1
|
Cury BJ, Jerônimo DT, da Silva LM, Farias de Queiroz E Silva T, França TCS, Dos Santos AC, Andriolo IRL, Santin JR, Benvenutti L, Vaz CR, Santos MFC, Kenupp JB, da Silva LM. Hydroalcoholic extract of Araucaria sp. brown propolis alleviates ulcerative colitis induced by TNBS in rats by reducing inflammatory cell infiltration and oxidative damage. J Pharm Pharmacol 2024; 76:1379-1392. [PMID: 39051119 DOI: 10.1093/jpp/rgae083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 06/14/2024] [Indexed: 07/27/2024]
Abstract
OBJECTIVE To investigate the effects of Araucaria sp. brown propolis (ABP) against trinitrobenzenesulfonic acid (TNBS)-induced colitis in rats. METHODS Animals received vehicle (1% DMSO, 1 ml/kg) or hydroalcoholic extract of ABP (hydroalcoholic extract of Araucaria sp. brown propolis (HEABP), 30, 100, and 300 mg/kg) orally, or dexamethasone (25 mg/kg, s.c.) for 5 days. On day 4, the animals received intracolonic TNBS (150 mg/kg), on day 6 they were euthanized. The weight of the animals, the macroscopic and microscopic colonic damage, reduced glutathione (GSH) and malondialdehyde (MDA) levels, and the activity of glutathione S-transferase (GST), catalase (CAT), superoxide dismutase (SOD), and myeloperoxidase (MPO) were measured in colon homogenate. The action of HEABP and two isolated compounds in neutrophil migration was recorded. KEY FINDINGS HEABP (100 and 300 mg/kg), but not dexamethasone, decreased colonic lesion, and increased colonic mucin staining. In parallel, HEABP decreased MDA and restored GSH levels and the activity of SOD, CAT, and GST in the colon. A dose-dependent inhibition of MPO activity was observed (LogIC50 = 1.9). Moreover, HEBPA and the junicedric and abietic acids inhibited the neutrophil chemotaxis in vitro and HEBPA reduced neutrophil migration in vivo. CONCLUSION HEABP may be promising in the therapies for inflammatory bowel diseases, reducing oxidative and inflammatory damage, especially mediated by neutrophils.
Collapse
Affiliation(s)
- Benhur Judah Cury
- Department of Pharmaceutical Science, University of Vale do Itajaí, Itajaí, Santa Catarina, Brazil
- Department of Pharmacology, Laboratory of Pharmacology Applied to the Gastrointestinal Tract and its Interactions, Federal University of Santa Catarina, Florianópols, Brazil
| | | | - Levy Mota da Silva
- Department of Pharmaceutical Science, University of Vale do Itajaí, Itajaí, Santa Catarina, Brazil
| | | | | | - Ana Caroline Dos Santos
- Department of Pharmaceutical Science, University of Vale do Itajaí, Itajaí, Santa Catarina, Brazil
| | | | - José Roberto Santin
- Department of Pharmaceutical Science, University of Vale do Itajaí, Itajaí, Santa Catarina, Brazil
| | - Larissa Benvenutti
- Department of Pharmaceutical Science, University of Vale do Itajaí, Itajaí, Santa Catarina, Brazil
| | - Carlos Rafael Vaz
- Department of Pharmaceutical Science, University of Vale do Itajaí, Itajaí, Santa Catarina, Brazil
| | | | - Jairo Bastos Kenupp
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Luisa Mota da Silva
- Department of Pharmacology, Laboratory of Pharmacology Applied to the Gastrointestinal Tract and its Interactions, Federal University of Santa Catarina, Florianópols, Brazil
| |
Collapse
|
2
|
Mendoza-Arroyo B, Rosales-Hernández MC, Pacheco-Yépez J, Rivera-Antonio AM, Márquez-Flores YK, Cárdenas-Jaramillo LM, Reséndiz-Albor AA, Arciniega-Martínez IM, Cruz-Hernández TR, Abarca-Rojano E. LDH-A Promotes Metabolic Rewiring in Leucocytes from the Intestine of Rats Treated with TNBS. Metabolites 2023; 13:843. [PMID: 37512550 PMCID: PMC10384056 DOI: 10.3390/metabo13070843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/06/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023] Open
Abstract
Although the aetiology of inflammatory bowel diseases (IBDs) is still unknown, one of their main characteristics is that the immune system chronically affects the permeability of the intestinal lamina propria, in turn altering the composition of the microbiota. In this study, the TNBS rat model of colitis was used because it contains a complex inflammatory milieu of polymorphonuclear cells (PMN) and lymphocytes infiltrating the lamina propria. The aim of the present study was to investigate six dehydrogenases and their respective adaptations in the tissue microenvironment by quantifying enzymatic activities measured under substrate saturation conditions in epithelial cells and leukocytes from the lamina propria of rats exposed to TNBS. Our results show that in the TNBS group, an increased DAI score was observed due to the presence of haemorrhagic and necrotic areas in the colon. In addition, the activities of G6PDH and GADH enzymes were significantly decreased in the epithelium in contrast to the increased activity of these enzymes and increased lactate mediated by the LDH-A enzyme in leukocytes in the lamina propria of the colon. Over the past years, evidence has emerged illustrating how metabolism supports aspect of cellular function and how a metabolic reprogramming can drive cell differentiation and fate. Our findings show a metabolic reprogramming in colonic lamina propria leukocytes that could be supported by increased superoxide anion.
