1
|
Cao X, Yao F, Zhang B, Sun X. Mitochondrial dysfunction in heart diseases: Potential therapeutic effects of Panax ginseng. Front Pharmacol 2023; 14:1218803. [PMID: 37547332 PMCID: PMC10399631 DOI: 10.3389/fphar.2023.1218803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 07/12/2023] [Indexed: 08/08/2023] Open
Abstract
Heart diseases have a high incidence and mortality rate, and seriously affect people's quality of life. Mitochondria provide energy for the heart to function properly. The process of various heart diseases is closely related to mitochondrial dysfunction. Panax ginseng (P. ginseng), as a traditional Chinese medicine, is widely used to treat various cardiovascular diseases. Many studies have confirmed that P. ginseng and ginsenosides can regulate and improve mitochondrial dysfunction. Therefore, the role of mitochondria in various heart diseases and the protective effect of P. ginseng on heart diseases by regulating mitochondrial function were reviewed in this paper, aiming to gain new understanding of the mechanisms, and promote the clinical application of P. ginseng.
Collapse
Affiliation(s)
- Xinxin Cao
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, China
- Key Laboratory of Efficacy Evaluation of Chinese Medicine Against Glyeolipid Metabolism Disorder Disease, State Administration of Traditional Chinese Medicine, Beijing, China
| | - Fan Yao
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, China
- Key Laboratory of Efficacy Evaluation of Chinese Medicine Against Glyeolipid Metabolism Disorder Disease, State Administration of Traditional Chinese Medicine, Beijing, China
| | - Bin Zhang
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, China
- Key Laboratory of Efficacy Evaluation of Chinese Medicine Against Glyeolipid Metabolism Disorder Disease, State Administration of Traditional Chinese Medicine, Beijing, China
| | - Xiaobo Sun
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, China
- Key Laboratory of Efficacy Evaluation of Chinese Medicine Against Glyeolipid Metabolism Disorder Disease, State Administration of Traditional Chinese Medicine, Beijing, China
| |
Collapse
|
2
|
Chen J, Huang Q, Li J, Yao Y, Sun W, Zhang Z, Qi H, Chen Z, Liu J, Zhao D, Mi J, Li X. Panax ginseng against myocardial ischemia/reperfusion injury: A review of preclinical evidence and potential mechanisms. JOURNAL OF ETHNOPHARMACOLOGY 2023; 300:115715. [PMID: 36108895 DOI: 10.1016/j.jep.2022.115715] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 08/31/2022] [Accepted: 09/07/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Panax ginseng C. A. Meyer (P. ginseng) is effective in the prevention and treatment of myocardial ischemia-reperfusion (I/R) injury. The mechanism by which P. ginseng exerts cardioprotective effects is complex. P. ginseng contains many pharmacologically active ingredients, such as molecular glycosides, polyphenols, and polysaccharides. P. ginseng and each of its active components can potentially act against myocardial I/R injury. Myocardial I/R was originally a treatment for myocardial ischemia, but it also induced irreversible damage, including oxygen-containing free radicals, calcium overload, energy metabolism disorder, mitochondrial dysfunction, inflammation, microvascular injury, autophagy, and apoptosis. AIM OF THE STUDY This study aimed to clarify the protective effects of P. ginseng and its active ingredients against myocardial I/R injury, so as to provide experimental evidence and new insights for the research and application of P. ginseng in the field of myocardial I/R injury. MATERIALS AND METHODS This review was based on a search of PubMed, NCBI, Embase, and Web of Science databases from their inception to February 21, 2022, using terms such as "ginseng," "ginsenosides," and "myocardial reperfusion injury." In this review, we first summarized the active ingredients of P. ginseng, including ginsenosides, ginseng polysaccharides, and phytosterols, as well as the pathophysiological mechanisms of myocardial I/R injury. Importantly, preclinical models with myocardial I/R injury and potential mechanisms of these active ingredients of P. ginseng for the prevention and treatment of myocardial disorders were generally summarized. RESULTS P. ginseng and its active components can regulate oxidative stress related proteins, inflammatory cytokines, and apoptosis factors, while protecting the myocardium and preventing myocardial I/R injury. Therefore, P. ginseng can play a role in the prevention and treatment of myocardial I/R injury. CONCLUSIONS P. ginseng has a certain curative effect on myocardial I/R injury. It can prevent and treat myocardial I/R injury in several ways. When ginseng exerts its effects, should be based on the theory of traditional Chinese medicine and with the help of modern medicine; the clinical efficacy of P. ginseng in preventing and treating myocardial I/R injury can be improved.
