1
|
Lee YP, Yu CK, Wong TW, Chen LC, Huang BM. Cordycepin Inhibits Enterovirus A71 Replication and Protects Host Cell from Virus-Induced Cytotoxicity through Adenosine Action Pathway. Viruses 2024; 16:352. [PMID: 38543718 PMCID: PMC10974990 DOI: 10.3390/v16030352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 02/23/2024] [Accepted: 02/23/2024] [Indexed: 05/23/2024] Open
Abstract
Enterovirus A71 (EV-A71) infection typically causes mild illnesses, such as hand-foot-and-mouth disease (HFMD), but occasionally leads to severe or fatal neurological complications in infants and young children. Currently, there is no specific antiviral treatment available for EV-A71 infection. Thus, the development of an effective anti-EV-A71 drug is required urgently. Cordycepin, a major bioactive compound found in Cordyceps fungus, has been reported to possess antiviral activity. However, its specific activity against EV-A71 is unknown. In this study, the potency and role of cordycepin treatment on EV-A71 infection were investigated. Results demonstrated that cordycepin treatment significantly reduced the viral load and viral ribonucleic acid (RNA) level in EV-A71-infected Vero cells. In addition, EV-A71-mediated cytotoxicity was significantly inhibited in the presence of cordycepin in a dose-dependent manner. The protective effect can also be extended to Caco-2 intestinal cells, as evidenced by the higher median tissue culture infectious dose (TCID50) values in the cordycepin-treated groups. Furthermore, cordycepin inhibited EV-A71 replication by acting on the adenosine pathway at the post-infection stage. Taken together, our findings reveal that cordycepin could be a potential antiviral candidate for the treatment of EV-A71 infection.
Collapse
Affiliation(s)
- Yi-Ping Lee
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan;
| | - Chun-Keung Yu
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan;
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
- Center of Infectious Disease and Signaling Research, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
| | - Tak-Wah Wong
- Department of Dermatology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan;
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
- Center of Applied Nanomedicine, National Cheng Kung University, Tainan 70101, Taiwan
| | - Li-Ching Chen
- Department of Biological Science & Technology, China Medical University, Taichung 406040, Taiwan
| | - Bu-Miin Huang
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan;
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 40402, Taiwan
| |
Collapse
|
2
|
Korkutata M, Lazarus M. Adenosine A 2A receptors and sleep. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2023; 170:155-178. [PMID: 37741690 DOI: 10.1016/bs.irn.2023.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2023]
Abstract
Adenosine, a known endogenous somnogen, induces sleep via A1 and A2A receptors. In this chapter, we review the current knowledge regarding the role of the adenosine A2A receptor and its agonists, antagonists, and allosteric modulators in sleep-wake regulation. Although many adenosine A2A receptor agonists, antagonists, and allosteric modulators have been identified, only a few have been tested to see if they can promote sleep or wakefulness. In addition, the growing popularity of natural sleep aids has led to an investigation of natural compounds that may improve sleep by activating the adenosine A2A receptor. Finally, we discuss the potential therapeutic advantage of allosteric modulators of adenosine A2A receptors over classic agonists and antagonists for treating sleep and neurologic disorders.
Collapse
Affiliation(s)
- Mustafa Korkutata
- Department of Neurology, Division of Sleep Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA.
| | - Michael Lazarus
- International Institute for Integrative Sleep Medicine (WPI-IIIS) and Institute of Medicine, University of Tsukuba, Tsukuba, Japan.