Collapse
Affiliation(s)
- Belen Mendoza-Arroyo
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n., Ciudad de México 11340, Mexico
- Laboratorio de Biofísica y Biocatálisis, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n., Ciudad de México 11340, Mexico
| | - Martha Cecilia Rosales-Hernández
- Laboratorio de Biofísica y Biocatálisis, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n., Ciudad de México 11340, Mexico
| | - Judith Pacheco-Yépez
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n., Ciudad de México 11340, Mexico
| | - Astrid Mayleth Rivera-Antonio
- Laboratorio de Biofísica y Biocatálisis, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n., Ciudad de México 11340, Mexico
| | - Yazmín Karina Márquez-Flores
- Departamento de Farmacia, Escuela Nacional de Ciencias Biológicas, Campus Zacatenco, Instituto Politécnico Nacional, Av. Wilfrido Massieu s/n Col. Zacatenco, Ciudad de México 07738, Mexico
| | - Luz María Cárdenas-Jaramillo
- Coordinación de Ciencias Morfológicas, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n., Ciudad de México 11340, Mexico
| | - Aldo Arturo Reséndiz-Albor
- Laboratorio de Inmunidad de Mucosas, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n., Ciudad de México 11340, Mexico
| | - Ivonne Maciel Arciniega-Martínez
- Laboratorio de Inmunidad de Mucosas, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n., Ciudad de México 11340, Mexico
| | - Teresita Rocío Cruz-Hernández
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n., Ciudad de México 11340, Mexico
| | - Edgar Abarca-Rojano
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n., Ciudad de México 11340, Mexico
| |
Collapse
|
3
|
Roy S, Dhaneshwar S, Mahmood T, Kumar S, Saxena SK. Pre-clinical Investigation of Protective Effect of Nutraceutical D-Glucosamine on TNBS-induced Colitis. Immunopharmacol Immunotoxicol 2022; 45:172-184. [PMID: 36154797 DOI: 10.1080/08923973.2022.2128370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The level of precursors involved in the biosynthesis of glycosaminoglycan (GAG), glucosamine synthase, and N-acetyl glucosamine (NAG), are significantly reduced in inflammatory bowel disease (IBD). This results in deficient GAG content in mucosa, which eventually disrupts the gut wall integrity, provoking abnormal immunological responses. This is characterized by colossal liberation of inflammatory mediators including tumor necrosis factor-alpha (TNF-α), interleukins (IL), and reactive oxygen species provoking colonic inflammation. D-glucosamine (D-GLU) is reported to suppress oxidative stress, and pro-inflammatory cytokines and acts as a starting material for biosynthesis of NAG. The potential of D-GLU and its combination with mesalamine (5-ASA) was investigated in 2,4,6-trinitrobenzene sulfonic acid (TNBS)-instigated IBD in Wistar rats. Standard and test drugs were given orally for five days to separate groups of rats. Colonic inflammation was evaluated by disease activity score rate (DASR), colon/body weight ratio, colon length, diameter, colon pH, histological injury and score. Inflammatory biomarkers IL-1β, TNF-α, along with reduced glutathione (GSH), and malondialdehyde (MDA) were assessed. Combination of D-GLU +5-ASA significantly ameliorated severity of colonic inflammation by lowering DASR (P < 0.001) and colon/body weight ratio (P < 0.001), restored the colonic architecture and suppressed the histopathological score (P < 0.001), along with the absence of major adverse reactions. The combination suppressed the levels of inflammatory markers (P < 0.001) and MDA (P < 0.001) while enhancing GSH level (P < 0.001). In comparison to individual 5-ASA and D-GLU, combination of drugs significantly diminished colitis severity through their combined anti-inflammatory and antioxidant effects by acting on multiple targets simultaneously. The combination holds remarkable potential in the management of IBD.
