by pyrosequencing. Our results showed a down-regulation of 24 genes and an up-regulation of 2 genes (IL6 and SOD2, respectively) involved in defense against oxidative damage, cell cycle regulation, as well as inflammation in CCs from smoking women. IL-6 lower promoter methylation was found in CCs of the smokers group. In conclusion, the disclosed overall downregulation suggests an oxidant-antioxidant imbalance in CCs triggered by cigarette smoking exposure. This evidence adds a piece to the puzzle of the molecular basis of female reproduction and could help underlay the importance of antioxidant treatments for smoking women undergoing IVF protocols.
Collapse
Affiliation(s)
- Fani Konstantinidou
- School of Medicine and Health Sciences, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy; (F.K.); (L.S.)
- Unit of Molecular Genetics, Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Maria Cristina Budani
- Department of Medical, Oral and Biotechnological Sciences, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy;
| | - Annalina Sarra
- Department of Philosophical, Pedagogical and Quantitative Economic Sciences, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy;
| | - Liborio Stuppia
- School of Medicine and Health Sciences, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy; (F.K.); (L.S.)
- Unit of Molecular Genetics, Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Gian Mario Tiboni
- Department of Medical, Oral and Biotechnological Sciences, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy;
- Correspondence: (G.M.T.); (V.G.)
| | - Valentina Gatta
- School of Medicine and Health Sciences, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy; (F.K.); (L.S.)
- Unit of Molecular Genetics, Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
- Correspondence: (G.M.T.); (V.G.)
| |
Collapse
|
3
|
Potteti HR, Noone PM, Tamatam CR, Ankireddy A, Noel S, Rabb H, Reddy SP. Nrf2 mediates hypoxia-inducible HIF1α activation in kidney tubular epithelial cells. Am J Physiol Renal Physiol 2021; 320:F464-F474. [PMID: 33491566 PMCID: PMC7988808 DOI: 10.1152/ajprenal.00501.2020] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 12/22/2020] [Accepted: 01/20/2021] [Indexed: 11/22/2022] Open
Abstract
Nuclear factor erythroid 2-related factor 2 (Nrf2) and hypoxia-inducible factor-1α (HIF1α) transcription factors protect against ischemic acute kidney injury (AKI) by upregulating metabolic and cytoprotective gene expression. In this study, we tested the hypothesis that Nrf2 is required for HIF1α-mediated hypoxic responses using Nrf2-sufficient (wild-type) and Nrf2-deficient (Nrf2-/-) primary murine renal/kidney tubular epithelial cells (RTECs) and human immortalized tubular epithelial cells (HK2 cells) with HIF1 inhibition and activation. The HIF1 pathway inhibitor digoxin blocked hypoxia-stimulated HIF1α activation and heme oxygenase (HMOX1) expression in HK2 cells. Hypoxia-mimicking cobalt (II) chloride-stimulated HMOX1 expression was significantly lower in Nrf2-/- RTECs than in wild-type counterparts. Similarly, hypoxia-stimulated HIF1α-dependent metabolic gene expression was markedly impaired in Nrf2-/- RTECs. Nrf2 deficiency impaired hypoxia-induced HIF1α stabilization independent of increased prolyl 4-hydroxylase gene expression. We found decreased HIF1α mRNA levels in Nrf2-/- RTECs under both normoxia and hypoxia-reoxygenation conditions. In silico analysis and chromatin immunoprecipitation assays demonstrated Nrf2 binding to the HIF1α promoter in normoxia, but its binding decreased in hypoxia-exposed HK2 cells. However, Nrf2 binding at the HIF1α promoter was enriched following reoxygenation, demonstrating that Nrf2 maintains constitutive HIF1α expression. Consistent with this result, we found decreased levels of Nrf2 in hypoxia and that were restored following reoxygenation. Inhibition of mitochondrial complex I prevented hypoxia-induced Nrf2 downregulation and also increased basal Nrf2 levels. These results demonstrate a crucial role for Nrf2 in optimal HIF1α activation in hypoxia and that mitochondrial signaling downregulates Nrf2 levels in hypoxia, whereas reoxygenation restores it. Nrf2 and HIF1α interact to provide optimal metabolic and cytoprotective responses in ischemic AKI.