| |
Collapse
|
3
|
Radhi M, Ashraf S, Lawrence S, Tranholm AA, Wellham PAD, Hafeez A, Khamis AS, Thomas R, McWilliams D, de Moor CH. A Systematic Review of the Biological Effects of Cordycepin. Molecules 2021; 26:5886. [PMID: 34641429 PMCID: PMC8510467 DOI: 10.3390/molecules26195886] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/06/2021] [Accepted: 09/13/2021] [Indexed: 12/15/2022] Open
Abstract
We conducted a systematic review of the literature on the effects of cordycepin on cell survival and proliferation, inflammation, signal transduction and animal models. A total of 1204 publications on cordycepin were found by the cut-off date of 1 February 2021. After application of the exclusion criteria, 791 papers remained. These were read and data on the chosen subjects were extracted. We found 192 papers on the effects of cordycepin on cell survival and proliferation and calculated a median inhibitory concentration (IC50) of 135 µM. Cordycepin consistently repressed cell migration (26 papers) and cellular inflammation (53 papers). Evaluation of 76 papers on signal transduction indicated consistently reduced PI3K/mTOR/AKT and ERK signalling and activation of AMPK. In contrast, the effects of cordycepin on the p38 and Jun kinases were variable, as were the effects on cell cycle arrest (53 papers), suggesting these are cell-specific responses. The examination of 150 animal studies indicated that purified cordycepin has many potential therapeutic effects, including the reduction of tumour growth (37 papers), repression of pain and inflammation (9 papers), protecting brain function (11 papers), improvement of respiratory and cardiac conditions (8 and 19 papers) and amelioration of metabolic disorders (8 papers). Nearly all these data are consistent with cordycepin mediating its therapeutic effects through activating AMPK, inhibiting PI3K/mTOR/AKT and repressing the inflammatory response. We conclude that cordycepin has excellent potential as a lead for drug development, especially for age-related diseases. In addition, we discuss the remaining issues around the mechanism of action, toxicity and biodistribution of cordycepin.
Collapse
Affiliation(s)
- Masar Radhi
- Pain Centre Versus Arthritis, University of Nottingham, Nottingham NG7 2RD, UK; (M.R.); (A.A.T.); (D.M.)
- School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK; (S.L.); (P.A.D.W.); (A.H.); (A.S.K.)
| | - Sadaf Ashraf
- Aberdeen Centre for Arthritis and Musculoskeletal Health, Institute of Medical Sciences, Aberdeen AB25 2ZD, UK;
| | - Steven Lawrence
- School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK; (S.L.); (P.A.D.W.); (A.H.); (A.S.K.)
| | - Asta Arendt Tranholm
- Pain Centre Versus Arthritis, University of Nottingham, Nottingham NG7 2RD, UK; (M.R.); (A.A.T.); (D.M.)
- School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK; (S.L.); (P.A.D.W.); (A.H.); (A.S.K.)
| | - Peter Arthur David Wellham
- School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK; (S.L.); (P.A.D.W.); (A.H.); (A.S.K.)
| | - Abdul Hafeez
- School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK; (S.L.); (P.A.D.W.); (A.H.); (A.S.K.)
| | - Ammar Sabah Khamis
- School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK; (S.L.); (P.A.D.W.); (A.H.); (A.S.K.)
| | - Robert Thomas
- The Primrose Oncology Unit, Bedford Hospital NHS Trust, Bedford MK42 9DJ, UK;
- Department of Oncology, Addenbrooke’s Cambridge University Hospitals NHS Trust, Cambridge CB2 0QQ, UK
| | - Daniel McWilliams
- Pain Centre Versus Arthritis, University of Nottingham, Nottingham NG7 2RD, UK; (M.R.); (A.A.T.); (D.M.)
- NIHR Nottingham Biomedical Research Centre (BRC), Nottingham NG5 1PB, UK
| | - Cornelia Huiberdina de Moor
- Pain Centre Versus Arthritis, University of Nottingham, Nottingham NG7 2RD, UK; (M.R.); (A.A.T.); (D.M.)
- School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK; (S.L.); (P.A.D.W.); (A.H.); (A.S.K.)