Collapse
Affiliation(s)
- Jinjin Chen
- Jilin Ginseng Academy, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130117, Jilin, China
| | - Qingxia Huang
- Jilin Ginseng Academy, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130117, Jilin, China; Research Center of Traditional Chinese Medicine, College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130021, Jilin, China
| | - Jing Li
- Jilin Ginseng Academy, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130117, Jilin, China
| | - Yao Yao
- Jilin Ginseng Academy, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130117, Jilin, China
| | - Weichen Sun
- Research Center of Traditional Chinese Medicine, College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130021, Jilin, China
| | - Zepeng Zhang
- Research Center of Traditional Chinese Medicine, College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130021, Jilin, China
| | - Hongyu Qi
- Jilin Ginseng Academy, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130117, Jilin, China
| | - Zhaoqiang Chen
- Research Center of Traditional Chinese Medicine, College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130021, Jilin, China
| | - Jiaqi Liu
- Research Center of Traditional Chinese Medicine, College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130021, Jilin, China
| | - Daqing Zhao
- Research Center of Traditional Chinese Medicine, College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130021, Jilin, China
| | - Jia Mi
- Department of Endocrinology, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, 130021, Jilin, China.
| | - Xiangyan Li
- Research Center of Traditional Chinese Medicine, College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130021, Jilin, China.
| |
Collapse
|
3
|
Yang Y, Chen T, Liu J, Chen S, Cai R, Wu L, Hu J, Lin Q, Qi X, Liu Z, Cheng Y. Integrated chemical profiling, network pharmacology and pharmacological evaluation to explore the potential mechanism of Xinbao pill against myocardial ischaemia-reperfusion injury. PHARMACEUTICAL BIOLOGY 2022; 60:255-273. [PMID: 35148221 PMCID: PMC8845110 DOI: 10.1080/13880209.2022.2025859] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
CONTEXT Xinbao pill (XBW), a traditional Chinese herbal formula, is widely used in clinical treatment for cardiovascular diseases; however, the therapeutic effect of XBW on myocardial ischaemia-reperfusion injury (MI/RI) is unclear. OBJECTIVE This study evaluates the cardioprotective effect and molecular mechanism of XBW against MI/RI. MATERIALS AND METHODS A phytochemistry-based network pharmacology analysis was used to uncover the mechanism of XBW against MI/RI. Ultra performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry method was used to identify chemicals. MI/RI-related targets of XBW were predicted using TargetNet database, OMIC database, etc. Sprague-Dawley (SD) rats under anterior descending artery ligation model were divided into Sham, MI/RI and XBW (180 mg/kg, intragastric administration). After 30 min ischaemia and 24 h reperfusion, heart tissues were collected for measurement of myocardial infarct size. After oxygen glucose deprivation for 6 h, H9c2 cells were treated with XBW (60, 240 and 720 μg/mL) and diazoxide (100 μM) for 18 h of reperfusion. RESULTS Thirty-seven chemicals were identified in XBW; 50 MI/RI-related targets of XBW were predicted using indicated databases. XBW significantly reduced infarct size and creatine kinase MB (CK-MB) level after MI/RI; XBW protected H9c2 cells against OGD/R injury. Gene ontology (GO) and KEGG pathway enrichment analyses by String database showed that the cardioprotective effect of XBW was associated with autophagy and apoptosis signalling pathways. Experimental investigation also verified that XBW suppressed apoptosis, autophagy and endoplasmic reticulum (ER) stress. CONCLUSIONS XBW showed therapeutic effects against MI/RI mainly via attenuating apoptosis though suppressing excessive autophagy and ER stress.