Collapse
Affiliation(s)
- Supriya Roy
- Amity Institute of Pharmacy, Lucknow, Amity University Uttar Pradesh, Sector 125, Noida, 201313, India
| | - Suneela Dhaneshwar
- Amity Institute of Pharmacy, Lucknow, Amity University Uttar Pradesh, Sector 125, Noida, 201313, India
| | - Tarique Mahmood
- Faculty of Pharmacy, Integral University, Dasauli, Lucknow, Uttar Pradesh, 226026, India
| | - Swatantra Kumar
- Centre for Advanced Research (CFAR), Faculty of Medicine, King George's Medical University (KGMU), Lucknow, 226003, India
| | - Shailendra K Saxena
- Centre for Advanced Research (CFAR), Faculty of Medicine, King George's Medical University (KGMU), Lucknow, 226003, India
| |
Collapse
|
4
|
Soleimani D, Miryan M, Tutunchi H, Navashenaq JG, Sadeghi E, Ghayour-Mobarhan M, Ferns GA, Ostadrahimi A. A systematic review of preclinical studies on the efficacy of propolis for the treatment of inflammatory bowel disease. Phytother Res 2020; 35:701-710. [PMID: 32989885 DOI: 10.1002/ptr.6856] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 07/18/2020] [Accepted: 07/20/2020] [Indexed: 12/18/2022]
Abstract
Propolis is a resinous substance produced by bees from plants. There has been some evidence indicating that propolis may be a candidate for the treatment of inflammatory bowel disease (IBD) because of its potent antioxidant properties and ability to modulate immune response and gut microbiome. The objective of this systematic review was to investigate the role of propolis in the treatment of IBD, emphasizing possible mechanisms underlying the anti-inflammatory properties of it. Searches were performed in ISI, PubMed/Medline, Scopus, EMBASE, and Cochrane Library databases up to March 2020. According to the studies examined in this review, the administration of propolis can be useful in attenuating many aspects of clinical, macroscopic, and histological features of colitis in animal models. The efficacy of propolis in the treatment of IBD might be attributed to its potent antioxidants and anti-inflammatory activities. Propolis may also be involved in the modulation of the gut microbiota and in the improvement of the intestinal mucosal barrier function. The major mechanism of action is most likely to be mediated via the prevention of some transcriptional factors and associated proteins. However, future studies are warranted to investigate the clinical utility of propolis as a candidate in the treatment of IBD.