| |
Collapse
|
4
|
Zhou J, Chen X, Xiao L, Zhou J, Feng L, Wang G. Efficacy and Safety of Cordyceps militaris as an Adjuvant to Duloxetine in the Treatment of Insomnia in Patients With Depression: A 6-Week Double- Blind, Randomized, Placebo-Controlled Trial. Front Psychiatry 2021; 12:754921. [PMID: 34858228 PMCID: PMC8632006 DOI: 10.3389/fpsyt.2021.754921] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Accepted: 10/21/2021] [Indexed: 11/24/2022] Open
Abstract
Background: Insomnia is a common clinical manifestation in patients with depression. Insomnia is not only a depression symptom but also an independent risk factor for recurrence. Cordyceps militaris (C. militaris) is thought to have the potential to treat insomnia. This study aimed to examine the efficacy and safety of duloxetine with C. militaris in improving sleep symptoms in patients with depression. Methods: This study was a single-center, randomized, double-blind, placebo-controlled study that recruited outpatients admitted to Beijing Anding hospital from January 2018 to January 2019. Major depressive disorder (MDD) with insomnia was diagnosed according to the Diagnostic and Statistical Manual of Mental Disorders (DSM-IV-TR) criteria and Mini-International Neuropsychiatric Interview (M.I.N.I.). Eligible subjects will be randomly assigned to two treatment groups in a 1:1 ratio, and receive treatment and follow-up of about 6 weeks of duloxetine plus Cordyceps militaris or placebo, respectively. The severity of depression and insomnia was evaluated at baseline and at 1, 2, 4, and 6 weeks using the 17-item Hamilton Depression Scale (HAMD-17) and Athens Insomnia Scale (AIS). Results: A total of 59 subjects were included in the study (31 in the placebo group and 28 in the C. militaris group). 11 (18.6%) participants withdrew during the study period, 5 (17.9%) in the C. militaris group, and 6 (19.3%) in the placebo group. Depressive and sleep symptoms in all patients reduced over time. We found that the total scores of AIS and its subscales decreased more in the placebo group compared to the C. militaris group (p < 0.05). Secondary outcome revealed that there were no significant differences between the two groups in total HAMD-17 and its sleep factor scores (p > 0.05) at 1, 2, 4, and 6 weeks after treatment initiation. The incidences of adverse events were not significantly different between the two groups (all p > 0.05). Conclusion: C. militaris at the current dose and duration did not improve sleep symptoms in patients with depression, but it is safe with rare side effects.
Collapse
Affiliation(s)
- Jiaojiao Zhou
- The National Clinical Research Center for Mental Disorders and Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, The Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Xu Chen
- The National Clinical Research Center for Mental Disorders and Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, The Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Le Xiao
- The National Clinical Research Center for Mental Disorders and Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, The Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Jingjing Zhou
- The National Clinical Research Center for Mental Disorders and Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, The Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Lei Feng
- The National Clinical Research Center for Mental Disorders and Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, The Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Gang Wang
- The National Clinical Research Center for Mental Disorders and Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, The Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| |
Collapse
|
5
|
Ju D, Zhang W, Yan J, Zhao H, Li W, Wang J, Liao M, Xu Z, Wang Z, Zhou G, Mei L, Hou N, Ying S, Cai T, Chen S, Xie X, Lai L, Tang C, Park N, Takahashi JS, Huang N, Qi X, Zhang EE. Chemical perturbations reveal that RUVBL2 regulates the circadian phase in mammals. Sci Transl Med 2020; 12:12/542/eaba0769. [DOI: 10.1126/scitranslmed.aba0769] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Accepted: 04/13/2020] [Indexed: 12/12/2022]
Abstract
Transcriptional regulation lies at the core of the circadian clockwork, but how the clock-related transcription machinery controls the circadian phase is not understood. Here, we show both in human cells and in mice that RuvB-like ATPase 2 (RUVBL2) interacts with other known clock proteins on chromatin to regulate the circadian phase. Pharmacological perturbation of RUVBL2 with the adenosine analog compound cordycepin resulted in a rapid-onset 12-hour clock phase-shift phenotype at human cell, mouse tissue, and whole-animal live imaging levels. Using simple peripheral injection treatment, we found that cordycepin penetrated the blood-brain barrier and caused rapid entrainment of the circadian phase, facilitating reduced duration of recovery in a mouse jet-lag model. We solved a crystal structure for human RUVBL2 in complex with a physiological metabolite of cordycepin, and biochemical assays showed that cordycepin treatment caused disassembly of an interaction between RUVBL2 and the core clock component BMAL1. Moreover, we showed with spike-in ChIP-seq analysis and binding assays that cordycepin treatment caused disassembly of the circadian super-complex, which normally resides at E-box chromatin loci such as PER1, PER2, DBP, and NR1D1. Mathematical modeling supported that the observed type 0 phase shifts resulted from derepression of E-box clock gene transcription.