Collapse
Affiliation(s)
- Ying Yang
- School of Pharmaceutical Sciences, Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou, China
| | - Ting Chen
- Research and Development Department, Guangdong Xinbao Pharm-tech Co., Ltd, Guangzhou, China
| | - Jiaming Liu
- School of Pharmaceutical Sciences, Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China
| | - Sixuan Chen
- School of Pharmaceutical Sciences, Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Rongqing Cai
- Research and Development Department, Guangdong Xinbao Pharm-tech Co., Ltd, Guangzhou, China
| | - Liqiong Wu
- Research and Development Department, Guangdong Xinbao Pharm-tech Co., Ltd, Guangzhou, China
| | - Jiexiong Hu
- Research and Development Department, Guangdong Xinbao Pharm-tech Co., Ltd, Guangzhou, China
| | - Qiongying Lin
- Research and Development Department, Guangdong Xinbao Pharm-tech Co., Ltd, Guangzhou, China
| | - Xiaoxiao Qi
- School of Pharmaceutical Sciences, Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhongqiu Liu
- School of Pharmaceutical Sciences, Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou, China
- CONTACT Zhongqiu Liu
| | - Yuanyuan Cheng
- School of Pharmaceutical Sciences, Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou, China
- Yuanyuan Cheng School of Pharmaceutical Sciences, Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| |
Collapse
|
4
|
Gan XT, Karmazyn M. Cardioprotection by ginseng: experimental and clinical evidence and underlying mechanisms. Can J Physiol Pharmacol 2018; 96:859-868. [PMID: 29940129 DOI: 10.1139/cjpp-2018-0192] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Protection of the ischemic and reperfused myocardium represents a major therapeutic challenge. Translating results from animal studies to the clinical setting has been disappointing, yet the need for effective intervention, particularly to limit heart damage following infarction or surgical procedures such as coronary artery bypass grafting, is substantial. Among the many compounds touted as cardioprotective agents is ginseng, a medicinal herb belonging to the genus Panax, which has been used as a medicinal agent for thousands of years, particularly in Asian societies. The biological actions of ginseng are very complex and reflect composition of many bioactive components, although many of the biological and therapeutic effects of ginseng have been attributed to the presence of steroid-like saponins termed ginsenosides. Both ginseng and many ginsenosides have been shown to exert cardioprotective properties in experimental models. There is also clinical evidence that traditional Chinese medications containing ginseng exert cardioprotective properties, although such clinical evidence is less robust primarily owing to the paucity of large-scale clinical trials. Here, we discuss the experimental and clinical evidence for ginseng, ginsenosides, and ginseng-containing formulations as cardioprotective agents against ischemic and reperfusion injury. We further discuss potential mechanisms, particularly as these relate to antioxidant properties.
Collapse
Affiliation(s)
- Xiaohong Tracey Gan
- University of Western Ontario, London, ON N6G 2X6, Canada.,University of Western Ontario, London, ON N6G 2X6, Canada
| | | |
Collapse
|
5
|
Park J, Bui PTC, Song H, Kim SK, Rhee DK, Kim EY, Rhyu MR, Lee MS, Lee YJ. Ginseng on Nuclear Hormone Receptors. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2017; 45:1147-1156. [DOI: 10.1142/s0192415x17500628] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The first record of ginseng use dates back over two millennia, and ginseng is now popular in more than 35 countries. Ginsenosides are the pharmacological constituents responsible for the beneficial effects of ginseng. There is increasing evidence that ginseng and its bioactive ingredients are involved in the regulation of nuclear receptors, molecules that act in response to the specific binding of hormones, which link to a diverse array of signaling pathways, such as the ERK and PI3K/Akt pathways. Knowledge of the mechanism of how ginseng mediates these complexes is essential for the development of multi-target phytomedicine as possible therapy for different diseases. Here, we discuss the literature on the effects of ginseng and its constituents on estrogen, glucocorticoid, peroxisome proliferator-activated, and androgen nuclear hormone receptors, as well as how ginseng and its constituents exert their biological function in the treatment of cancer, obesity, and cardiovascular and neurological disorders. The accumulated results definitely show that the nuclear receptors are cellular targets of ginsenosides, but more rigorous data are required to establish and provide a scientific basis to confirm the suggested efficacy of ginseng or products with ginsenosides.
