1
|
Wu Y, Wu J, Huang X, Zhu X, Zhi W, Wang J, Sun D, Chen X, Zhu X, Zhang X. Accelerated osteogenesis of bone graft by optimizing the bone microenvironment formed by electrical signals dependent on driving micro vibration stimulation. Mater Today Bio 2023; 23:100891. [PMID: 38149016 PMCID: PMC10750112 DOI: 10.1016/j.mtbio.2023.100891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 11/20/2023] [Accepted: 11/28/2023] [Indexed: 12/28/2023] Open
Abstract
The strategy of coupling the micro-vibration mechanical field with Ca/P ceramics to optimize the osteogenic microenvironment and enhance the functional activity of the cells can significantly improve the bone regeneration of the graft. However, the regulation mode and mechanism of this coupling strategy are not fully understood at present. This study investigated the influence of different waveforms of the electrical signals driving Microvibration Stimulation (MVS) on this coupling effect. The results showed that there were notable variances in calcium phosphate dissolution and redeposition, protein adsorption, phosphorylation of ERK1/2 and FAK signal pathways and activation of calcium channels such as TRPV1/Piezo1/Piezo2 in osteogenic microenvironment under the coupling action of hydroxyapatite (HA) ceramics and MVS driven by different electrical signal waveforms. Ultimately, these differences affected the osteogenic differentiation process of cells by a way of time-sequential regulation. Square wave-MVS coupled with HA ceramic can significantly delay the high expression time of characteristic genes (such as Runx2, Col-I and OCN) in MC3T3-E1 cells during in vitro the early, middle and late stage of differentiation, while maintain the high proliferative activity of MC3T3-E1 cells. Triangle wave signal-MVS coupled with HA ceramic promoted the osteogenic differentiation of cells in the early and late stages. Sine wave-MVS shows the effect on the process of osteogenic differentiation in the middle stage (such as the up-regulation of ALP synthesis and Col-I gene expression in the early stage of stimulation). In addition, Square wave-MVS showed the best coupling effect. The bone graft constructed under square wave-MVS formed new bone tissue and mature blood vessels only 2 weeks after subcutaneous implantation in nude mice. Our study provides a new non-invasive regulation model for precisely optimizing the osteogenic microenvironment, which can accelerate bone regeneration in bone grafts more safely, accurately and reliably.
Collapse
Affiliation(s)
- Yuehao Wu
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, 610031, Sichuan, China
- Key Laboratory of Advanced Technologies of Materials Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Jinjie Wu
- Faculty of Health Sciences, University of Macau, Macau, China
| | - Xu Huang
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, 610031, Sichuan, China
- Key Laboratory of Advanced Technologies of Materials Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Xiupeng Zhu
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, 610031, Sichuan, China
- Key Laboratory of Advanced Technologies of Materials Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Wei Zhi
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, 610031, Sichuan, China
- Key Laboratory of Advanced Technologies of Materials Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Jianxin Wang
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, 610031, Sichuan, China
- Key Laboratory of Advanced Technologies of Materials Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Dong Sun
- Department of Orthopaedics, First Affiliated Hospital, Third Military Medical University (Army Medical University), Gaotanyan No.30, 400038, Chongqing, China
| | - Xuening Chen
- College of Biomedical Engineering Sichuan University Chengdu, 610064, China
| | - Xiangdong Zhu
- College of Biomedical Engineering Sichuan University Chengdu, 610064, China
| | - Xingdong Zhang
- College of Biomedical Engineering Sichuan University Chengdu, 610064, China
| |
Collapse
|
2
|
Shi H, Zhou K, Wang M, Wang N, Song Y, Xiong W, Guo S, Yi Z, Wang Q, Yang S. Integrating physicomechanical and biological strategies for BTE: biomaterials-induced osteogenic differentiation of MSCs. Theranostics 2023; 13:3245-3275. [PMID: 37351163 PMCID: PMC10283054 DOI: 10.7150/thno.84759] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 05/12/2023] [Indexed: 06/24/2023] Open
Abstract
Large bone defects are a major global health concern. Bone tissue engineering (BTE) is the most promising alternative to avoid the drawbacks of autograft and allograft bone. Nevertheless, how to precisely control stem cell osteogenic differentiation has been a long-standing puzzle. Compared with biochemical cues, physicomechanical stimuli have been widely studied for their biosafety and stability. The mechanical properties of various biomaterials (polymers, bioceramics, metal and alloys) become the main source of physicomechanical stimuli. By altering the stiffness, viscoelasticity, and topography of materials, mechanical stimuli with different strengths transmit into precise signals that mediate osteogenic differentiation. In addition, externally mechanical forces also play a critical role in promoting osteogenesis, such as compression stress, tensile stress, fluid shear stress and vibration, etc. When exposed to mechanical forces, mesenchymal stem cells (MSCs) differentiate into osteogenic lineages by sensing mechanical stimuli through mechanical sensors, including integrin and focal adhesions (FAs), cytoskeleton, primary cilium, ions channels, gap junction, and activating osteogenic-related mechanotransduction pathways, such as yes associated proteins (YAP)/TAZ, MAPK, Rho-GTPases, Wnt/β-catenin, TGFβ superfamily, Notch signaling. This review summarizes various biomaterials that transmit mechanical signals, physicomechanical stimuli that directly regulate MSCs differentiation, and the mechanical transduction mechanisms of MSCs. This review provides a deep and broad understanding of mechanical transduction mechanisms and discusses the challenges that remained in clinical translocation as well as the outlook for the future improvements.