Collapse
Affiliation(s)
- Haranatha R Potteti
- Division of Developmental Biology and Basic Research, Department of Pediatrics, University of Illinois at Chicago, Chicago, Illinois
| | - Patrick M Noone
- Division of Developmental Biology and Basic Research, Department of Pediatrics, University of Illinois at Chicago, Chicago, Illinois
| | - Chandramohan R Tamatam
- Division of Developmental Biology and Basic Research, Department of Pediatrics, University of Illinois at Chicago, Chicago, Illinois
| | - Aparna Ankireddy
- Division of Developmental Biology and Basic Research, Department of Pediatrics, University of Illinois at Chicago, Chicago, Illinois
| | - Sanjeev Noel
- Division of Nephrology, Department of Medicine, Johns Hopkins University, Baltimore, Maryland
| | - Hamid Rabb
- Division of Nephrology, Department of Medicine, Johns Hopkins University, Baltimore, Maryland
| | - Sekhar P Reddy
- Division of Developmental Biology and Basic Research, Department of Pediatrics, University of Illinois at Chicago, Chicago, Illinois
| |
Collapse
|
4
|
Liao Q, Chen W, Tong Z, Xue M, Gu T, Yuan Y, Song Z, Tao Z. Shufeng Jiedu capsules protect rats against LPS-induced acute lung injury via activating NRF2-associated antioxidant pathway. Histol Histopathol 2021; 36:317-324. [PMID: 33346364 DOI: 10.14670/hh-18-293] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Shufeng Jiedu capsule (SFJDC) is a traditional Chinese medicine, which has been used for the treatment of respiratory infections for more than thirty years in Hunan (China). SFJDC protected rats against LPS-induced acute lung injury (ALI); however, the molecular mechanisms underlying the therapeutic effects of SFJDC remain unclear. Therefore, this study aimed at analyzing the major anti-inflammatory compounds of SFJDC and exploring the underlying molecular mechanisms. SFJDC dissolved in water was fingerprinted by UPLC/Q-TOF. Inflammation response was assessed by histopathological examination and ELISA assay. Arterial blood gases were also analyzed to evaluate the function of rat lungs. The expression levels of Kelch-like ECH-associating protein 1 (Keap1), Nrf2, heme oxygenase-1 (HO1), Cullin 3 (CUL3) and NQO1 were analyzed by Western blotting. Results indicated that SFJDC alleviated inflammation response by reducing the level of inflammatory cytokines, and upregulation of glutathione-S-transferase (GST) and superoxide dismutase (SOD) in lung tissues. Furthermore, SFJDC suppressed LPS-induced upregulation of Keap 1 and CUL3 in rat lungs. The expression of NRF2 HO1 and NQO1 were further upregulated by SFJDC in the presence of LPS, indicating that SFJDC might activate the NRF2-associated antioxidant pathway. In conclusion, SFJDC treatment may protect the rat lungs from LPS by alleviating the inflammation response via NRF2-associated antioxidant pathway.
Collapse
Affiliation(s)
- Qingwu Liao
- Department of Anesthesia, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Wenan Chen
- Emergency Department, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zhufeng Tong
- Department of General Practice, Yijishan Hospital of Wannan Medical College, Anhui, China
| | - Mingming Xue
- Emergency Department, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Tianwen Gu
- Emergency Department, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Ying Yuan
- Geriatrics Department, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zhenju Song
- Emergency Department, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zhengang Tao
- Emergency Department, Zhongshan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
5
|
Meng M, Zhang R, Han R, Kong Y, Wang R, Hou L. The polysaccharides from the Grifola frondosa fruiting body prevent lipopolysaccharide/d-galactosamine-induced acute liver injury via the miR-122-Nrf2/ARE pathways. Food Funct 2021; 12:1973-1982. [DOI: 10.1039/d0fo03327h] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The polysaccharides from Grifola frondosa fruiting body can be used as a potential hepatoprotective agent in the treatment of acute liver injury.