Collapse
Affiliation(s)
- Joonwoo Park
- Department of Bioscience and Biotechnology, College of Life Science, Sejong University, Kwangjingu, Kunjadong, Seoul 04310, Republic of Korea
| | - Phuong T. C. Bui
- Department of Bioscience and Biotechnology, College of Life Science, Sejong University, Kwangjingu, Kunjadong, Seoul 04310, Republic of Korea
| | - Heewon Song
- Department of Bioscience and Biotechnology, College of Life Science, Sejong University, Kwangjingu, Kunjadong, Seoul 04310, Republic of Korea
| | - Si-Kwan Kim
- Department of Biomedical Chemistry, College of Biomedical & Health Science, Konkuk University, Chungju, South Korea
| | - Dong-Kwon Rhee
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Eun-Young Kim
- Division of Functional Food Research, Korea Food Research Institute, Gyeonggi-do 13539, Republic of Korea
| | - Mee-Ra Rhyu
- Division of Functional Food Research, Korea Food Research Institute, Gyeonggi-do 13539, Republic of Korea
| | - Myeong Soo Lee
- Clinical Research Division, Korea Institute of Oriental Medicine, Daejeon 34054, Republic of Korea
| | - Young Joo Lee
- Department of Bioscience and Biotechnology, College of Life Science, Sejong University, Kwangjingu, Kunjadong, Seoul 04310, Republic of Korea
| |
Collapse
|
6
|
Suchal K, Bhatia J, Malik S, Malhotra RK, Gamad N, Goyal S, Nag TC, Arya DS, Ojha S. Seabuckthorn Pulp Oil Protects against Myocardial Ischemia-Reperfusion Injury in Rats through Activation of Akt/eNOS. Front Pharmacol 2016; 7:155. [PMID: 27445803 PMCID: PMC4925700 DOI: 10.3389/fphar.2016.00155] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 05/30/2016] [Indexed: 12/21/2022] Open
Abstract
Seabuckthorn (SBT) pulp oil obtained from the fruits of seabuckthorn [Hippophae rhamnoides L. (Elaeagnaceae)] has been used traditionally for its medicinal and nutritional properties. However, its role in ischemia-reperfusion (IR) injury of myocardium in rats has not been elucidated so far. The present study reports the cardioprotective effect of SBT pulp oil in IR-induced model of myocardial infarction in rats and underlying mechanism mediating activation of Akt/eNOS signaling pathway. Male albino Wistar rats were orally administered SBT pulp oil (5, 10, and 20 ml/kg/day) or saline for 30 days. On the day 31, ischemia was induced by one-stage ligation of left anterior descending coronary artery for 45 min followed by reperfusion for 60 min. SBT pulp oil pretreatment at the dose of 20 ml/kg observed to stabilize cardiac function and myocardial antioxidants such as glutathione, superoxide dismutase, catalase, and inhibited lipid peroxidation evidenced by reduced malondialdehyde levels as compared to IR-control group. SBT pulp oil also improved hemodynamic and contractile function and decreased tumor necrosis factor and activities of myocyte injury marker enzymes; lactate dehydrogenase and creatine kinase-MB. Additionally, a remarkable rise in expression of pAkt-eNOS, Bcl-2 and decline in expression of IKKβ/NF-κB and Bax was observed in the myocardium. The histopathological and ultrastructural salvage of cardiomyocytes further supports the cardioprotective effect of SBT pulp oil. Based on findings, it can be concluded that SBT pulp oil protects against myocardial IR injury mediating favorable modulation of Akt-eNOS and IKKβ/NF-κB expression.
Collapse
Affiliation(s)
- Kapil Suchal
- Cardiovascular Research Laboratory, Department of Pharmacology, All India Institute of Medical Sciences New Delhi, India
| | - Jagriti Bhatia
- Cardiovascular Research Laboratory, Department of Pharmacology, All India Institute of Medical Sciences New Delhi, India
| | - Salma Malik
- Cardiovascular Research Laboratory, Department of Pharmacology, All India Institute of Medical Sciences New Delhi, India
| | - Rajiv Kumar Malhotra
- Cardiovascular Research Laboratory, Department of Pharmacology, All India Institute of Medical Sciences New Delhi, India
| | - Nanda Gamad
- Cardiovascular Research Laboratory, Department of Pharmacology, All India Institute of Medical Sciences New Delhi, India
| | - Sameer Goyal
- Department of Pharmacology, R. C. Patel Institute of Pharmaceutical Education and Research Shirpur, India
| | - Tapas C Nag
- Department of Anatomy, All India Institute of Medical Sciences New Delhi, India
| | - Dharamvir S Arya
- Cardiovascular Research Laboratory, Department of Pharmacology, All India Institute of Medical Sciences New Delhi, India
| | - Shreesh Ojha
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University Abu Dhabi, UAE
| |
Collapse
|
7
|