Collapse
Affiliation(s)
- Huixin Shi
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang 110001, China
| | - Kaixuan Zhou
- Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, Shenyang 110001, China
| | - Mingfeng Wang
- Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, Shenyang 110001, China
| | - Ning Wang
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang 110001, China
| | - Yiping Song
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang 110001, China
| | - Wei Xiong
- Department of Plastic Surgery, The First Affiliated Hospital of Medical College of Shihezi University, Shihezi, Xinjiang 832008, China
| | - Shu Guo
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang 110001, China
| | - Zhe Yi
- Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, Shenyang 110001, China
| | - Qiang Wang
- Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, Shenyang 110001, China
| | - Shude Yang
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang 110001, China
- Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, Shenyang 110001, China
| |
Collapse
|
3
|
Teixeira CC, Abdullah F, Alikhani M, Alansari S, Sangsuwon C, Oliveira S, Nervina JM, Alikhani M. Dynamic loading stimulates mandibular condyle remodeling. J World Fed Orthod 2022; 11:146-155. [DOI: 10.1016/j.ejwf.2022.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/21/2022] [Accepted: 08/21/2022] [Indexed: 10/14/2022]
|
4
|
Miao Y, Chang YC, Tanna N, Almer N, Chung CH, Zou M, Zheng Z, Li C. Impact of Frontier Development of Alveolar Bone Grafting on Orthodontic Tooth Movement. Front Bioeng Biotechnol 2022; 10:869191. [PMID: 35845390 PMCID: PMC9280714 DOI: 10.3389/fbioe.2022.869191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 06/13/2022] [Indexed: 11/17/2022] Open
Abstract
Sufficient alveolar bone is a safeguard for achieving desired outcomes in orthodontic treatment. Moving a tooth into an alveolar bony defect may result in a periodontal defect or worse–tooth loss. Therefore, when facing a pathologic situation such as periodontal bone loss, alveolar clefts, long-term tooth loss, trauma, and thin phenotype, bone grafting is often necessary to augment bone for orthodontic treatment purposes. Currently, diverse bone grafts are used in clinical practice, but no single grafting material shows absolutely superior results over the others. All available materials demonstrate pros and cons, most notably donor morbidity and adverse effects on orthodontic treatment. Here, we review newly developed graft materials that are still in the pre-clinical stage, as well as new combinations of existing materials, by highlighting their effects on alveolar bone regeneration and orthodontic tooth movement. In addition, novel manufacturing techniques, such as bioprinting, will be discussed. This mini-review article will provide state-of-the-art information to assist clinicians in selecting grafting material(s) that enhance alveolar bone augmentation while avoiding unfavorable side effects during orthodontic treatment.
Collapse
Affiliation(s)
- Yilan Miao
- School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Yu-Cheng Chang
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Nipul Tanna
- Department of Orthodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Nicolette Almer
- Department of Orthodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Chun-Hsi Chung
- Department of Orthodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Min Zou
- Key Laboratory of Shannxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong University, Xi’an, China
- Clinical Research Center of Shannxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xi’an Jiaotong University, Xi’an, China
- Department of Orthodontics, College of Stomatology, Xi’an Jiaotong University, Xi’an, China
| | - Zhong Zheng
- David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
- School of Dentistry, University of California, Los Angeles, Los Angeles, CA, United States
- *Correspondence: Zhong Zheng, ; Chenshuang Li,
| | - Chenshuang Li
- Department of Orthodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, United States
- *Correspondence: Zhong Zheng, ; Chenshuang Li,
| |
Collapse
|
5
|
Lamin A/C-Dependent Translocation of Megakaryoblastic Leukemia-1 and β-Catenin in Cyclic Strain-Induced Osteogenesis. Cells 2021; 10:cells10123518. [PMID: 34944031 PMCID: PMC8700688 DOI: 10.3390/cells10123518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/08/2021] [Accepted: 12/10/2021] [Indexed: 11/17/2022] Open
Abstract
Lamins are intermediate filaments that play a crucial role in sensing mechanical strain in the nucleus of cells. β-catenin and megakaryoblastic leukemia-1 (MKL1) are critical signaling molecules that need to be translocated to the nucleus for their transcription in response to mechanical strain that induces osteogenesis. However, the exact molecular mechanism behind the translocation of these molecules has not been fully investigated. This study used 10% cyclic strain to induce osteogenesis in the murine osteoblast precursor cell line (MC3T3). The translocation of β-catenin and MKL1 was studied by performing knockdown and overexpression of lamin A/C (LMNA). Cyclic strain increased the expression of osteogenic markers such as alkaline phosphatase (ALP), runt-related transcription factor 2 (RUNX2), and enhanced ALP staining after seven days of incubation. Resultantly, MKL1 and β-catenin were translocated in the nucleus from the cytoplasm during the stress-induced osteogenic process. Knockdown of LMNA decreased the accumulation of MKL1 and β-catenin in the nucleus, whereas overexpression of LMNA increased the translocation of these molecules. In conclusion, our study indicates that both MKL1 and β-catenin molecules are dependent on the expression of LMNA during strain-induced osteogenesis.
Collapse
|
6
|
Hao Z, Xu Z, Wang X, Wang Y, Li H, Chen T, Hu Y, Chen R, Huang K, Chen C, Li J. Biophysical Stimuli as the Fourth Pillar of Bone Tissue Engineering. Front Cell Dev Biol 2021; 9:790050. [PMID: 34858997 PMCID: PMC8630705 DOI: 10.3389/fcell.2021.790050] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 10/26/2021] [Indexed: 01/12/2023] Open
Abstract
The repair of critical bone defects remains challenging worldwide. Three canonical pillars (biomaterial scaffolds, bioactive molecules, and stem cells) of bone tissue engineering have been widely used for bone regeneration in separate or combined strategies, but the delivery of bioactive molecules has several obvious drawbacks. Biophysical stimuli have great potential to become the fourth pillar of bone tissue engineering, which can be categorized into three groups depending on their physical properties: internal structural stimuli, external mechanical stimuli, and electromagnetic stimuli. In this review, distinctive biophysical stimuli coupled with their osteoinductive windows or parameters are initially presented to induce the osteogenesis of mesenchymal stem cells (MSCs). Then, osteoinductive mechanisms of biophysical transduction (a combination of mechanotransduction and electrocoupling) are reviewed to direct the osteogenic differentiation of MSCs. These mechanisms include biophysical sensing, transmission, and regulation. Furthermore, distinctive application strategies of biophysical stimuli are presented for bone tissue engineering, including predesigned biomaterials, tissue-engineered bone grafts, and postoperative biophysical stimuli loading strategies. Finally, ongoing challenges and future perspectives are discussed.