Collapse
Affiliation(s)
- Dapeng Ju
- National Institute of Biological Sciences, Beijing 102206, China
- College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Wei Zhang
- RPXDs (Suzhou) Co. Ltd., Suzhou City, Jiangsu Province 215028, China
| | - Jiawei Yan
- School of Life Sciences, Peking University, Beijing 100871, China
| | - Haijiao Zhao
- National Institute of Biological Sciences, Beijing 102206, China
| | - Wei Li
- RPXDs (Suzhou) Co. Ltd., Suzhou City, Jiangsu Province 215028, China
| | - Jiawen Wang
- National Institute of Biological Sciences, Beijing 102206, China
| | - Meimei Liao
- National Institute of Biological Sciences, Beijing 102206, China
- College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Zhancong Xu
- National Institute of Biological Sciences, Beijing 102206, China
| | - Zhiqiang Wang
- National Institute of Biological Sciences, Beijing 102206, China
| | - Guanshen Zhou
- National Institute of Biological Sciences, Beijing 102206, China
| | - Long Mei
- National Institute of Biological Sciences, Beijing 102206, China
- School of Life Sciences, Peking University, Beijing 100871, China
| | - Nannan Hou
- National Institute of Biological Sciences, Beijing 102206, China
| | - Shuhua Ying
- National Institute of Biological Sciences, Beijing 102206, China
| | - Tao Cai
- National Institute of Biological Sciences, Beijing 102206, China
| | - She Chen
- National Institute of Biological Sciences, Beijing 102206, China
| | - Xiaowen Xie
- School of Life Sciences, Peking University, Beijing 100871, China
- Center for Quantitative Biology, Peking University, Beijing 100871, China
| | - Luhua Lai
- Center for Quantitative Biology, Peking University, Beijing 100871, China
- College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Chao Tang
- Center for Quantitative Biology, Peking University, Beijing 100871, China
- School of Physics and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Noheon Park
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390-9111, USA
| | - Joseph S. Takahashi
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390-9111, USA
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390-9111, USA
| | - Niu Huang
- National Institute of Biological Sciences, Beijing 102206, China
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing 102206, China
| | - Xiangbing Qi
- National Institute of Biological Sciences, Beijing 102206, China
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing 102206, China
| | - Eric Erquan Zhang
- National Institute of Biological Sciences, Beijing 102206, China
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing 102206, China
| |
Collapse
|
6
|
A novel nucleoside rescue metabolic pathway may be responsible for therapeutic effect of orally administered cordycepin. Sci Rep 2019; 9:15760. [PMID: 31673018 PMCID: PMC6823370 DOI: 10.1038/s41598-019-52254-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 10/12/2019] [Indexed: 12/23/2022] Open
Abstract
Although adenosine and its analogues have been assessed in the past as potential drug candidates due to the important role of adenosine in physiology, only little is known about their absorption following oral administration. In this work, we have studied the oral absorption and disposition pathways of cordycepin, an adenosine analogue. In vitro biopharmaceutical properties and in vivo oral absorption and disposition of cordycepin were assessed in rats. Despite the fact that numerous studies showed efficacy following oral dosing of cordycepin, we found that intact cordycepin was not absorbed following oral administration to rats. However, 3′-deoxyinosine, a metabolite of cordycepin previously considered to be inactive, was absorbed into the systemic blood circulation. Further investigation was performed to study the conversion of 3′-deoxyinosine to cordycepin 5′-triphosphate in vitro using macrophage-like RAW264.7 cells. It demonstrated that cordycepin 5′-triphosphate, the active metabolite of cordycepin, can be formed not only from cordycepin, but also from 3′-deoxyinosine. The novel nucleoside rescue metabolic pathway proposed in this study could be responsible for therapeutic effects of adenosine and other analogues of adenosine following oral administration. These findings may have importance in understanding the physiology and pathophysiology associated with adenosine, as well as drug discovery and development utilising adenosine analogues.