Collapse
Affiliation(s)
- Davood Soleimani
- Nutritional Sciences Department, School of Nutrition Sciences and Food Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mahsa Miryan
- Nutrition Research Center, Student Research Committee, Department of Clinical Nutrition, School of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.,Student Research Committee, Nutrition Research Center, Department of Clinical Nutrition, School of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Helda Tutunchi
- Nutrition Research Center, Student Research Committee, Department of Clinical Nutrition, School of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.,Student Research Committee, Nutrition Research Center, Department of Clinical Nutrition, School of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jamshid G Navashenaq
- Noncommunicable Diseases Research Center, Bam University of Medical Sciences, Bam, Iran.,Student Research Committee, School of Medicine, Bam University of Medical Sciences, Bam, Iran
| | - Ehsan Sadeghi
- Research Center for Environmental Determinants of Health (RCEDH), Kermanshah University of medical Sciences, Kermanshah, Iran
| | - Majid Ghayour-Mobarhan
- Metabolic Syndrome Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,International UNESCO center for Health-Related Basic Sciences and Human Nutrition, Department of Nutrition, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gordon A Ferns
- Division of Medical Education, Brighton and Sussex Medical School, Brighton, UK
| | - Alireza Ostadrahimi
- Department of Clinical Nutrition, School of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
5
|
Hwang S, Hwang S, Jo M, Lee CG, Rhee KJ. Oral administration of Korean propolis extract ameliorates DSS-induced colitis in BALB/c mice. Int J Med Sci 2020; 17:1984-1991. [PMID: 32788877 PMCID: PMC7415397 DOI: 10.7150/ijms.44834] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 07/14/2020] [Indexed: 01/08/2023] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic disorder of the gastrointestinal tract characterized by inflammation. Although IBD is usually treated with anti-inflammatory agents, most of these treatments have limited efficacy. Propolis is a viscous mixture that honeybees produce by mixing saliva and honeycomb with exudate gathered from tree buds, sap flows, or other botanical sources. Although propolis has proved to ameliorate several inflammatory disorders, its therapeutic properties vary by geographical location, plant resources, bee species, and the solvents used in the extraction. In this study, we investigated the effects of Korean propolis in BALB/c mice with dextran sulfate sodium (DSS)-induced colitis. Korean propolis extract was diluted in drinking water, and the BALB/c mice were given DSS for 7 days and Korean propolis for 17 days. The mice were sacrificed on day 17. In the DSS-induced colitis model, Korean propolis significantly decreased the severity of colitis, as assessed by body weight, spleen weight, and colonic length. Furthermore, Korean propolis induced the reduction of the inflammatory cytokine KC, infiltration of immune cells, and colonic hyperplasia in mice with DSS-induced colitis. The Korean propolis also decreased the loss of goblet cells and antibody-reactivity to inflammatory markers in the colons of mice administered DSS. These results demonstrate for the first time that Korean propolis has an ameliorative effect on DSS-induced colonic inflammation in BALB/c mice.
Collapse
Affiliation(s)
- Soonjae Hwang
- Department of Biomedical Laboratory Science, College of Health Sciences, Yonsei University MIRAE Campus, Wonju, Gangwon-do 26493, Republic of Korea
| | - Samnoh Hwang
- Department of Biomedical Laboratory Science, College of Health Sciences, Yonsei University MIRAE Campus, Wonju, Gangwon-do 26493, Republic of Korea
| | - Minjeong Jo
- Department of Biomedical Laboratory Science, College of Health Sciences, Yonsei University MIRAE Campus, Wonju, Gangwon-do 26493, Republic of Korea
| | - Chang Gun Lee
- Department of Biomedical Laboratory Science, College of Health Sciences, Yonsei University MIRAE Campus, Wonju, Gangwon-do 26493, Republic of Korea
| | - Ki-Jong Rhee
- Department of Biomedical Laboratory Science, College of Health Sciences, Yonsei University MIRAE Campus, Wonju, Gangwon-do 26493, Republic of Korea
| |
Collapse
|
6
|
Fotschki B, Jurgonski A, Fotschki J, Majewski M, Ognik K, Juskiewicz J. Dietary Chicory Inulin-Rich Meal Exerts Greater Healing Effects than Fructooligosaccharide Preparation in Rats with Trinitrobenzenesulfonic Acid-Induced Necrotic Colitis. POL J FOOD NUTR SCI 2019. [DOI: 10.31883/pjfns-2019-0013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
7
|
de Miranda MB, Lanna MF, Nascimento ALB, de Paula CA, de Souza ME, Felipetto M, da Silva Barcelos L, de Moura SAL. Hydroalcoholic extract of Brazilian green propolis modulates inflammatory process in mice submitted to a low protein diet. Biomed Pharmacother 2018; 109:610-620. [PMID: 30399598 DOI: 10.1016/j.biopha.2018.10.116] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 10/19/2018] [Accepted: 10/20/2018] [Indexed: 01/12/2023] Open
Abstract
The occurrence of inflammation and protein malnutrition is an aggravating risk factor for morbidity and mortality in the clinical setting. The green propolis, a natural product made by Apis mellifera bees from Baccharis dracunculifolia resin, has therapeutic potential to modulate chronic inflammation. However, its effect on inflammation in an impaired nutritional status is not known. The aim of this study was to characterize the effects of the administration of the hydroalcoholic extract of the green propolis in the chronic inflammatory process of mice submitted to a low-protein diet. For this, we used the subcutaneous implantation of sponge disks as an inflammatory model and the animals were distributed in the following groups: standard protein diet (12% protein content), control treatment; standard protein diet, propolis treatment; low-protein diet (3% protein content), control treatment; low-protein diet, propolis treatment. Propolis was given daily at a dose of 500 mg/kg (p.o.) during a period of 7 or 15 days. Our main findings show that animals fed with standard protein diet and treated with propolis had low levels of red blood cells, hemoglobin, and hematocrit, with the subsequent reestablishment of these levels, in addition to monocyte count elevation and higher TNF levels after one week of treatment. In the low-protein diet group, the propolis treatment provided a significant recovery in weight and maintenance of total serum protein levels at the end of two weeks of treatment. Histological analysis showed propolis reduced the inflammatory infiltrate in the sponges of both standard and low-protein diet groups. In addition, the propolis extract presented antiangiogenic effect in both groups. Therefore, our data suggests that the hydroalcoholic extract of the green propolis promotes weight recovery and avoid the reduction of protein levels, in addition to inhibit inflammation and angiogenesis in animals fed with a low-protein diet.