Collapse
Affiliation(s)
- Zhuowen Hao
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Zhenhua Xu
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xuan Wang
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yi Wang
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Hanke Li
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Tianhong Chen
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yingkun Hu
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Renxin Chen
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Kegang Huang
- Wuhan Institute of Proactive Health Management Science, Wuhan, China
| | - Chao Chen
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Orthopedics, Hefeng Central Hospital, Enshi, China
| | - Jingfeng Li
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
7
|
The Osteogenic Differentiation of Human Dental Pulp Stem Cells through G0/G1 Arrest and the p-ERK/Runx-2 Pathway by Sonic Vibration. Int J Mol Sci 2021; 22:ijms221810167. [PMID: 34576330 PMCID: PMC8471578 DOI: 10.3390/ijms221810167] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 09/16/2021] [Accepted: 09/16/2021] [Indexed: 02/06/2023] Open
Abstract
Mechanical/physical stimulations modulate tissue metabolism, and this process involves multiple cellular mechanisms, including the secretion of growth factors and the activation of mechano-physically sensitive kinases. Cells and tissue can be modulated through specific vibration-induced changes in cell activity, which depend on the vibration frequency and occur via differential gene expression. However, there are few reports about the effects of medium-magnitude (1.12 g) sonic vibration on the osteogenic differentiation of human dental pulp stem cells (HDPSCs). In this study, we investigated whether medium-magnitude (1.12 g) sonic vibration with a frequency of 30, 45, or 100 Hz could affect the osteogenic differentiation of HDPSCs. Their cell morphology changed to a cuboidal shape at 45 Hz and 100 Hz, but the cells in the other groups were elongated. FACS analysis showed decreased CD 73, CD 90, and CD 105 expression at 45 Hz and 100 Hz. Additionally, the proportions of cells in the G0/G1 phase in the control, 30 Hz, 45 Hz, and 100 Hz groups after vibration were 60.7%, 65.9%, 68.3%, and 66.7%, respectively. The mRNA levels of osteogenic-specific markers, including osteonectin, osteocalcin, BMP-2, ALP, and Runx-2, increased at 45 and 100 Hz, and the ALP and calcium content was elevated in the vibration groups compared with those in the control. Additionally, the western blotting results showed that p-ERK, BSP, osteoprotegerin, and osteonectin proteins were upregulated at 45 Hz compared with the other groups. The vibration groups showed higher ALP and calcium content than the control. Vibration, especially at 100 Hz, increased the number of calcified nodes relative to the control group, as evidenced by von Kossa staining. Immunohistochemical staining demonstrated that type I and III collagen, osteonectin, and osteopontin were upregulated at 45 Hz and 100 Hz. These results suggest that medium magnitude vibration at 45 Hz induces the G0/G1 arrest of HDPSCs through the p-ERK/Runx-2 pathway and can serve as a potent stimulator of differentiation and extracellular matrix production.
Collapse
|
8
|
Possible Mechanisms for the Effects of Sound Vibration on Human Health. Healthcare (Basel) 2021; 9:healthcare9050597. [PMID: 34069792 PMCID: PMC8157227 DOI: 10.3390/healthcare9050597] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/05/2021] [Accepted: 05/10/2021] [Indexed: 12/17/2022] Open
Abstract
This paper presents a narrative review of research literature to “map the landscape” of the mechanisms of the effect of sound vibration on humans including the physiological, neurological, and biochemical. It begins by narrowing music to sound and sound to vibration. The focus is on low frequency sound (up to 250 Hz) including infrasound (1–16 Hz). Types of application are described and include whole body vibration, vibroacoustics, and focal applications of vibration. Literature on mechanisms of response to vibration is categorized into hemodynamic, neurological, and musculoskeletal. Basic mechanisms of hemodynamic effects including stimulation of endothelial cells and vibropercussion; of neurological effects including protein kinases activation, nerve stimulation with a specific look at vibratory analgesia, and oscillatory coherence; of musculoskeletal effects including muscle stretch reflex, bone cell progenitor fate, vibration effects on bone ossification and resorption, and anabolic effects on spine and intervertebral discs. In every category research on clinical applications are described. The conclusion points to the complexity of the field of vibrational medicine and calls for specific comparative research on type of vibration delivery, amount of body or surface being stimulated, effect of specific frequencies and intensities to specific mechanisms, and to greater interdisciplinary cooperation and focus.
Collapse
|
9
|
Cao S, Wang Z, Li C, Wang Q. The effect of whole-body vibration exercise on postmenopausal women with osteoporosis: A protocol for systematic review and meta-analysis. Medicine (Baltimore) 2021; 100:e25606. [PMID: 33950937 PMCID: PMC8104211 DOI: 10.1097/md.0000000000025606] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 04/04/2021] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Osteoporosis (OP) is an age-related disease characterized by reduced bone mass and increased bone fragility. It is more common in older people and postmenopausal women. As a new type of exercise training for OP, whole-body vibration (WBV) exercise has been proved to have a good effect on postmenopausal women with OP. It can increase bone density and improve strength and balance in postmenopausal population, which has certain clinical value, but lacks evidence-based medicine evidence. This study aims to systematically study the effectiveness of WBV exercise on postmenopausal women with OP. METHODS The English databases (PubMed, Embase, Web of Science, The Cochrane Library) and Chinese databases (China National Knowledge Network, Wanfang, Weipu, China Biomedical Database) were searched by computer. From the establishment of the database to February 2021, the randomized controlled clinical studies on WBV exercise on postmenopausal women with OP were conducted. The quality of the included studies was independently extracted by 2 researchers and literature quality was evaluated. Meta-analysis of the included studies was performed using RevMan5.3 software. RESULTS In this study, the efficacy and safety of WBV exercise on postmenopausal women with OP were evaluated by lumbar spine bone density, femoral neck bone density, pain, incidence of falls, incidence of fractures, and quality of life scale score, etc. CONCLUSION This study will provide reliable evidences for the clinical application of WBV exercise on postmenopausal women with OP. ETHICS AND DISSEMINATION Private information from individuals will not be published. This systematic review also does not involve endangering participant rights. Ethical approval will not be required. The results may be published in a peer-reviewed journal or disseminated at relevant conferences. OSF REGISTRATION NUMBER DOI 10.17605/OSF.IO/WPYT9.
Collapse
Affiliation(s)
- Shengqin Cao
- The Fourth People's Hospital of Jinan City, Jinan
| | | | - Chongyang Li
- Binzhou Medical University, Binzhou, Shandong Province, China
| | - Qiaoli Wang
- The Fourth People's Hospital of Jinan City, Jinan
| |
Collapse
|
10
|
Yong KW, Choi JR, Choi JY, Cowie AC. Recent Advances in Mechanically Loaded Human Mesenchymal Stem Cells for Bone Tissue Engineering. Int J Mol Sci 2020; 21:E5816. [PMID: 32823645 PMCID: PMC7461207 DOI: 10.3390/ijms21165816] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 08/06/2020] [Accepted: 08/12/2020] [Indexed: 12/14/2022] Open
Abstract
Large bone defects are a major health concern worldwide. The conventional bone repair techniques (e.g., bone-grafting and Masquelet techniques) have numerous drawbacks, which negatively impact their therapeutic outcomes. Therefore, there is a demand to develop an alternative bone repair approach that can address the existing drawbacks. Bone tissue engineering involving the utilization of human mesenchymal stem cells (hMSCs) has recently emerged as a key strategy for the regeneration of damaged bone tissues. However, the use of tissue-engineered bone graft for the clinical treatment of bone defects remains challenging. While the role of mechanical loading in creating a bone graft has been well explored, the effects of mechanical loading factors (e.g., loading types and regime) on clinical outcomes are poorly understood. This review summarizes the effects of mechanical loading on hMSCs for bone tissue engineering applications. First, we discuss the key assays for assessing the quality of tissue-engineered bone grafts, including specific staining, as well as gene and protein expression of osteogenic markers. Recent studies of the impact of mechanical loading on hMSCs, including compression, perfusion, vibration and stretching, along with the potential mechanotransduction signalling pathways, are subsequently reviewed. Lastly, we discuss the challenges and prospects of bone tissue engineering applications.