Collapse
|
7
|
Interleukin-4 signalling pathway underlies the anxiolytic effect induced by 3-deoxyadenosine. Psychopharmacology (Berl) 2019; 236:2959-2973. [PMID: 30963194 DOI: 10.1007/s00213-019-5186-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 01/30/2019] [Indexed: 12/20/2022]
Abstract
RATIONALE Converging evidence suggests that neuroimmunity plays an important role in the pathophysiology of anxiety. Interleukin (IL)-4 is a key cytokine regulating neuroimmune functions in the central nervous system. More efficient anxiolytics with neuro-immune mechanisms are urgently needed. OBJECTIVE To determine whether 3'-deoxyadenosine (3'-dA) exerts an anxiolytic effect and to examine the role of IL-4 in the anxiolytic effect of 3'-dA in mice. METHODS We investigated the effects of 3'-dA on anxiety-like behaviors using elevated plus maze (EPM) or light-dark box (LDB) tests after 45 min or 5 days of treatment. Expression of IL-4, IL-10, IL-1β, TNF-α, and IL-6 in the prefrontal cortex (PFC) was detected by Western blot and/or double immunostaining. Intracerebroventricular injection of RIL-4Rα (an IL-4-specific inhibitor) and intraperitoneal injection of 3'-dA or imipramine were co-administered, followed by EPM test. RESULTS 3'-dA exhibited a stronger and faster anxiolytic effect than imipramine in behavioral tests. Furthermore, 3'-dA enhanced IL-4 expression after 45 min or 5 days, TNF-α and IL-1β expression decreased significantly after a 5-day treatment with 3'-dA, and IL-10 expression increased after a 5-day treatment with 3'-dA or imipramine in the PFC. IL-4 was expressed in neurons and in some astrocytes and microglia. IL-4 expression showed a strong positive correlation with reduced anxiety behaviors. RIL-4Rα completely blocked the anxiolytic effects induced by 3'-dA and imipramine. CONCLUSIONS This study identifies a novel and common anxiolytic IL-4 signaling pathway and provides an innovative drug with a novel neuro-immune mechanism for treating anxiety disorder.
Collapse
|
8
|
Jiang Q, Lou Z, Wang H, Chen C. Antimicrobial effect and proposed action mechanism of cordycepin against Escherichia coli and Bacillus subtilis. J Microbiol 2019; 57:288-297. [PMID: 30929229 DOI: 10.1007/s12275-019-8113-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 08/07/2018] [Accepted: 08/13/2018] [Indexed: 12/01/2022]
Abstract
The detailed antibacterial mechanism of cordycepin efficacy against food-borne germs remains ambiguous. In this study, the antibacterial activity and action mechanism of cordycepin were assessed. The results showed that cordycepin effectively inhibited the growth of seven bacterial pathogens including both Gram-positive and Gram-negative bacterial pathogens; the minimum inhibitory concentrations (MIC) were 2.5 and 1.25 mg/ml against Escherichia coli and Bacillus subtilis, respectively. Scanning electron microscope and transmission electron microscope examination confirmed that cordycepin caused obvious damages in the cytoplasmatic membranes of both E. coli and B. subtilis. Outer membrane permeability assessment indicated the loss of barrier function and the leakage of cytoplasmic contents. Propidium iodide and carboxyfluorescein diacetate double staining approach coupled with flow cytometry analysis indicated that the integrity of cell membrane was severely damaged during a short time, while the intracellular enzyme system still remained active. This clearly suggested that membrane damage was one of the reasons for cordycepin efficacy against bacteria. Additionally, results from circular dichroism and fluorescence analysis indicated cordycepin could insert to genome DNA base and double strand, which disordered the structure of genomic DNA. Basis on these results, the mode of bactericidal action of cordycepin against E. coli and B. subtilis was found to be a dual mechanism, disrupting bacterial cell membranes and binding to bacterial genomic DNA to interfere in cellular functions, ultimately leading to cell death.