Collapse
Affiliation(s)
- Marina Barcelos de Miranda
- Biomaterials and Experimental Pathology Laboratory, Biological Sciences Department, Federal University of Ouro Preto (UFOP) - Morro do Cruzeiro Campus, 35.400-000, Minas Gerais, Brazil
| | - Mariana Ferreira Lanna
- Biomaterials and Experimental Pathology Laboratory, Biological Sciences Department, Federal University of Ouro Preto (UFOP) - Morro do Cruzeiro Campus, 35.400-000, Minas Gerais, Brazil
| | - Ana Luiza Barros Nascimento
- Biomaterials and Experimental Pathology Laboratory, Biological Sciences Department, Federal University of Ouro Preto (UFOP) - Morro do Cruzeiro Campus, 35.400-000, Minas Gerais, Brazil
| | - Carmen Aparecida de Paula
- Clinical Analysis Department, Pharmacy School, Federal University of Ouro Preto (UFOP) - Morro do Cruzeiro Campus, 35.400-000, Minas Gerais, Brazil
| | - Marcelo Eustáquio de Souza
- Experimental Nutrition Laboratory, Nutrition School, Federal University of Ouro Preto (UFOP) - Morro do Cruzeiro Campus, 35.400-000, Minas Gerais, Brazil
| | - Mariane Felipetto
- Angiogenesis and Stem Cell Laboratory, Physiology and Biophysics Department, Biological Sciences Institute, Federal University of Minas Gerais (UFMG), Av. Antônio Carlos 6627, 31.270-901, Belo Horizonte, Minas Gerais, Brazil
| | - Lucíola da Silva Barcelos
- Angiogenesis and Stem Cell Laboratory, Physiology and Biophysics Department, Biological Sciences Institute, Federal University of Minas Gerais (UFMG), Av. Antônio Carlos 6627, 31.270-901, Belo Horizonte, Minas Gerais, Brazil
| | - Sandra Aparecida Lima de Moura
- Biomaterials and Experimental Pathology Laboratory, Biological Sciences Department, Federal University of Ouro Preto (UFOP) - Morro do Cruzeiro Campus, 35.400-000, Minas Gerais, Brazil.
| |
Collapse
|
8
|
Brazilian green propolis hydroalcoholic extract reduces colon damages caused by dextran sulfate sodium-induced colitis in mice. Inflammopharmacology 2018; 26:1283-1292. [DOI: 10.1007/s10787-018-0467-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 03/12/2018] [Indexed: 12/13/2022]
|
9
|
Propolis and Its Potential to Treat Gastrointestinal Disorders. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 2018:2035820. [PMID: 29736177 PMCID: PMC5875067 DOI: 10.1155/2018/2035820] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 11/21/2017] [Indexed: 12/17/2022]
Abstract
There are a number of disorders that affect the gastrointestinal tract. Such disorders have become a global emerging disease with a high incidence and prevalence rates worldwide. Inflammatory and ulcerative processes of the stomach or intestines, such as gastritis, ulcers, colitis, and mucositis, afflict a significant proportion of people throughout the world. The role of herbal-derived medicines has been extensively explored in order to develop new effective and safe strategies to improve the available gastrointestinal therapies that are currently used in the clinical practice. Studies on the efficacy of propolis (a unique resinous aromatic substance produced by honeybees from different types of species of plants) are promising and propolis has been effective in the treatment of several pathological conditions. This review, therefore, summarizes and critiques the contents of some relevant published scientific papers (including those related to clinical trials) in order to demonstrate the therapeutic value of propolis and its active compounds in the treatment and prevention of gastrointestinal diseases.