Collapse
Affiliation(s)
- Meng Meng
- State Key Laboratory of Food Nutrition and Safety
- Key Laboratory of Food Nutrition and Safety
- Ministry of Education
- College of food Engineering and Biotechnology
- Tianjin University of Science and Technology
| | - Rui Zhang
- State Key Laboratory of Food Nutrition and Safety
- Key Laboratory of Food Nutrition and Safety
- Ministry of Education
- College of food Engineering and Biotechnology
- Tianjin University of Science and Technology
| | - Ran Han
- State Key Laboratory of Food Nutrition and Safety
- Key Laboratory of Food Nutrition and Safety
- Ministry of Education
- College of food Engineering and Biotechnology
- Tianjin University of Science and Technology
| | - Yu Kong
- State Key Laboratory of Food Nutrition and Safety
- Key Laboratory of Food Nutrition and Safety
- Ministry of Education
- College of food Engineering and Biotechnology
- Tianjin University of Science and Technology
| | - Ruhua Wang
- State Key Laboratory of Food Nutrition and Safety
- Key Laboratory of Food Nutrition and Safety
- Ministry of Education
- College of food Engineering and Biotechnology
- Tianjin University of Science and Technology
| | - Lihua Hou
- State Key Laboratory of Food Nutrition and Safety
- Key Laboratory of Food Nutrition and Safety
- Ministry of Education
- College of food Engineering and Biotechnology
- Tianjin University of Science and Technology
| |
Collapse
|
6
|
Chan Kwon Y, Sik Kim H, Lee BM. Detoxifying effects of optimal hyperoxia (40% oxygenation) exposure on benzo[a]pyrene-induced toxicity in human keratinocytes. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2020; 83:82-94. [PMID: 32065759 DOI: 10.1080/15287394.2020.1730083] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Detoxifying effects of hyperoxia, which is widely used in clinical practice, were investigated using HaCat cells (human keratinocytes) treated with benzo[a]pyrene (B[a]P) as a model agent to induce adverse effects in the skin. It is well-established that B[a]P may produce toxicities including cancer, endocrine disruption, and phototoxicity involving DNA damage, free radical generation, and down regulation of nuclear factor erythroid 2-related factor 2 (Nrf2). It is well-known that Nrf2 is associated increase of antioxidant enzyme catalase (CAT) or detoxification enzyme glutathione S-transferase (GST) in HaCat cells treated with B[a]P under optimal condition of hyperoxia (40% oxygenation) conditions. To further examine the underlying basis of this phenomenon, factors affecting the expression of Nrf2 were determined. Nrf2 was upregulated accompanied by a rise in p38 MAPK, sequestosome-1 (also known as p62) and NF-κB. In contrast, Nrf2 was downregulated associated with an elevation in glycogen synthase kinase 3 beta (GSK-3β) and peroxisome proliferator-activated receptor alpha (PPARα). Hyperoxia was also found to diminish DNA damage and generation of free radicals initiated in B[a]P-treated cells which was attributed to an significant rise of Nrf2, leading to elevated antioxidant activities or detoxification proteins including heme oxygenase 1 (HO-1), superoxide dismutase (SOD), glutathione peroxidase-1/2 (GPX-1/2), CAT, GST and glutathione (GSH). In addition, factors related to skin aging were also altered by hyperoxia. Data suggest that optimal hyperoxia exposure of 40% oxygenation may reduce cellular toxicity induced by B[a]P in HaCat cells as evidenced by inhibition of DNA damage, free radical generation, and down-regulation of Nrf2.
Collapse
Affiliation(s)
- Yong Chan Kwon
- Division of Toxicology, College of Pharmacy, Sungkyunkwan University, Suwon, South Korea
| | - Hyung Sik Kim
- Division of Toxicology, College of Pharmacy, Sungkyunkwan University, Suwon, South Korea
| | - Byung-Mu Lee
- Division of Toxicology, College of Pharmacy, Sungkyunkwan University, Suwon, South Korea
| |
Collapse
|
7
|
Ling Y, Li ZZ, Zhang JF, Zheng XW, Lei ZQ, Chen RY, Feng JH. RETRACTED: MicroRNA-494 inhibition alleviates acute lung injury through Nrf2 signaling pathway via NQO1 in sepsis-associated acute respiratory distress syndrome. Life Sci 2018; 210:1-8. [PMID: 30121199 PMCID: PMC9673760 DOI: 10.1016/j.lfs.2018.08.037] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 08/08/2018] [Accepted: 08/14/2018] [Indexed: 11/24/2022]
Abstract
This article has been retracted: please see Elsevier Policy on Article Withdrawal (http://www.elsevier.com/locate/withdrawalpolicy). This article has been retracted at the request of the Editor-in-Chief. Concern was raised about the reliability of the Western blot results in Figures 5G,H+I, which appear to have a similar phenotype as many other publications, as detailed here: https://pubpeer.com/publications/7C9483B2551952AD53CCFCE206C4EB; and here: https://docs.google.com/spreadsheets/d/1r0MyIYpagBc58BRF9c3luWNlCX8VUvUuPyYYXzxWvgY/edit#gid=262337249. The journal requested that the corresponding author comment on these concerns and provide the raw data. The authors did not respond to this request and therefore the Editor-in-Chief decided to retract the article.
Collapse
Affiliation(s)
- Yun Ling
- Department of Emergency, the Second Affiliated Hospital of Guangxi Medical University, Nanning 530007, PR China
| | - Zheng-Zhao Li
- Department of Emergency, the Second Affiliated Hospital of Guangxi Medical University, Nanning 530007, PR China
| | - Jian-Feng Zhang
- Department of Emergency, the Second Affiliated Hospital of Guangxi Medical University, Nanning 530007, PR China.