Collapse
Affiliation(s)
- Qi Jiang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, P. R. China.,National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, 214122, P. R. China
| | - Zaixiang Lou
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, P. R. China. .,National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, 214122, P. R. China.
| | - Hongxin Wang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, P. R. China. .,National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, 214122, P. R. China.
| | - Chen Chen
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, 214122, P. R. China
| |
Collapse
|
9
|
Liu T, Liu Z, Yao X, Huang Y, Qu Q, Shi X, Zhang H, Shi X. Identification of cordycepin biosynthesis-related genes through de novo transcriptome assembly and analysis in Cordyceps cicadae. ROYAL SOCIETY OPEN SCIENCE 2018; 5:181247. [PMID: 30662735 PMCID: PMC6304131 DOI: 10.1098/rsos.181247] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 11/20/2018] [Indexed: 05/08/2023]
Abstract
Cordyceps cicadae (Chanhua) is a parasitic fungus that grows on Cicada flammata larvae and is used to relieve exhaustion and treat numerous diseases, in part through its active constituent, cordycepin. We used de novo Illumina HiSeq 4000 sequencing to obtain transcriptomes of C. cicadae mycelium, fruiting body, and sclerotium, and identify differentially expressed genes. In the mycelium versus sclerotium libraries, 1576 upregulated and 2300 downregulated genes were identified. In the mycelium versus fruiting body and fruiting body versus sclerotium body libraries, 1604 and 1474 upregulated and 1365 and 1320 downregulated genes, respectively, were identified. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses identified 19 genes differentially expressed in mycelium versus fruiting body as related to the purine pathway, along with 28 and 16 genes differentially expressed in the mycelium versus sclerotium and fruiting body versus sclerotium groups, respectively. Gene expression of six key enzymes was validated by quantitative polymerase chain reaction. Specifically, 5'-nucleotidase (c62060g1) and adenosine deaminase (c35629g1) in purine nucleotide metabolism, which are involved in cordycepin biosynthesis, were significantly upregulated in the sclerotium group. These findings improved our understanding of genes involved in the biosynthesis of cordycepin and other characteristic secondary metabolites in C. cicadae.
Collapse
Affiliation(s)
- Tengfei Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100102, People's Republic of China
| | - Ziyao Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100102, People's Republic of China
| | - Xueyan Yao
- Laboratory of Food Enzyme Engineering, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100110, People's Republic of China
| | - Ying Huang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100102, People's Republic of China
| | - Qingsong Qu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100102, People's Republic of China
| | - Xiaosa Shi
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100102, People's Republic of China
| | - Hongmei Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100102, People's Republic of China
| | - Xinyuan Shi
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100102, People's Republic of China
- Author for correspondence: Xinyuan Shi e-mail:
| |
Collapse
|
10
|
Hu Z, Oh S, Ha TW, Hong JT, Oh KW. Sleep-Aids Derived from Natural Products. Biomol Ther (Seoul) 2018; 26:343-349. [PMID: 29929351 PMCID: PMC6029681 DOI: 10.4062/biomolther.2018.099] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 06/07/2018] [Accepted: 06/07/2018] [Indexed: 11/17/2022] Open
Abstract
Although drugs such as barbiturates and benzodiazepines are often used for the treatment of insomnia, they are associated with various side effects such as habituations, tolerance and addiction. Alternatively, natural products with minimal unwanted effects have been preferred for the treatment of acute and/or mild insomnia, with additional benefits of overall health-promotion. Basic and clinical researches on the mechanisms of action of natural products have been carried out so far in insomnia treatments. Recent studies have been focusing on diverse chemical components available in natural products, with an interest of developing drugs that can improve sleep duration and quality. In the last 15 years, our co-workers have been actively looking for candidate substances from natural products that can relieve insomnia. This review is, therefore, intended to bring pharmacological data regarding to the effects of natural products on sleep duration and quality, mainly through the activation of GABAA receptors. It is imperative that phytochemicals will provide useful information during electroencephalography (EEG) analysis and serve as an alternative medications for insomnia patients who are reluctant to use conventional drugs.