Collapse
|
10
|
Zhang Y, Fu LT, Tang F. The protective effects of magnolol on acute trinitrobenzene sulfonic acid‑induced colitis in rats. Mol Med Rep 2017; 17:3455-3464. [PMID: 29286109 PMCID: PMC5802145 DOI: 10.3892/mmr.2017.8321] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 01/06/2017] [Indexed: 12/11/2022] Open
Abstract
The present study aimed to investigate the protective effects of magnolol on acute 2,4,6-trinitrobenzene sulfonic acid (TNBS)-induced colitis, and its underlying mechanisms. Experimental colitis was induced by intracolonic administration of TNBS/ethanol into rats. The model rats were randomly assigned into groups: TNBS, magnolol (high, medium and low doses), and salazosulfapyridine (positive control). All intervention regimens were administered by oral gavage, once a day for 7 consecutive days, 24 h after colitis induction. Histological and biochemical changes in colonic inflammation were evaluated by hematoxylin and eosin and immunohistochemistry, respectively. Rats treated with all doses of magnolol exhibited decreased colonic myeloperoxidase activity (P<0.05 vs. TNBS), reduced serum levels of proinflammatory cytokines [including interleukin (IL)-6 and IL-17], and downregulated Toll-like receptor-4 (TLR-4) mRNA expression. Histological analysis revealed that medium and high doses of magnolol conferred an anti-inflammatory effect, which was indicated by a decrease in disease activity index, an increase in thymus index, and downregulation of nuclear factor (NF)-κB p65 mRNA and TLR-4 protein expression. However, only high-dose magnolol significantly ameliorated the elevated colon weight/length ratio. The results of the present study indicate that magnolol exerts protective effects against acute TNBS-induced colitis in rats, and the TLR-4/NF-κB signaling pathway-mediated inhibitory effect on inflammatory cascades may contribute to the protective activity of magnolol.
Collapse
Affiliation(s)
- Yong Zhang
- Department of Traditional Chinese Medicine, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Li-Tang Fu
- Dingzhou Radi‑Glory Bio‑Chem Co., Ltd., Baoding, Hebei 073000, P.R. China
| | - Fang Tang
- Department of Traditional Chinese Medicine, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| |
Collapse
|
11
|
Inhibitory Effect of Propolis on Platelet Aggregation In Vitro. JOURNAL OF HEALTHCARE ENGINEERING 2017; 2017:3050895. [PMID: 29129989 PMCID: PMC5654250 DOI: 10.1155/2017/3050895] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 05/02/2017] [Indexed: 12/03/2022]
Abstract
Platelet hyperactivity plays an important role in arterial thrombosis and atherosclerosis. The present study was aimed to investigate the effects of different extracts of propolis and components of flavonoids on platelet aggregation. Platelet-rich plasma was prepared and incubated in vitro with different concentrations of the tested extracts and components of flavonoids. Platelets aggregation was induced by different agonists including adenosine diphosphate (ADP, 10 μM), thrombin receptor activator peptide (TRAP, 50 μM), and collagen (5 μg/mL). At 25 mg/L to 300 mg/mL, the water extract propolis (WEP) inhibited three agonists-induced platelet aggregations in a dose-dependent manner. The flavonoids isolated from the propolis also showed markedly inhibited platelet aggregation induced by collagen, ADP, and TRAP, respectively. The components including caffeic acid phenethyl ester (CAPE), galangin, apigenin, quercetin, kaempferol, ferulic acid, rutin, chrysin, pinostrobin, and pinocembrin and their abilities of inhibiting platelet aggregation were studied. It was concluded that propolis had an antiplatelet action in which flavonoids were mainly implicated.