| | - Xiao-Wen Zheng
- Department of Emergency, the Second Affiliated Hospital of Guangxi Medical University, Nanning 530007, PR China
| | - Zhuo-Qing Lei
- Department of Emergency, the Second Affiliated Hospital of Guangxi Medical University, Nanning 530007, PR China
| | - Ru-Yan Chen
- Department of Emergency, the Second Affiliated Hospital of Guangxi Medical University, Nanning 530007, PR China
| | - Ji-Hua Feng
- Department of Emergency, the Second Affiliated Hospital of Guangxi Medical University, Nanning 530007, PR China
| |
Collapse
|
8
|
Fratantonio D, Cimino F, Speciale A, Virgili F. Need (more than) two to Tango: Multiple tools to adapt to changes in oxygen availability. Biofactors 2018; 44:207-218. [PMID: 29485192 DOI: 10.1002/biof.1419] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 01/11/2018] [Accepted: 01/25/2018] [Indexed: 12/13/2022]
Abstract
Oxygen is a fundamental element for the life of a large number of living organisms allowing an efficient energetic utilization of substrates. Organisms relying on oxygen evolved complex structures for oxygen delivery and biochemical machineries dealing with its safe utilization and the ability to overcome the potentially harmful consequences of changes in oxygen availability. On fact, cells composing complex Eukaryotic organisms are set to live within an optimum narrow range of oxygen, quite specific for each cell type. Minute modifications of oxygen availability, either positive or negative, induce the expression of specific genes, the major actors of this responses being the transcription factors HIF and Nrf2 that control the attempt to cope with low oxygen (hypoxia) or to either high oxygen or to an oxygen "overflow," respectively. This review describes the interaction between these two transcription factors and their interaction with the transcription factor NF-κB acting as a pivotal determinant of final cell response. © 2018 BioFactors, 44(3):207-218, 2018.
Collapse
Affiliation(s)
- Deborah Fratantonio
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Francesco Cimino
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Antonio Speciale
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Fabio Virgili
- Council for Agricultural Research and Economics-Food and Nutrition Research Centre (CREA-AN), Rome, Italy
| |
Collapse
|
9
|
Per S, Kose M, Ozdemir A, Pandir D. Hepatoprotective effects of capping protein gelsolin against hyperoxia-induced hepatotoxicity, oxidative stress and DNA damage in neonatal rats. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2018; 58:189-195. [PMID: 29408761 DOI: 10.1016/j.etap.2018.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 01/15/2018] [Accepted: 01/18/2018] [Indexed: 06/07/2023]
Abstract
Tissues and organs get exposed to high oxygen (O2) supply in hyperoxia conditions. The goal of this research was to investigate the protective effect of actin binding protein gelsolin on hyperoxia-induced hepatotoxicity through histopathology and measurement of oxidative stress parameters and DNA damage in a neonatal Wistar albino rats. The pups were randomly separated to four equal groups such as: normoxia control group (NC), normoxia plus gelsolin group (NG, 10 ng/kg bw/day gelsolin), hyperoxia (≥85% O2) group (HC), hyperoxia plus gelsolin group (HG, ≥85% O2; 10 ng/kg bw/day gelsolin). Histopathological changes of pups in hyperoxia condition were revealed in the form of severe leukocyte infiltration, vascular congestion, necrosis, vacuolar degeneration, binucleated hepatocytes and hemorrhage in the liver tissue. SOD, CAT, GPx and GST activities decreased and MDA level increased in the hyperoxia-induced group in liver tissue (P < 0.05). Tail DNA%, tail length and moment indicating DNA damage statistically increased in hyperoxia treatment groups when compared to controls. Treatment of rats with hyperoxia plus gelsolin prevented hyperoxia-induced changes in tissue structure, antioxidant enzyme activities and MDA level, mean tail DNA% and length. Based on these findings, gelsolin restored these changing to near normal levels but it does not protect completely in the hyperoxia conditions.
Collapse
Affiliation(s)
- Sedat Per
- Department of Biology, Bozok University, Yozgat, Turkey.