Collapse
Affiliation(s)
- Kar Wey Yong
- Department of Surgery, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Jane Ru Choi
- Department of Mechanical Engineering, University of British Columbia, 2054-6250 Applied Science Lane, Vancouver, BC V6T 1Z4, Canada
- Centre for Blood Research, Life Sciences Centre, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
| | - Jean Yu Choi
- Ninewells Hospital & Medical School, Dundee, Scotland DD1 5EH, UK; (J.Y.C.); (A.C.C.)
| | - Alistair C. Cowie
- Ninewells Hospital & Medical School, Dundee, Scotland DD1 5EH, UK; (J.Y.C.); (A.C.C.)
| |
Collapse
|
11
|
Hou W, Zhang D, Feng X, Zhou Y. Low magnitude high frequency vibration promotes chondrogenic differentiation of bone marrow stem cells with involvement of β-catenin signaling pathway. Arch Oral Biol 2020; 118:104860. [PMID: 32791354 DOI: 10.1016/j.archoralbio.2020.104860] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 07/22/2020] [Accepted: 07/24/2020] [Indexed: 01/10/2023]
Abstract
OBJECTIVE Mesenchymal stem cells (MSCs) are well known to have the capability to form bone and cartilage, and chondrogenesis derived from MSCs is reported to be affected by mechanical stimuli. This research aimed to study the effects of low magnitude high frequency (LMHF) vibration on the chondrogenic differentiation of bone marrow-derived MSCs (BMSCs) which were cultured with chondrogenic medium, and to investigate the role of β-catenin cascade in this process. METHODS Rat bone marrow-derived MSCs (BMSCs) were isolated and randomized into vibration and static cultures. The effect of vibration on BMSCs proliferation, differentiation and chondrogenic potential was assessed at the protein level. RESULTS LMHFV did not affect the proliferation of BMSCs. However, this was accompanied by increased markers of chondrogenesis. The protein expression of chondrocyte-specific markers of Aggrecan, Sox9, and BMP7 were upregulated and Collagen X was decreased by LMHF vibration introduced at the chondrogenic differentiation in vitro. Specifically, thicker blue-stained particles were observed in Alcian Blue staining and the level of glycosaminoglycan were significantly increased respectively in the vibration culture group by 56.5 % and 93.6 % on the 7th and 14th day. The expression and nuclear translocation of β-catenin were activated in a significant manner. And inhibition of GSK-3β activity with Licl rearranged and intensified the cytoskeleton affected by vibration stimulation. CONCLUSIONS Our data demonstrated that LMHF mechanical vibration promotes BMSCs chondrogenic differentiation and implies β-catenin signal acts as an essential mediator in the mechano-biochemical transduction and subsequent transcriptional regulation in the process of chondrogenesis.
Collapse
Affiliation(s)
- Weiwei Hou
- The Affiliated Stomatology Hospital, Zhejiang University School of Medicine, China; Key Laboratory of Oral Biomedical Research of Zhejiang Province, China.
| | - Denghui Zhang
- The Affiliated Stomatology Hospital, Zhejiang University School of Medicine, China; Key Laboratory of Oral Biomedical Research of Zhejiang Province, China.
| | - Xiaoxia Feng
- The Affiliated Stomatology Hospital, Zhejiang University School of Medicine, China; Key Laboratory of Oral Biomedical Research of Zhejiang Province, China.
| | - Yi Zhou
- The Affiliated Stomatology Hospital, Zhejiang University School of Medicine, China; Key Laboratory of Oral Biomedical Research of Zhejiang Province, China.
| |
Collapse
|
12
|
Yu X, Zeng Y, Bao M, Wen J, Zhu G, Cao C, He X, Li L. Low‐magnitude vibration induces osteogenic differentiation of bone marrow mesenchymal stem cells via miR‐378a‐3p/Grb2 pathway to promote bone formation in a rat model of age‐related bone loss. FASEB J 2020; 34:11754-11771. [PMID: 32652777 DOI: 10.1096/fj.201902830rrr] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Revised: 06/15/2020] [Accepted: 06/19/2020] [Indexed: 12/15/2022]
Affiliation(s)
- Xiaoqin Yu
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences and Forensic Medicine Sichuan University Chengdu China
| | - Ye Zeng
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences and Forensic Medicine Sichuan University Chengdu China
| | - Mingyue Bao
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences and Forensic Medicine Sichuan University Chengdu China
| | - Jirui Wen
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences and Forensic Medicine Sichuan University Chengdu China
| | - Guangguang Zhu
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences and Forensic Medicine Sichuan University Chengdu China
| | - Chengjian Cao
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences and Forensic Medicine Sichuan University Chengdu China
| | - Xueling He
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences and Forensic Medicine Sichuan University Chengdu China
- Laboratory Animal Center Sichuan University Chengdu China
| | - Liang Li
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences and Forensic Medicine Sichuan University Chengdu China
| |
Collapse
|
13
|
Baskan O, Karadas O, Mese G, Ozcivici E. Applicability of Low-intensity Vibrations as a Regulatory Factor on Stem and Progenitor Cell Populations. Curr Stem Cell Res Ther 2019; 15:391-399. [PMID: 31830894 DOI: 10.2174/1574888x14666191212155647] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 09/26/2019] [Accepted: 11/01/2019] [Indexed: 02/07/2023]
Abstract
Persistent and transient mechanical loads can act as biological signals on all levels of an organism. It is therefore not surprising that most cell types can sense and respond to mechanical loads, similar to their interaction with biochemical and electrical signals. The presence or absence of mechanical forces can be an important determinant of form, function and health of many tissue types. Along with naturally occurring mechanical loads, it is possible to manipulate and apply external physical loads on tissues in biomedical sciences, either for prevention or treatment of catabolism related to many factors, including aging, paralysis, sedentary lifestyles and spaceflight. Mechanical loads consist of many components in their applied signal form such as magnitude, frequency, duration and intervals. Even though high magnitude mechanical loads with low frequencies (e.g. running or weight lifting) induce anabolism in musculoskeletal tissues, their applicability as anabolic agents is limited because of the required compliance and physical health of the target population. On the other hand, it is possible to use low magnitude and high frequency (e.g. in a vibratory form) mechanical loads for anabolism as well. Cells, including stem cells of the musculoskeletal tissue, are sensitive to high frequency, lowintensity mechanical signals. This sensitivity can be utilized not only for the targeted treatment of tissues, but also for stem cell expansion, differentiation and biomaterial interaction in tissue engineering applications. In this review, we reported recent advances in the application of low-intensity vibrations on stem and progenitor cell populations. Modulation of cellular behavior with low-intensity vibrations as an alternative or complementary factor to biochemical and scaffold induced signals may represent an increase of capabilities in studies related to tissue engineering.