Collapse
|
12
|
Dietary Propolis Ameliorates Dextran Sulfate Sodium-Induced Colitis and Modulates the Gut Microbiota in Rats Fed a Western Diet. Nutrients 2017; 9:nu9080875. [PMID: 28805735 PMCID: PMC5579668 DOI: 10.3390/nu9080875] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2017] [Revised: 08/08/2017] [Accepted: 08/10/2017] [Indexed: 12/12/2022] Open
Abstract
Propolis is an important hive product and considered beneficial to health. However, evidence of its potential for improving gut health is still lacking. Here we use rats to examine whether dietary supplementation with propolis could be used as a therapy for ulcerative colitis. Rats were fed with a Western style diet alone (controls) or supplemented with different amounts of Chinese propolis (0.1%, 0.2%, and 0.3%) to examine effects on acute colitis induced by 3% dextran sulphate sodium (DSS) in drinking water. Propolis at 0.3%, but not lower levels, significantly improved colitis symptoms compared with the control group, with a less pronounced disease activity index (DAI) (p < 0.001), a significant increase in colon length/weight ratio (p < 0.05) and an improved distal colon tissue structure as assessed by histology. Although short chain fatty acid levels in digesta were not altered by propolis supplementation, 16S rRNA phylogenetic sequencing revealed a significant increase in gut microbial diversity after 21 days of 0.3% propolis supplementation compared with controls including a significant increase in bacteria belonging to the Proteobacteria and Acidobacteria phyla. This is the first study to demonstrate that propolis can attenuate DSS-induced colitis and provides new insight into diet-microbiota interactions during inflammatory bowel disease.
Collapse
|
13
|
Effects of Herb-Partitioned Moxibustion on the miRNA Expression Profiles in Colon from Rats with DSS-Induced Ulcerative Colitis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 2017:1767301. [PMID: 28246536 PMCID: PMC5299174 DOI: 10.1155/2017/1767301] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2016] [Accepted: 12/27/2016] [Indexed: 12/12/2022]
Abstract
Objective. This study explored the mechanism of herb-partitioned moxibustion (HM) on dextran sulfate sodium- (DSS-) induced ulcerative colitis (UC) from the miRNA perspective. Methods. Rats were randomly divided into 3 groups [normal control (NC) group, UC model (UC) group, and herb-partitioned moxibustion (UCHM) group]. The UC and UCHM groups were administered 4% DSS for 7 days. The UCHM group received HM at the Tianshu (bilateral, ST25). The effect of HM on UC was observed and the miRNA expression profile in the colon tissues was analyzed. Results. Compared with the UC group, the body weights were significantly higher in the UCHM group on day 14 (P < 0.001); the macroscopic colon injury scores and microscopic histopathology scores in the UCHM group decreased (P < 0.05); and there were 15 differentially expressed miRNAs in the UCHM group. The changes in miR-184 and miR-490-5p expression levels on the UC were reversed by HM intervention. Validation using qRT-PCR showed that two miRNAs expression trend was consistent with the sequencing results. Conclusion. HM at ST25 might regulate miR-184 and miR-490-5p expression, act on the transcription of their target genes to regulate inflammatory signaling pathways, and attenuate inflammation and tissue injury in the colons of rats with DSS-induced UC.
Collapse
|
14
|
Hydroalcoholic extract of Brazilian red propolis exerts protective effects on acetic acid-induced ulcerative colitis in a rodent model. Biomed Pharmacother 2017; 85:687-696. [DOI: 10.1016/j.biopha.2016.11.080] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 11/17/2016] [Accepted: 11/18/2016] [Indexed: 12/14/2022] Open
|
15
|
Razmaraii N, Babaei H, Mohajjel Nayebi A, Assadnassab G, Ashrafi Helan J, Azarmi Y. Cardioprotective Effect of Grape Seed Extract on Chronic Doxorubicin-Induced Cardiac Toxicity in Wistar Rats. Adv Pharm Bull 2016; 6:423-433. [PMID: 27766227 PMCID: PMC5071806 DOI: 10.15171/apb.2016.055] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2016] [Revised: 09/03/2016] [Accepted: 09/04/2016] [Indexed: 01/11/2023] Open
Abstract
Purpose: The aim of the present study was to determine the ability of grape seed extract (GSE) as a powerful antioxidant in preventing adverse effect of doxorubicin (DOX) on heart function. Methods: Male rats were divided into three groups: control, DOX (2 mg/kg/48h, for 12 days) and GSE (100 mg/kg/24h, for 16 days) plus DOX. Left ventricular (LV) function and hemodynamic parameters were assessed using echocardiography, electrocardiography and a Millar pressure catheter. Histopathological analysis and in vitro antitumor activity were also evaluated. Results: DOX induced heart damage in rats through decreasing the left ventricular systolic and diastolic pressures, rate of rise/decrease of LV pressure, ejection fraction, fractional shortening and contractility index as demonstrated by echocardiography, electrocardiography and hemodynamic parameters relative to control group. Our data demonstrated that GSE treatment markedly attenuated DOX-induced toxicity, structural changes in myocardium and improved ventricular function. Additionally, GSE did not intervene with the antitumor effect of DOX. Conclusion: Collectively, the results suggest that GSE is potentially protective against DOX-induced toxicity in rat heart and maybe increase therapeutic index of DOX in human cancer treatment.