| | - Mehmet Kose
- Department of Pediatrics, Division of Pediatric Pulmonology Unit, Erciyes University, Kayseri, Turkey
| | - Ahmet Ozdemir
- Department of Pediatrics, Division of Neonatology, Erciyes University, Kayseri, Turkey
| | - Dilek Pandir
- Department of Biology, Bozok University, Yozgat, Turkey
| |
Collapse
|
10
|
Potteti HR, Rajasekaran S, Rajamohan SB, Tamatam CR, Reddy NM, Reddy SP. Sirtuin 1 Promotes Hyperoxia-Induced Lung Epithelial Cell Death Independent of NF-E2-Related Factor 2 Activation. Am J Respir Cell Mol Biol 2017; 54:697-706. [PMID: 26465873 DOI: 10.1165/rcmb.2014-0056oc] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Lung epithelial cell damage accompanied by death is a cardinal feature of toxicant- and prooxidant-induced acute lung injury. The transcription factor nuclear factor (erythroid-derived 2)-like 2 (NEF2L2 or NRF2) activates several antioxidant enzymes (AOEs) and prosurvival genes in response to oxidant stress, and its deficiency enhances susceptibility to hyperoxic lung injury and other oxidant-induced lung pathologies. Sirtuin 1 (SIRT1) regulates cell growth and survival in response to both physiological and pathological stresses by selectively deacetylating multiple proteins required for chromatin remodeling and transcription; therefore, we sought to examine potential SIRT1-NRF2 cross-talk in the regulation of AOE expression during hyperoxia-induced lung epithelial cell death. Unexpectedly, pharmacological inhibition or small interfering RNA-mediated depletion of SIRT1 caused a reduction in cell death, accompanied by reduced levels of NRF2-dependent AOE expression in chronic hyperoxia. NRF2 acetylation was markedly and transiently higher in cells exposed to acute (6 h) hyperoxia. Sirtinol blocked this acute effect, but NRF2 acetylation was low or undetectable in cells exposed to chronic hyperoxia (24-36 h) both with and without sirtinol. SIRT1 activation by resveratrol augmented hyperoxia-induced death in cells with NRF2 deficiency. SIRT1 inhibition or depletion led to a reduced activation of the cell-death executioner caspase 3, whereas caspase inhibition prevented death. Consistent with these results, sirtinol attenuated hyperoxia-induced lung alveolar permeability and toxicity in vivo. Collectively, these results reveal that, in chronic hyperoxia, SIRT1 promotes hyperoxia-induced lung epithelial cell damage and death by altering pro- and antiapoptotic balance, not by dampening optimal NRF2-dependent AOE expression.
Collapse
Affiliation(s)
- Haranatha R Potteti
- Division of Developmental Biology and Basic Research, Department of Pediatrics, University of Illinois at Chicago, Chicago, Illinois
| | - Subbiah Rajasekaran
- Division of Developmental Biology and Basic Research, Department of Pediatrics, University of Illinois at Chicago, Chicago, Illinois
| | - Senthilkumar B Rajamohan
- Division of Developmental Biology and Basic Research, Department of Pediatrics, University of Illinois at Chicago, Chicago, Illinois
| | - Chandramohan R Tamatam
- Division of Developmental Biology and Basic Research, Department of Pediatrics, University of Illinois at Chicago, Chicago, Illinois
| | - Narsa M Reddy
- Division of Developmental Biology and Basic Research, Department of Pediatrics, University of Illinois at Chicago, Chicago, Illinois
| | - Sekhar P Reddy
- Division of Developmental Biology and Basic Research, Department of Pediatrics, University of Illinois at Chicago, Chicago, Illinois
| |
Collapse
|
11
|
Pajares M, Jiménez-Moreno N, García-Yagüe ÁJ, Escoll M, de Ceballos ML, Van Leuven F, Rábano A, Yamamoto M, Rojo AI, Cuadrado A. Transcription factor NFE2L2/NRF2 is a regulator of macroautophagy genes. Autophagy 2016; 12:1902-1916. [PMID: 27427974 PMCID: PMC5079676 DOI: 10.1080/15548627.2016.1208889] [Citation(s) in RCA: 282] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Revised: 06/16/2016] [Accepted: 06/27/2016] [Indexed: 12/14/2022] Open
Abstract
Autophagy is a highly coordinated process that is controlled at several levels including transcriptional regulation. Here, we identify the transcription factor NFE2L2/NRF2 (nuclear factor, erythroid 2 like 2) as a regulator of autophagy gene expression and its relevance in a mouse model of Alzheimer disease (AD) that reproduces impaired APP (amyloid β precursor protein) and human (Hs)MAPT/TAU processing, clearance and aggregation. We screened the chromatin immunoprecipitation database ENCODE for 2 proteins, MAFK and BACH1, that bind the NFE2L2-regulated enhancer antioxidant response element (ARE). Using a script generated from the JASPAR's consensus ARE sequence, we identified 27 putative AREs in 16 autophagy-related genes. Twelve of these sequences were validated as NFE2L2 regulated AREs in 9 autophagy genes by additional ChIP assays and quantitative RT-PCR on human and mouse cells after NFE2L2 activation with sulforaphane. Mouse embryo fibroblasts of nfe2l2-knockout mice exhibited reduced expression of autophagy genes, which was rescued by an NFE2L2 expressing lentivirus, and impaired autophagy flux when exposed to hydrogen peroxide. NFE2L2-deficient mice co-expressing HsAPPV717I and HsMAPTP301L, exhibited more intracellular aggregates of these proteins and reduced neuronal levels of SQSTM1/p62, CALCOCO2/NDP52, ULK1, ATG5 and GABARAPL1. Also, colocalization of HsAPPV717I and HsMAPTP301L with the NFE2L2-regulated autophagy marker SQSTM1/p62 was reduced in the absence of NFE2L2. In AD patients, neurons expressing high levels of APP or MAPT also expressed SQSTM1/p62 and nuclear NFE2L2, suggesting their attempt to degrade intraneuronal aggregates through autophagy. This study shows that NFE2L2 modulates autophagy gene expression and suggests a new strategy to combat proteinopathies.