Collapse
Affiliation(s)
- Oznur Baskan
- Department of Bioengineering, Izmir Institute of Technology, Urla, Izmir, Turkey
| | - Ozge Karadas
- Department of Bioengineering, Izmir Institute of Technology, Urla, Izmir, Turkey
| | - Gulistan Mese
- Department of Molecular Biology and Genetics, Izmir Institute of Technology, Urla, Izmir, Turkey
| | - Engin Ozcivici
- Department of Bioengineering, Izmir Institute of Technology, Urla, Izmir, Turkey
| |
Collapse
|
14
|
Liu Y, Huang X, Yu H, Yang J, Li Y, Yuan X, Guo Q. HIF-1α-TWIST pathway restrains cyclic mechanical stretch-induced osteogenic differentiation of bone marrow mesenchymal stem cells. Connect Tissue Res 2019; 60:544-554. [PMID: 30938209 DOI: 10.1080/03008207.2019.1601185] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Aim: Mechanical strain plays a crucial role in bone formation and remodeling. Hypoxia-inducible factor (HIF)-1α and TWIST are upstream of master regulators of osteogenesis, including runt-related transcription factor 2 (RUNX2) and bone morphogenetic proteins (BMPs). This study investigated the effect of the HIF-1α-TWIST pathway on cyclic mechanical stretch-induced osteogenic differentiation of rat bone marrow mesenchymal stem cells (BMSCs) and the underlying mechanism. Materials and Methods: BMSCs were isolated from bone marrow derived from the femurs and humeri of Sprague-Dawley rats. Osteogenic differentiation of BMSCs was induced by applying cyclic mechanical stretch using the Flexcell Tension System. HIF-1α and TWIST were knocked down using recombinant lentiviral vectors. Osteogenic differentiation was evaluated by real-time qPCR, western blotting, and the alkaline phosphatase (ALP) activity assay. Results: Cyclic mechanical stretch increased ALP activity and expression of HIF-1α and TWIST in BMSCs. Knockdown of HIF-1α decreased TWIST expression in stretched BMSCs. Moreover, knockdown of HIF-1α or TWIST enhanced cyclic mechanical stretch-induced osteogenic differentiation of BMSCs. In addition, knockdown of TWIST increased expression of RUNX2 and BMP2 in stretched BMSCs. Conclusions: The HIF-1α-TWIST signaling pathway inhibits cyclic mechanical stretch-induced osteogenic differentiation of BMSCs. This finding may facilitate cell and tissue engineering for clinical applications.
Collapse
Affiliation(s)
- Ying Liu
- Department of Orthodontics, The Affiliated Hospital of Qingdao University , Qingdao , Shandong , China.,Department of Orthodontics, Stomatology College of Qingdao University , Qingdao , Shandong , China.,Department of Stomatology, The Affiliated Qingdao Municipal Hospital, Qingdao University , Qingdao , Shandong , China
| | - Xia Huang
- Department of Nursing and Hospital Infection Management, The Affiliated Hospital of Qingdao University , Qingdao , China
| | - Haibo Yu
- Department of Orthodontics, The Affiliated Hospital of Qingdao University , Qingdao , Shandong , China
| | - Jing Yang
- Department of Orthodontics, The Affiliated Hospital of Qingdao University , Qingdao , Shandong , China
| | - Yazhen Li
- Department of Orthodontics, The Affiliated Hospital of Qingdao University , Qingdao , Shandong , China
| | - Xiao Yuan
- Department of Orthodontics, The Affiliated Hospital of Qingdao University , Qingdao , Shandong , China
| | - Qingyuan Guo
- Department of Stomatology, The Affiliated Qingdao Municipal Hospital, Qingdao University , Qingdao , Shandong , China.,Department of Stomatology, Chinese PLA General Hospital , Beijing , China
| |
Collapse
|
15
|
Safavi AS, Rouhi G, Haghighipour N, Bagheri F, Eslaminejad MB, Sayahpour FA. Efficacy of mechanical vibration in regulating mesenchymal stem cells gene expression. In Vitro Cell Dev Biol Anim 2019; 55:387-394. [PMID: 30993556 DOI: 10.1007/s11626-019-00340-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Accepted: 03/04/2019] [Indexed: 02/06/2023]
Abstract
This study aimed at investigating the expression of osteoblast and chondrocyte-related genes in mesenchymal stem cells (MSCs), derived from rabbit adipose tissue, under mechanical vibration. The cells were placed securely on a vibrator's platform and subjected to 300 Hz of sinusoidal vibration, with a maximum amplitude of 10 μm, for 45 min per day, and for 14 consequent days, in the absence of biochemical reagents. The negative control group was placed in the conventional culture medium with no mechanical loading. The expression of osteoblast and chondrocyte-related genes was investigated using real-time polymerase chain reaction (real-time PCR). In addition, F-actin fiber structure and alignment with the help of actin filament fluorescence staining were evaluated, and the level of metabolic activity of MSCs was determined by the methyl thiazolyl tetrazolium assay. The real-time PCR study showed a significant increase of bone gene expression in differentiated cells, compared with MSCs (P < 0.05). On the other hand, the level of chondrocyte gene expression was not remarkable. Applying mechanical vibration enhanced F-actin fiber structure and made them aligned in a specific direction. It was also found that during the differentiation process, the metabolic activity of the cells increased (P < 0.05). The results of this work are in agreement with the well-accepted fact that the MSCs, in the absence of growth factors, are sensitive to low-amplitude, high-frequency vibration. Outcomes of this work can be applied in cell therapy and tissue engineering, when regulation of stem cells is required.