Hsu WL, Tsai YT, Wu CT, Lai JN. The Prescription Pattern of Chinese Herbal Products Containing Ginseng among Tamoxifen-Treated Female Breast Cancer Survivors in Taiwan: A Population-Based Study. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2015; 2015:385204. [PMID: 25815031 PMCID: PMC4359861 DOI: 10.1155/2015/385204] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Revised: 08/19/2014] [Accepted: 09/15/2014] [Indexed: 11/24/2022]
Abstract
Background. The purpose of our study is to analyze the association between prescribed Chinese herbal products (CHPs) containing Ginseng and the risk of endometrial cancer among tamoxifen (TMX) users and to identify any possible interactive effects between Ginseng and TMX with respect to preventing the development of subsequent endometrial cancer in an estrogen-dependent breast cancer population in Taiwan. Methods. All patients newly diagnosed with invasive breast cancer receiving tamoxifen treatment from January 1, 1998, to December 31, 2008, were selected from the National Health Insurance Research Database. The usage, frequency of service, and CHP-Ginseng prescribed across the 30,556 TMX-treated breast cancer (BC) survivors were evaluated. Logistic regression was employed to estimate the odds ratios (ORs) for the utilization of CHP-Ginseng. Cox's proportional hazard regression was performed to calculate the hazard ratios (HRs) for endometrial cancer associated with Ginseng use among the TMX-treated BC cohort. Results. The HR for the development of endometrial cancer among breast cancer survivors who had ever taken Ginseng after TXM treatment was significantly decreased compared to those who never used CHP. Conclusion. A significant inhibitory relationship between Ginseng consumption and subsequent endometrial cancer less than 2 years after TMX treatment was detected among BC survivors.
Collapse
Affiliation(s)
- Wei-Lung Hsu
- Institute of Traditional Medicine, School of Medicine, National Yang-Ming University, No. 155, Section 2, Li-Nong Road, Taipei 112, Taiwan
- Department of Chinese Medicine, Taipei City Hospital, Yangming Branch, No. 105 Yusheng Street, Shilin District, Taipei City 111, Taiwan
| | - Yueh-Ting Tsai
- Institute of Traditional Medicine, School of Medicine, National Yang-Ming University, No. 155, Section 2, Li-Nong Road, Taipei 112, Taiwan
| | - Chien-Tung Wu
- Institute of Traditional Medicine, School of Medicine, National Yang-Ming University, No. 155, Section 2, Li-Nong Road, Taipei 112, Taiwan
- Department of Chinese Medicine, Taipei City Hospital, Yangming Branch, No. 105 Yusheng Street, Shilin District, Taipei City 111, Taiwan
| | - Jung-Nien Lai
- Institute of Traditional Medicine, School of Medicine, National Yang-Ming University, No. 155, Section 2, Li-Nong Road, Taipei 112, Taiwan
- Department of Chinese Medicine, Taipei City Hospital, Yangming Branch, No. 105 Yusheng Street, Shilin District, Taipei City 111, Taiwan
- Taiwan Association for Traditional Chinese Medicine of Family, 9F., No. 105 Yusheng Street, Shilin District, Taipei City 111, Taiwan
| |
Collapse
|
8
|
Merit of ginseng in the treatment of heart failure in type 1-like diabetic rats. BIOMED RESEARCH INTERNATIONAL 2014; 2014:484161. [PMID: 24745017 PMCID: PMC3976851 DOI: 10.1155/2014/484161] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Accepted: 02/06/2014] [Indexed: 12/30/2022]
Abstract
The present study investigated the merit of ginseng in the improvement of heart failure in diabetic rats and the role of peroxisome proliferator-activated receptors δ (PPAR δ ). We used streptozotocin-induced diabetic rat (STZ-rat) to screen the effects of ginseng on cardiac performance and PPAR δ expression. Changes of body weight, water intake, and food intake were compared in three groups of age-matched rats; the normal control (Wistar rats) received vehicle, STZ-rats received vehicle and ginseng-treated STZ-rats. We also determined cardiac performances in addition to blood glucose level in these animals. The protein levels of PPAR δ in hearts were identified using Western blotting analysis. In STZ-rats, cardiac performances were decreased but the food intake, water intake, and blood glucose were higher than the vehicle-treated control. After a 7-day treatment of ginseng in STZ-rats, cardiac output was markedly enhanced without changes in diabetic parameters. This treatment with ginseng also increased the PPAR δ expression in hearts of STZ-rats. The related signal of cardiac contractility, troponin I phosphorylation, was also raised. Ginseng-induced increasing of cardiac output was reversed by the cotreatment with PPAR δ antagonist GSK0660. Thus, we suggest that ginseng could improve heart failure through the increased PPAR δ expression in STZ-rats.
Collapse
|