Collapse
Affiliation(s)
- Marta Pajares
- Instituto de Investigaciones Biomédicas “Alberto Sols” UAM-CSIC, Instituto de Investigación Sanitaria La Paz (IdiPaz) and Department of Biochemistry, Faculty of Medicine, Autonomous University of Madrid, Madrid, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, Madrid, Spain
| | - Natalia Jiménez-Moreno
- Instituto de Investigaciones Biomédicas “Alberto Sols” UAM-CSIC, Instituto de Investigación Sanitaria La Paz (IdiPaz) and Department of Biochemistry, Faculty of Medicine, Autonomous University of Madrid, Madrid, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, Madrid, Spain
- Present address: School of Biochemistry, University of Bristol, Medical Sciences Building, University Walk, Bristol, UK
| | - Ángel J. García-Yagüe
- Instituto de Investigaciones Biomédicas “Alberto Sols” UAM-CSIC, Instituto de Investigación Sanitaria La Paz (IdiPaz) and Department of Biochemistry, Faculty of Medicine, Autonomous University of Madrid, Madrid, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, Madrid, Spain
| | - Maribel Escoll
- Instituto de Investigaciones Biomédicas “Alberto Sols” UAM-CSIC, Instituto de Investigación Sanitaria La Paz (IdiPaz) and Department of Biochemistry, Faculty of Medicine, Autonomous University of Madrid, Madrid, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, Madrid, Spain
| | - María L. de Ceballos
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, Madrid, Spain
- Neurodegeneration Group, Department of Cellular, Molecular and Developmental Neurobiology, Instituto Cajal, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Fred Van Leuven
- Experimental Genetics Group-LEGTEGG, Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Alberto Rábano
- Department of Neuropathology and Tissue Bank, Unidad de Investigación Proyecto Alzheimer, Fundación CIEN, Instituto de Salud Carlos III, Madrid, Spain
| | - Masayuki Yamamoto
- Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, Aoba-ku, Sendai, Japan
| | - Ana I. Rojo
- Instituto de Investigaciones Biomédicas “Alberto Sols” UAM-CSIC, Instituto de Investigación Sanitaria La Paz (IdiPaz) and Department of Biochemistry, Faculty of Medicine, Autonomous University of Madrid, Madrid, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, Madrid, Spain
| | - Antonio Cuadrado
- Instituto de Investigaciones Biomédicas “Alberto Sols” UAM-CSIC, Instituto de Investigación Sanitaria La Paz (IdiPaz) and Department of Biochemistry, Faculty of Medicine, Autonomous University of Madrid, Madrid, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, Madrid, Spain
| |
Collapse
|
12
|
Potteti HR, Tamatam CR, Marreddy R, Reddy NM, Noel S, Rabb H, Reddy SP. Nrf2-AKT interactions regulate heme oxygenase 1 expression in kidney epithelia during hypoxia and hypoxia-reoxygenation. Am J Physiol Renal Physiol 2016; 311:F1025-F1034. [PMID: 27582105 DOI: 10.1152/ajprenal.00362.2016] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 08/29/2016] [Indexed: 02/06/2023] Open
Abstract
Ischemia-reperfusion (IR)-induced kidney injury is a major clinical problem, but its underlying mechanisms remain unclear. The transcription factor known as nuclear factor, erythroid 2-like 2 (NFE2L2 or Nrf2) is crucial for protection against oxidative stress generated by pro-oxidant insults. We have previously shown that Nrf2 deficiency enhances susceptibility to IR-induced kidney injury in mice and that its upregulation is protective. Here, we examined Nrf2 target antioxidant gene expression and the mechanisms of its activation in both human and murine kidney epithelia following acute (2 h) and chronic (12 h) hypoxia and reoxygenation conditions. We found that acute hypoxia modestly stimulates and chronic hypoxia strongly stimulates Nrf2 putative target HMOX1 expression, but not that of other antioxidant genes. Inhibition of AKT1/2 or ERK1/2 signaling blocked this induction; AKT1/2 but not ERK1/2 inhibition affected Nrf2 levels in basal and acute hypoxia-reoxygenation states. Unexpectedly, chromatin immunoprecipitation assays revealed reduced levels of Nrf2 binding at the distal AB1 and SX2 enhancers and proximal promoter of HMOX1 in acute hypoxia, accompanied by diminished levels of nuclear Nrf2. In contrast, Nrf2 binding at the AB1 and SX2 enhancers significantly but differentially increased during chronic hypoxia and reoxygenation, with reaccumulation of nuclear Nrf2 levels. Small interfering-RNA-mediated Nrf2 depletion attenuated acute and chronic hypoxia-inducible HMOX1 expression, and primary Nrf2-null kidney epithelia showed reduced levels of HMOX1 induction in response to both acute and chronic hypoxia. Collectively, our data demonstrate that Nrf2 upregulates HMOX1 expression in kidney epithelia through a distinct mechanism during acute and chronic hypoxia reoxygenation, and that both AKT1/2 and ERK1/2 signaling are required for this process.