Collapse
Affiliation(s)
- Atiyeh Sadat Safavi
- Faculty of Biomedical Engineering, Amirkabir University of Technology, P. O. Box 1591634311, Tehran, Iran
| | - Gholamreza Rouhi
- Faculty of Biomedical Engineering, Amirkabir University of Technology, P. O. Box 1591634311, Tehran, Iran.
| | | | - Fatemeh Bagheri
- Biotechnology Group, Department of Chemical Engineering, Tarbiat Modares University, Tehran, Iran
| | - Mohamadreza Baghaban Eslaminejad
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Frough Azam Sayahpour
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| |
Collapse
|
16
|
Marędziak M, Lewandowski D, Tomaszewski KA, Kubiak K, Marycz K. The Effect of Low-Magnitude Low-Frequency Vibrations (LMLF) on Osteogenic Differentiation Potential of Human Adipose Derived Mesenchymal Stem Cells. Cell Mol Bioeng 2017; 10:549-562. [PMID: 29151982 PMCID: PMC5662672 DOI: 10.1007/s12195-017-0501-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 07/31/2017] [Indexed: 12/27/2022] Open
Abstract
Introduction In the current study, we investigated the effect of low magnitude, low frequency (LMLF) mechanical vibrations on the osteogenic differentiation potential of human adipose derived mesenchymal stem cells (hASC), taken from elderly patients. Methods During 21 days in osteogenic culture medium, cells were periodically exposed to three different frequencies (25, 35 and 45 Hz) of continuous sinusoidal oscillation, using a vibration generator. We measured cell proliferation, cell morphology, calcium and phosphorus deposition using Almar Blue assay, fluorescence microscopy, scanning electron microscopy, and a EDX detector, respectively. Osteogenic differentiation was measured by assessing protein and mRNA levels. Osteogenesis was confirmed by detection of specific markers with alkaline phosphatase and enzyme-linked immunosorbent assays for: bone morphogenetic protein 2 (BMP-2), osteocalcin (OCL) and osteopontin (OPN). Results We found that 25 Hz vibrations had the greatest impact on hASC morphology, ultrastructure, and proliferation. We observed the formation of osteocyte- and hydroxyapatite-like structures, an increased quantity of calcium and phosphorus deposits, and increased differentiation in the stimulated groups. Conclusions Our findings suggest that LMLF vibrations could be used to enhance cell-based therapies for treatment of bone deficits, particularly in elderly patients, where the need is greatest.
Collapse
Affiliation(s)
- Monika Marędziak
- Faculty of Veterinary Medicine, University of Environmental and Life Sciences, Norwida 31 St, 50-375 Wrocław, Poland
| | - Daniel Lewandowski
- Institute of Material Science and Applied Mechanics, University of Technology, Smoluchowskiego 25 St, 50-370 Wroclaw, Poland
| | - Krzysztof A. Tomaszewski
- Department of Anatomy, Jagiellonian University Medical College, Kopernika 12 St, 31-034 Kraków, Poland
| | - Krzysztof Kubiak
- Faculty of Veterinary Medicine, University of Environmental and Life Sciences, Norwida 31 St, 50-375 Wrocław, Poland
| | - Krzsztof Marycz
- Department of Experimental Biology, University of Environmental and Life Sciences, ul. Norwida 27B, 50-375 Wrocław, Poland
- Wrocławskie Centrum Badan EIT+, Stablowicka 147 St, 54-066 Wroclaw, Poland
| |
Collapse
|
17
|
He S, Zhao W, Zhang L, Mi L, Du G, Sun C, Sun X. Low-frequency vibration treatment of bone marrow stromal cells induces bone repair in vivo. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2017; 20:23-28. [PMID: 28133520 PMCID: PMC5243970 DOI: 10.22038/ijbms.2017.8088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Objective(s): To study the effect of low-frequency vibration on bone marrow stromal cell differentiation and potential bone repair in vivo. Materials and Methods: Forty New Zealand rabbits were randomly divided into five groups with eight rabbits in each group. For each group, bone defects were generated in the left humerus of four rabbits, and in the right humerus of the other four rabbits. To test differentiation, bones were isolated and demineralized, supplemented with bone marrow stromal cells, and implanted into humerus bone defects. Varying frequencies of vibration (0, 12.5, 25, 50, and 100 Hz) were applied to each group for 30 min each day for four weeks. When the bone defects integrated, they were then removed for histological examination. mRNA transcript levels of runt-related transcription factor 2, osteoprotegerin, receptor activator of nuclear factor κ-B ligan, and pre-collagen type 1 α were measured. Results: Humeri implanted with bone marrow stromal cells displayed elevated callus levels and wider, more prevalent, and denser trabeculae following treatment at 25 and 50 Hz. The mRNA levels of runt-related transcription factor 2, osteoprotegerin, receptor activator of nuclear factor κ-B ligand, and pre-collagen type 1 α were also markedly higher following 25 and 50 Hz treatment. Conclusion: Low frequency (25–50 Hz) vibration in vivo can promote bone marrow stromal cell differentiation and repair bone injury.
Collapse
Affiliation(s)
- Shengwei He
- Department of Orthopedics, Second Affiliated Hospital, Dalian Medical University, Dalian, Liaoning Province, 116031, P. R. China
| | - Wenzhi Zhao
- Department of Orthopedics, Second Affiliated Hospital, Dalian Medical University, Dalian, Liaoning Province, 116031, P. R. China
| | - Lu Zhang
- Department of Orthopedics, Second Affiliated Hospital, Dalian Medical University, Dalian, Liaoning Province, 116031, P. R. China
| | - Lidong Mi
- Department of Orthopedics, Second Affiliated Hospital, Dalian Medical University, Dalian, Liaoning Province, 116031, P. R. China
| | - Guangyu Du
- Department of Orthopedics, Second Affiliated Hospital, Dalian Medical University, Dalian, Liaoning Province, 116031, P. R. China
| | - Chuanxiu Sun
- Department of Orthopedics, Second Affiliated Hospital, Dalian Medical University, Dalian, Liaoning Province, 116031, P. R. China
| | - Xuegang Sun
- Department of Orthopedics, Second Affiliated Hospital, Dalian Medical University, Dalian, Liaoning Province, 116031, P. R. China
| |
Collapse
|
18
|
Chen B, Lin T, Yang X, Li Y, Xie D, Zheng W, Cui H, Deng W, Tan X. Low-magnitude, high-frequency vibration promotes the adhesion and the osteogenic differentiation of bone marrow-derived mesenchymal stem cells cultured on a hydroxyapatite-coated surface: The direct role of Wnt/β-catenin signaling pathway activation. Int J Mol Med 2016; 38:1531-1540. [PMID: 28026000 DOI: 10.3892/ijmm.2016.2757] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2015] [Accepted: 09/07/2016] [Indexed: 11/05/2022] Open
Abstract
The positive effect of low-magnitude, high‑frequency (LMHF) vibration on implant osseointegration has been demonstrated; however, the underlying cellular and molecular mechanisms remain unknown. The aim of this study was to explore the effect of LMHF vibration on the adhesion and the osteogenic differentiation of bone marrow-derived mesenchymal stem cells (BMSCs) cultured on hydroxyapatite (HA)-coated surfaces in an in vitro model as well as to elucidate the molecular mechanism responsible for the effects of LMHF vibration on osteogenesis. LMHF vibration resulted in the increased expression of fibronectin, which was measured by immunostaining and RT-qPCR. Stimulation of BMSCs by LMHF vibration resulted in the rearrangement of the actin cytoskeleton with more prominent F-actin. Moreover, the expression of β1 integrin, vinculin and paxillin was notably increased following LMHF stimulation. Scanning electron microscope observations revealed that there were higher cell numbers and more extracellular matrix attached to the HA-coated surface in the LMHF group. Alkaline phosphatase activity as well as the expression of osteogenic-specific genes, namely Runx2, osterix, collagen I and osteocalcin, were significantly elevated in the LMHF group. In addition, the protein expression of Wnt10B, β-catenin, Runx2 and osterix was increased following exposure to LMHF vibration. Taken together, the findings of this study indicate that LMHF vibration promotes the adhesion and the osteogenic differentiation of BMSCs on HA-coated surfaces in vitro, and LMHF vibration may directly induce osteogenesis by activating the Wnt/β‑catenin signaling pathway. These data suggest that LMHF vibration enhances the osseointegration of bone to a HA-coated implant, and provide a scientific foundation for improving bone-implant osseointegration through the application of LMHF vibration.