Collapse
Affiliation(s)
- Nasser Razmaraii
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, 5165665811, Iran
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, 5166614756, Iran
| | - Hossein Babaei
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, 5165665811, Iran
- School of Pharmacy, Tabriz University of Medical Sciences, Tabriz, 5166414766, Iran
| | | | - Gholamreza Assadnassab
- Department of Clinical Sciences, Tabriz Branch, Islamic Azad University, Tabriz, 5157944533, Iran
| | - Javad Ashrafi Helan
- Department of Pathobiology, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, 5166617564, Iran
| | - Yadollah Azarmi
- School of Pharmacy, Tabriz University of Medical Sciences, Tabriz, 5166414766, Iran
| |
Collapse
|
16
|
Razmaraii N, Babaei H, Mohajjel Nayebi A, Assadnassab G, Ashrafi Helan J, Azarmi Y. Crocin treatment prevents doxorubicin-induced cardiotoxicity in rats. Life Sci 2016; 157:145-151. [PMID: 27297631 DOI: 10.1016/j.lfs.2016.06.012] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 06/04/2016] [Accepted: 06/10/2016] [Indexed: 11/26/2022]
Abstract
Doxorubicin (DOX)-induced cardiotoxicity is well-known as a serious complication of chemotherapy in patients with cancer. It is unknown whether crocin (CRO), main component of Crocus sativus L. (Saffron), could reduce the severity of DOX-induced cardiotoxicity. Therefore, this study was undertaken to assess the protective impact of CRO on DOX-induced cardiotoxicity in rats. The rats were divided into four groups: control, DOX (2mg/kg/48h, for 12days), and CRO groups that receiving DOX as in group 2 and CRO (20 and 40mg/kg/24h, for 20days) starting 4days prior to first DOX injection and throughout the study. Echocardiographic, electrocardiographic and hemodynamic studies, along with histopathological examination and MTT test were carried out. Our findings demonstrate that DOX resulted in cardiotoxicity manifested by decreased the left ventricular (LV) systolic and diastolic pressures, rate of rise/drop of LV pressure, ejection fraction, fractional shortening and contractility index, as compared to control group. In addition, histopathological analysis of heart confirmed adverse structural changes in myocardial cells following DOX administration. The results also showed that CRO treatment significantly improved DOX-induced heart damage, structural changes in the myocardium and ventricular function. In addition, CRO did not affect the in vitro antitumor activity of DOX. Taken together, our data confirm that CRO is protective against cardiovascular-related disorders produced by DOX, and clinical studies are needed to examine these findings in human.
Collapse
Affiliation(s)
- Nasser Razmaraii
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz 5165665811, Iran; Student Research Committee, Tabriz University of Medical Sciences, Tabriz 5166614756, Iran
| | - Hossein Babaei
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz 5165665811, Iran; School of Pharmacy, Tabriz University of Medical Sciences, Tabriz 5166414766, Iran.
| | | | - Gholamreza Assadnassab
- Department of Clinical Sciences, Tabriz Branch, Islamic Azad University, Tabriz 5157944533, Iran
| | - Javad Ashrafi Helan
- Department of Pathobiology, Faculty of Veterinary Medicine, University of Tabriz, Tabriz 5166617564, Iran
| | - Yadollah Azarmi
- School of Pharmacy, Tabriz University of Medical Sciences, Tabriz 5166414766, Iran
| |
Collapse
|