Collapse
Affiliation(s)
- Zhenzhen Hu
- Department of Pathophysiology, College of Basic Medicine, Nanchang University, Nanchang, Jiangxi 33006, China
| | - Seikwan Oh
- Department of Molecular Medicine and TIDRC, School of Medicine, Ewha Womans University, Seoul 07985, Republic of Korea
| | - Tae-Woo Ha
- Department of Pharmacy, College of Pharmacy, Chungbuk National University, Osong 28160, Republic of Korea
| | - Jin-Tae Hong
- Department of Pharmacy, College of Pharmacy, Chungbuk National University, Osong 28160, Republic of Korea
| | - Ki-Wan Oh
- Department of Pharmacy, College of Pharmacy, Chungbuk National University, Osong 28160, Republic of Korea
| |
Collapse
|
11
|
Abstract
Cordyceps is one of the most well-known mushroom with numerous bioactive compounds possess wide range of biotherapeutic activities. This mushroom has been used for many years as medicinal food particularly in China and in different regions of south East Asia. Cordycepin is a nucleoside compound extracted from different species of Cordyceps and considered as one of the most important bioactive metabolites of this fungus. This low molecular weight compound exhibit several medicinal functions as anticancer, antitumor, antioxidant, anti-inflammatory, hypoglycemic, immunomodulatory agent. In this chapter we reviewed recent published research on the cordycepin chemistry, production, extraction, isolation, purification, biotherapeutic activities and applications.
Collapse
Affiliation(s)
- Bhim Pratap Singh
- Molecular Microbiology and Systematics Laboratory, Department of Biotechnology, Mizoram University, Aizawl, Mizoram India
| | - Ajit Kumar Passari
- Molecular Microbiology and Systematics Laboratory, Department of Biotechnology, Mizoram University, Aizawl, Mizoram India
| |
Collapse
|
12
|
Cao ZP, Dai D, Wei PJ, Han YY, Guan YQ, Li HH, Liu WX, Xiao P, Li CH. Effects of cordycepin on spontaneous alternation behavior and adenosine receptors expression in hippocampus. Physiol Behav 2017; 184:135-142. [PMID: 29174913 DOI: 10.1016/j.physbeh.2017.11.026] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 10/18/2017] [Accepted: 11/21/2017] [Indexed: 12/14/2022]
Abstract
Cordycepin, an adenosine analogue, has been reported to improve cognitive function. Important roles on learning and memory of adenosine and its receptors, such as adenosine A1 and A2A receptors (A1R and A2AR), also have been shown. Therefore, we assume that the improvement of learning and memory induced by cordycepin is likely related to hippocampal adenosine content and adenosine receptor density. Here we investigated the effects of cordycepin on the short-term spatial memory by using a spontaneous alternation behavior (SAB) test in Y-maze, and then examined hippocampal adenosine content and A1R and A2AR densities. We found that orally administrated cordycepin (at dosages of 5 and 10mg/kg twice daily for three weeks) significantly increased the percent of relative alternation of mice in SAB but not altered body weight, hippocampus weight and hippocampal adenosine content. Furthermore, cordycepin decreased A2AR density in hippocampal subareas; however, cordycepin only reduced the A1R density in DG but not CA1 or CA3 region. Our results suggest that cordycepin exerts a nootropic role possibly through modulating A2AR density of hippocampus, which further support the concept that it is mostly A2AR rather than A1R to control the adaptive processes of memory performance. These findings would be helpful to provide a new window into the pharmacological properties of cordycepin for cognitive promotion.
Collapse
Affiliation(s)
- Zhi-Ping Cao
- School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Dan Dai
- School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Peng-Ju Wei
- School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Yuan-Yuan Han
- School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Yan-Qing Guan
- School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Han-Hang Li
- School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Wen-Xiao Liu
- School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Peng Xiao
- School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Chu-Hua Li
- School of Life Science, South China Normal University, Guangzhou 510631, China; Brain Science Institute, South China Normal University, Guangzhou 510631, China.