Collapse
Affiliation(s)
- Bailing Chen
- Department of Spine Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Tao Lin
- Department of Spine Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Xiaoxi Yang
- Department of Spine Surgery, Chinese PLA General Hospital (301 Hospital), Beijing 100853, P.R. China
| | - Yiqiang Li
- Department of Orthopedics, Guangzhou Women and Children's Medical Center, Guangzhou, Guangdong 510623, P.R. China
| | - Denghui Xie
- Department of Spine Surgery, The Third Affiliated Hospital of Southern Medical University (Academy of Orthopedics), Guangzhou, Guangdong 510630, P.R. China
| | - Wenhui Zheng
- Department of Physiology, Zhongshan School of Medicine of Sun Yat-sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Haowen Cui
- Department of Spine Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Weimin Deng
- Department of Rehabilitation, General Hospital of Guangzhou Military Command of PLA, Guangzhou, Guangdong 510000, P.R. China
| | - Xin Tan
- Department of Rehabilitation, General Hospital of Guangzhou Military Command of PLA, Guangzhou, Guangdong 510000, P.R. China
| |
Collapse
|
19
|
Marycz K, Lewandowski D, Tomaszewski KA, Henry BM, Golec EB, Marędziak M. Low-frequency, low-magnitude vibrations (LFLM) enhances chondrogenic differentiation potential of human adipose derived mesenchymal stromal stem cells (hASCs). PeerJ 2016; 4:e1637. [PMID: 26966645 PMCID: PMC4782709 DOI: 10.7717/peerj.1637] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 01/07/2016] [Indexed: 12/11/2022] Open
Abstract
The aim of this study was to evaluate if low-frequency, low-magnitude vibrations (LFLM) could enhance chondrogenic differentiation potential of human adipose derived mesenchymal stem cells (hASCs) with simultaneous inhibition of their adipogenic properties for biomedical purposes. We developed a prototype device that induces low-magnitude (0.3 g) low-frequency vibrations with the following frequencies: 25, 35 and 45 Hz. Afterwards, we used human adipose derived mesenchymal stem cell (hASCS), to investigate their cellular response to the mechanical signals. We have also evaluated hASCs morphological and proliferative activity changes in response to each frequency. Induction of chondrogenesis in hASCs, under the influence of a 35 Hz signal leads to most effective and stable cartilaginous tissue formation through highest secretion of Bone Morphogenetic Protein 2 (BMP-2), and Collagen type II, with low concentration of Collagen type I. These results correlated well with appropriate gene expression level. Simultaneously, we observed significant up-regulation of α3, α4, β1 and β3 integrins in chondroblast progenitor cells treated with 35 Hz vibrations, as well as Sox-9. Interestingly, we noticed that application of 35 Hz frequencies significantly inhibited adipogenesis of hASCs. The obtained results suggest that application of LFLM vibrations together with stem cell therapy might be a promising tool in cartilage regeneration.
Collapse
Affiliation(s)
- Krzysztof Marycz
- Faculty of Biology, University of Environmental and Life Sciences, Wroclaw, Poland; Wroclaw Research Centre EIT +, Wroclaw, Poland
| | - Daniel Lewandowski
- Department of Mechanics, Materials Science and Engineering, Wrocław University of Technology , Wrocław , Poland
| | - Krzysztof A Tomaszewski
- Department of Anatomy, Jagiellonian University Medical College, Krakow, Poland; Department of Orthopaedics and Trauma Surgery, 5th Military Clinical Hospital and Polyclinic, Krakow, Poland
| | - Brandon M Henry
- Department of Anatomy, Jagiellonian University Medical College , Krakow , Poland
| | - Edward B Golec
- Department of Orthopaedics and Trauma Surgery, 5th Military Clinical Hospital and Polyclinic, Krakow, Poland; Faculty of Motor Rehabilitation, Bronislaw Czech University School of Physical Education, Krakow, Poland
| | - Monika Marędziak
- Faculty of Veterinary Medicine, Department of Animal Physiology and Biostructure, University of Environmental and Life Sciences , Wroclaw , Poland
| |
Collapse
|
20
|
Sapir-Lekhovitser Y, Rotenberg MY, Jopp J, Friedman G, Polyak B, Cohen S. Magnetically actuated tissue engineered scaffold: insights into mechanism of physical stimulation. NANOSCALE 2016; 8:3386-3399. [PMID: 26790538 PMCID: PMC4772769 DOI: 10.1039/c5nr05500h] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Providing the right stimulatory conditions resulting in efficient tissue promoting microenvironment in vitro and in vivo is one of the ultimate goals in tissue development for regenerative medicine. It has been shown that in addition to molecular signals (e.g. growth factors) physical cues are also required for generation of functional cell constructs. These cues are particularly relevant to engineering of biological tissues, within which mechanical stress activates mechano-sensitive receptors, initiating biochemical pathways which lead to the production of functionally mature tissue. Uniform magnetic fields coupled with magnetizable nanoparticles embedded within three dimensional (3D) scaffold structures remotely create transient physical forces that can be transferrable to cells present in close proximity to the nanoparticles. This study investigated the hypothesis that magnetically responsive alginate scaffold can undergo reversible shape deformation due to alignment of scaffold's walls in a uniform magnetic field. Using custom made Helmholtz coil setup adapted to an Atomic Force Microscope we monitored changes in matrix dimensions in situ as a function of applied magnetic field, concentration of magnetic particles within the scaffold wall structure and rigidity of the matrix. Our results show that magnetically responsive scaffolds exposed to an externally applied time-varying uniform magnetic field undergo a reversible shape deformation. This indicates on possibility of generating bending/stretching forces that may exert a mechanical effect on cells due to alternating pattern of scaffold wall alignment and relaxation. We suggest that the matrix structure deformation is produced by immobilized magnetic nanoparticles within the matrix walls resulting in a collective alignment of scaffold walls upon magnetization. The estimated mechanical force that can be imparted on cells grown on the scaffold wall at experimental conditions is in the order of 1 pN, which correlates well with reported threshold to induce mechanotransduction effects on cellular level. This work is our next step in understanding of how to accurately create proper stimulatory microenvironment for promotion of cellular organization to form mature tissue engineered constructs.