Collapse
Affiliation(s)
- Haranatha R Potteti
- Department of Pediatrics, University of Illinois at Chicago, Chicago, Illinois; and
| | | | - Rakesh Marreddy
- Department of Pediatrics, University of Illinois at Chicago, Chicago, Illinois; and
| | - Narsa M Reddy
- Department of Pediatrics, University of Illinois at Chicago, Chicago, Illinois; and
| | - Sanjeev Noel
- Department of Medicine, Johns Hopkins University, Baltimore, Maryland
| | - Hamid Rabb
- Department of Medicine, Johns Hopkins University, Baltimore, Maryland
| | - Sekhar P Reddy
- Department of Pediatrics, University of Illinois at Chicago, Chicago, Illinois; and
| |
Collapse
|
13
|
Sobočanec S, Filić V, Matovina M, Majhen D, Šafranko ŽM, Hadžija MP, Krsnik Ž, Kurilj AG, Šarić A, Abramić M, Balog T. Prominent role of exopeptidase DPP III in estrogen-mediated protection against hyperoxia in vivo. Redox Biol 2016; 8:149-59. [PMID: 26774752 PMCID: PMC4732022 DOI: 10.1016/j.redox.2016.01.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2015] [Revised: 01/05/2016] [Accepted: 01/08/2016] [Indexed: 02/07/2023] Open
Abstract
A number of age-related diseases have a low incidence in females, which is attributed to a protective effect of sex hormones. For instance, the female sex hormone estrogen (E2) has a well established cytoprotective effect against oxidative stress, which strongly contributes to ageing. However, the mechanism by which E2 exerts its protective activity remains elusive. In this study we address the question whether the E2-induced protective effect against hyperoxia is mediated by the Nrf-2/Keap-1 signaling pathway. In particular, we investigate the E2-induced expression and cellular distribution of DPP III monozinc exopeptidase, a member of the Nrf-2/Keap-1 pathway, upon hyperoxia treatment. We find that DPP III accumulates in the nucleus in response to hyperoxia. Further, we show that combined induction of hyperoxia and E2 administration have an additive effect on the nuclear accumulation of DPP III. The level of nuclear accumulation of DPP III is comparable to nuclear accumulation of Nrf-2 in healthy female mice exposed to hyperoxia. In ovariectomized females exposed to hyperoxia, supplementation of E2 induced upregulation of DPP III, Ho-1, Sirt-1 and downregulation of Ppar-γ. While other cytoprotective mechanisms cannot be excluded, these findings demonstrate a prominent role of DPP III, along with Sirt-1, in the E2-mediated protection against hyperoxia. DPP III accumulates in the nucleus in response to hyperoxia. Additive effect of hyperoxia and E2 on nuclear accumulation of DPP III is observed. Protective effect of E2 is associated with increased DPP III, Ho-1 and Sirt-1.
Collapse
Affiliation(s)
- Sandra Sobočanec
- Division of Molecular Medicine, Ruđer Bošković Institute, Zagreb, Croatia.