| |
Collapse
|
13
|
Yoou MS, Jin MH, Lee SY, Lee SH, Kim B, Roh SS, Choi IH, Lee MS, Kim HM, Jeong HJ. Cordycepin Suppresses Thymic Stromal Lymphopoietin Expression via Blocking Caspase-1 and Receptor-Interacting Protein 2 Signaling Pathways in Mast Cells. Biol Pharm Bull 2016; 39:90-6. [DOI: 10.1248/bpb.b15-00631] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Myoung-schook Yoou
- Department of Pharmacology, College of Korean Medicine, Kyung Hee University
| | - Mu Hyun Jin
- Skin Research Center, Research Park, LG Household & Healthcare Ltd
| | - So Young Lee
- Skin Research Center, Research Park, LG Household & Healthcare Ltd
| | - Sang Hwa Lee
- Skin Research Center, Research Park, LG Household & Healthcare Ltd
| | - Byunghyun Kim
- Skin Research Center, Research Park, LG Household & Healthcare Ltd
| | - Seok Seon Roh
- Whoo Oriental Herb & Skin Research Society
- College of Korean Medicine, Daejeon University
| | - In Hwa Choi
- Whoo Oriental Herb & Skin Research Society
- Department of Oriental Dermatology, College of Korean Medicine, Kyung Hee University
| | - Myeong Soo Lee
- Whoo Oriental Herb & Skin Research Society
- Korea Institute of Oriental Medicine
| | - Hyung-Min Kim
- Department of Pharmacology, College of Korean Medicine, Kyung Hee University
- Whoo Oriental Herb & Skin Research Society
| | - Hyun-Ja Jeong
- Department of Food Technology and Biochip Research Center, Hoseo University
| |
Collapse
|
14
|
Li B, Hou Y, Zhu M, Bao H, Nie J, Zhang GY, Shan L, Yao Y, Du K, Yang H, Li M, Zheng B, Xu X, Xiao C, Du J. 3'-Deoxyadenosine (Cordycepin) Produces a Rapid and Robust Antidepressant Effect via Enhancing Prefrontal AMPA Receptor Signaling Pathway. Int J Neuropsychopharmacol 2015; 19:pyv112. [PMID: 26443809 PMCID: PMC4851261 DOI: 10.1093/ijnp/pyv112] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 09/29/2015] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND The development of rapid and safe antidepressants for the treatment of major depression is in urgent demand. Converging evidence suggests that glutamatergic signaling seems to play important roles in the pathophysiology of depression. METHODS We studied the antidepressant effects of 3(')-deoxyadenosine (3'-dA, Cordycepin) and the critical role of the α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptor in male CD-1 mice via behavioral and biochemical experiments. After 3'-dA treatment, the phosphorylation and synaptic localization of the AMPA receptors GluR1 and GluR2 were determined in the prefrontal cortex (PFC) and hippocampus (HIP). The traditional antidepressant imipramine was applied as a positive control. RESULTS We found that an injection of 3'-dA led to a rapid and robust antidepressant effect, which was significantly faster and stronger than imipramine, after 45min in tail suspension and forced swim tests. This antidepressant effect remained after 5 days of treatment with 3'-dA. Unlike the psycho-stimulants, 3'-dA did not show a hyperactive effect in the open field test. After 45min or 5 days of treatment, 3'-dA enhanced GluR1 S845 phosphorylation in both the PFC and HIP. In addition, after 45min of treatment, 3'-dA significantly up-regulated GluR1 S845 phosphorylation and GluR1, but not GluR2 levels, at the synapses in the PFC. After 5 days of treatment, 3'-dA significantly enhanced GluR1 S845 phosphorylation and GluR1, but not GluR2, at the synapses in the PFC and HIP. Moreover, the AMPA-specific antagonist GYKI 52466 was able to block the rapid antidepressant effects of 3'-dA. CONCLUSION This study identified 3'-dA as a novel rapid antidepressant with clinical potential and multiple beneficial mechanisms, particularly in regulating the prefrontal AMPA receptor signaling pathway.
Collapse
Affiliation(s)
- Bai Li
- *These authors contributed equally to this work
| | | | - Ming Zhu
- *These authors contributed equally to this work
| | | | | | | | | | | | | | | | | | | | | | | | - Jing Du
- #These two authors are co-corresponding authors
| |
Collapse
|