Collapse
Affiliation(s)
- Yulia Sapir-Lekhovitser
- The Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Menahem Y. Rotenberg
- The Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Juergen Jopp
- Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Gary Friedman
- Department of Surgery, Drexel University College of Medicine, Philadelphia PA 19102, USA
- Department of Electrical and Computer Engineering, Drexel University, Philadelphia, PA 19104, USA
| | - Boris Polyak
- Department of Surgery, Drexel University College of Medicine, Philadelphia PA 19102, USA
- Department of Pharmacology and Physiology, Drexel University, Philadelphia, PA 19102, USA
| | - Smadar Cohen
- The Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
- Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
- Center for Regenerative Medicine and Stem Cell (RMSC) Research, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| |
Collapse
|
21
|
McHenry CL, Wu J, Shields RK. Potential regenerative rehabilitation technology: implications of mechanical stimuli to tissue health. BMC Res Notes 2014; 7:334. [PMID: 24894666 PMCID: PMC4055276 DOI: 10.1186/1756-0500-7-334] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Accepted: 05/21/2014] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND Mechanical loads induced through muscle contraction, vibration, or compressive forces are thought to modulate tissue plasticity. With the emergence of regenerative medicine, there is a need to understand the optimal mechanical environment (vibration, load, or muscle force) that promotes cellular health. To our knowledge no mechanical system has been proposed to deliver these isolated mechanical stimuli in human tissue. We present the design, performance, and utilization of a new technology that may be used to study localized mechanical stimuli on human tissues. A servo-controlled vibration and limb loading system were developed and integrated into a single instrument to deliver vibration, compression, or muscle contractile loads to a single limb (tibia) in humans. The accuracy, repeatability, transmissibility, and safety of the mechanical delivery system were evaluated on eight individuals with spinal cord injury (SCI). FINDINGS The limb loading system was linear, repeatable, and accurate to less than 5, 1, and 1 percent of full scale, respectively, and transmissibility was excellent. The between session tests on individuals with spinal cord injury (SCI) showed high intra-class correlations (>0.9). CONCLUSIONS All tests supported that therapeutic loads can be delivered to a lower limb (tibia) in a safe, accurate, and measureable manner. Future collaborations between engineers and cellular physiologists will be important as research programs strive to determine the optimal mechanical environment for developing cells and tissues in humans.
Collapse
Affiliation(s)
- Colleen L McHenry
- Department of Physical Therapy & Rehabilitation Science, Carver College of Medicine, University of Iowa, 1-252 Medical Education Building, Iowa City, IA 52242-1190, USA
| | - Jason Wu
- Department of Physical Therapy & Rehabilitation Science, Carver College of Medicine, University of Iowa, 1-252 Medical Education Building, Iowa City, IA 52242-1190, USA
| | - Richard K Shields
- Department of Physical Therapy & Rehabilitation Science, Carver College of Medicine, University of Iowa, 1-252 Medical Education Building, Iowa City, IA 52242-1190, USA
| |
Collapse
|
22
|
Grottkau BE, Yang X, Zhang L, Ye L, Lin Y. Comparison of Effects of Mechanical Stretching on Osteogenic Potential of ASCs and BMSCs. Bone Res 2013; 1:282-90. [PMID: 26273508 DOI: 10.4248/br201303006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Accepted: 06/08/2013] [Indexed: 02/05/2023] Open
Abstract
Mechanical forces play critical roles in the development and remodeling processes of bone. As an alternative cell source for bone engineering, adipose-derived stem cells (ASCs) should be fully investigated for their responses to mechanical stress. Similarly, the osteogenic potential, stimulated by mechanical stress, should be compared with bone marrow stromal cells (BMSCs), which have been clinically used for bone tissue engineering. In this study, ASCs and BMSCs were osteogenic-induced for 48 hours, and then subjected to uniaxial mechanical stretching for 2 or 6 hours. Cell orientation, osteogenic regulatory genes, osteogenic genes and ALP activities were measured and compared between ASCs and BMSCs. ASCs could align in a perpendicular way to the direction of stretching stress, while BMSCs did not present a specific alignment. Both 2 and 6 hours mechanical stretching could enhance the mRNA expression of Osx and Runx2 in BMSCs and ASCs, while OCN mRNA only increased in ASCs after 6 hours mechanical loading. Mechanical stretching enhanced the BMP-2 mRNA expression in ASCs, while only after 6 hours of mechanical loading significantly increased the BMP-2 gene expression in BMSCs. Significant differences only exist between ASCs and BMSCs loaded at 2 hours of mechanical stretching. It is concluded that ASCs are more rapid responders to mechanical stress, and have greater potential than BMSCs in osteogenesis when stimulated by mechanical stretching, indicating their usefulness for bone study in a rat model.
Collapse
Affiliation(s)
- Brian E Grottkau
- Department of Orthopaedic Surgery, MassGeneral Hospital for Children and the Pediatric Orthopaedic Laboratory for Tissue Engineering and Regenerative Medicine, Harvard Medical School , Boston, Massachusetts, USA
| | - Xingmei Yang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University , Chengdu 610041, P. R. China
| | - Liang Zhang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University , Chengdu 610041, P. R. China
| | - Ling Ye
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University , Chengdu 610041, P. R. China
| | - Yunfeng Lin
- Department of Orthopaedic Surgery, MassGeneral Hospital for Children and the Pediatric Orthopaedic Laboratory for Tissue Engineering and Regenerative Medicine, Harvard Medical School , Boston, Massachusetts, USA ; State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University , Chengdu 610041, P. R. China
| |
Collapse
|