| | - Vedrana Filić
- Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
| | - Mihaela Matovina
- Division of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Zagreb, Croatia
| | - Dragomira Majhen
- Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
| | | | | | - Željka Krsnik
- Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Andrea Gudan Kurilj
- Department of Veterinary Pathology, Faculty of Veterinary Medicine, University of Zagreb, Zagreb, Croatia
| | - Ana Šarić
- Division of Molecular Medicine, Ruđer Bošković Institute, Zagreb, Croatia
| | - Marija Abramić
- Division of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Zagreb, Croatia
| | - Tihomir Balog
- Division of Molecular Medicine, Ruđer Bošković Institute, Zagreb, Croatia
| |
Collapse
|
14
|
Nagato AC, Bezerra FS, Talvani A, Aarestrup BJ, Aarestrup FM. Hyperoxia promotes polarization of the immune response in ovalbumin-induced airway inflammation, leading to a TH17 cell phenotype. Immun Inflamm Dis 2015; 3:321-37. [PMID: 26417446 PMCID: PMC4578530 DOI: 10.1002/iid3.71] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Revised: 05/16/2015] [Accepted: 05/19/2015] [Indexed: 12/15/2022] Open
Abstract
Previous studies have demonstrated that hyperoxia-induced stress and oxidative damage to the lungs of mice lead to an increase in IL-6, TNF-α, and TGF-β expression. Together, IL-6 and TGF-β have been known to direct T cell differentiation toward the TH17 phenotype. In the current study, we tested the hypothesis that hyperoxia promotes the polarization of T cells to the TH17 cell phenotype in response to ovalbumin-induced acute airway inflammation. Airway inflammation was induced in female BALB/c mice by intraperitoneal sensitization and intranasal introduction of ovalbumin, followed by challenge methacholine. After the methacholine challenge, animals were exposed to hyperoxic conditions in an inhalation chamber for 24 h. The controls were subjected to normoxia or aluminum hydroxide dissolved in phosphate buffered saline. After 24 h of hyperoxia, the number of macrophages and lymphocytes decreased in animals with ovalbumin-induced airway inflammation, whereas the number of neutrophils increased after ovalbumin-induced airway inflammation. The results showed that expression of Nrf2, iNOS, T-bet and IL-17 increased after 24 of hyperoxia in both alveolar macrophages and in lung epithelial cells, compared with both animals that remained in room air, and animals with ovalbumin-induced airway inflammation. Hyperoxia alone without the induction of airway inflammation lead to increased levels of TNF-α and CCL5, whereas hyperoxia after inflammation lead to decreased CCL2 levels. Histological evidence of extravasation of inflammatory cells into the perivascular and peribronchial regions of the lungs was observed after pulmonary inflammation and hyperoxia. Hyperoxia promotes polarization of the immune response toward the TH17 phenotype, resulting in tissue damage associated with oxidative stress, and the migration of neutrophils to the lung and airways. Elucidating the effect of hyperoxia on ovalbumin-induced acute airway inflammation is relevant to preventing or treating asthmatic patients that require oxygen supplementation to reverse the hypoxemia.
Collapse
Affiliation(s)
- Akinori C Nagato
- Laboratory of Immunopathology and Experimental Pathology, Center for Reproductive Biology-CRB, Federal University of Juiz de Fora Juiz de Fora, Minas Gerais, Brazil
| | | | - André Talvani
- Laboratory of Immunobiology of Inflammation, Department of Biological Sciences (DECBI), Center of Research in Biological Sciences (NUPEB), Federal University of Ouro Preto (UFOP) Ouro Preto, Minas Gerais, Brazil
| | - Beatriz J Aarestrup
- Laboratory of Immunopathology and Experimental Pathology, Center for Reproductive Biology-CRB, Federal University of Juiz de Fora Juiz de Fora, Minas Gerais, Brazil
| | - Fernando M Aarestrup
- Laboratory of Immunopathology and Experimental Pathology, Center for Reproductive Biology-CRB, Federal University of Juiz de Fora Juiz de Fora, Minas Gerais, Brazil
| |
Collapse
|
15
|
Ginsenoside Rb1 Treatment Attenuates Pulmonary Inflammatory Cytokine Release and Tissue Injury following Intestinal Ischemia Reperfusion Injury in Mice. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2015:843721. [PMID: 26161243 PMCID: PMC4487341 DOI: 10.1155/2015/843721] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Revised: 12/22/2014] [Accepted: 12/27/2014] [Indexed: 12/19/2022]
Abstract
Objective. Intestinal ischemia reperfusion (II/R) injury plays a critical role in remote organ dysfunction, such as lung injury, which is associated with nuclear factor erythroid 2-related factor 2 (Nrf2)/heme oxygenase-1 (HO-1) signaling pathway. In the present study, we tested whether ginsenoside Rb1 attenuated II/R induced lung injury by Nrf2/HO-1 pathway. Methods. II/R injury was induced in male C57BL/6J mice by 45 min of superior mesenteric artery (SMA) occlusion followed by 2 hours of reperfusion. Ginsenoside Rb1 was administrated prior to reperfusion with or without ATRA (all-transretinoic acid, the inhibitor of Nrf2/ARE signaling pathway) administration before II/R. Results. II/R induced lung histological injury, which is accompanied with increased levels of malondialdehyde (MDA), interleukin- (IL-) 6, and tumor necrosis factor- (TNF-) α but decreased levels of superoxide dismutase (SOD) and IL-10 in the lung tissues. Ginsenoside Rb1 reduced lung histological injury and the levels of TNF-α and MDA, as well as wet/dry weight ratio. Interestingly, the increased Nrf2 and HO-1 expression induced by II/R in the lung tissues was promoted by ginsenoside Rb1 treatment. All these changes could be inhibited or prevented by ATRA. Conclusion. Ginsenoside Rb1 is capable of ameliorating II/R induced lung injuries by activating Nrf2/HO-1 pathway.
Collapse
|