1
|
Duan H, Wang D, Zheng Y, Zhou Y, Yan W. The powerful antioxidant effects of plant fruits, flowers, and leaves help to improve retinal damage and support the relief of visual fatigue. Heliyon 2024; 10:e34299. [PMID: 39113954 PMCID: PMC11305225 DOI: 10.1016/j.heliyon.2024.e34299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 07/04/2024] [Accepted: 07/08/2024] [Indexed: 08/10/2024] Open
Abstract
With the popularization of electronic products, visual fatigue is inevitably frequent. The causes of visual fatigue are varied, but from the perspective of physiological mechanisms, it is mainly closely related to retinal function or structural damage, especially the light source from various mobile devices and office equipments nowadays, which induces oxidative stress damage in the retina and exacerbates the degree of visual fatigue, resulting in the inability to use the eyes for a long period of time, pain in the eyes and periorbital area, blurred vision, dry eyes, tearing, and other discomforts. Food ingredients derived from natural plants have greater application in relieving visual fatigue. Therefore, this paper presents a detailed compilation of six plants that are widely used for their visual fatigue-relieving function, in the hope of providing more raw material choices for the development of products with visual fatigue-relieving functions in the future.
Collapse
Affiliation(s)
- Hao Duan
- College of Biochemical Engineering, Beijing Union University, Beijing, 100023, China
- Beijing Key Laboratory of Bioactive Substances and Functional Food, Beijing Union University, Beijing, 100023, China
| | - Diandian Wang
- College of Biochemical Engineering, Beijing Union University, Beijing, 100023, China
- Beijing Key Laboratory of Bioactive Substances and Functional Food, Beijing Union University, Beijing, 100023, China
| | - Yue Zheng
- College of Biochemical Engineering, Beijing Union University, Beijing, 100023, China
- Beijing Key Laboratory of Bioactive Substances and Functional Food, Beijing Union University, Beijing, 100023, China
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yaxi Zhou
- College of Biochemical Engineering, Beijing Union University, Beijing, 100023, China
- Beijing Key Laboratory of Bioactive Substances and Functional Food, Beijing Union University, Beijing, 100023, China
| | - Wenjie Yan
- College of Biochemical Engineering, Beijing Union University, Beijing, 100023, China
- Beijing Key Laboratory of Bioactive Substances and Functional Food, Beijing Union University, Beijing, 100023, China
| |
Collapse
|
2
|
Meganathan P, Mai CW, Selvaduray KR, Zainal Z, Fu JY. Effect of Carotenes against Oxidative Stress Induced Age-Related Macular Degeneration in Human Retinal Pigment Cells. ACS FOOD SCIENCE & TECHNOLOGY 2022; 2:1719-1727. [DOI: 10.1021/acsfoodscitech.2c00205] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2025]
Affiliation(s)
- Puvaneswari Meganathan
- Nutrition Unit, Product Development and Advisory Services Division, Malaysian Palm Oil Board, 6, Persiaran Institusi, Bandar
Baru Bangi, Kajang, 43000 Selangor, Malaysia
| | - Chun-Wai Mai
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cells Research Center, Department of Urology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
- School of Pharmacy, International Medical University, 126, Jalan Jalil Perkasa 19, Bukit Jalil, Kuala Lumpur 57000, Malaysia
| | - Kanga Rani Selvaduray
- Nutrition Unit, Product Development and Advisory Services Division, Malaysian Palm Oil Board, 6, Persiaran Institusi, Bandar
Baru Bangi, Kajang, 43000 Selangor, Malaysia
| | - Zaida Zainal
- Nutrition Unit, Product Development and Advisory Services Division, Malaysian Palm Oil Board, 6, Persiaran Institusi, Bandar
Baru Bangi, Kajang, 43000 Selangor, Malaysia
| | - Ju-Yen Fu
- Nutrition Unit, Product Development and Advisory Services Division, Malaysian Palm Oil Board, 6, Persiaran Institusi, Bandar
Baru Bangi, Kajang, 43000 Selangor, Malaysia
| |
Collapse
|
3
|
Mechanism of glycometabolism regulation by bioactive compounds from the fruits of Lycium barbarum: A review. Food Res Int 2022; 159:111408. [PMID: 35940747 DOI: 10.1016/j.foodres.2022.111408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/30/2022] [Accepted: 05/22/2022] [Indexed: 11/21/2022]
|
4
|
|
5
|
Chen X, Zuo J, Hu T, Shi X, Zhu Y, Wu H, Xia Y, Shi W, Wei W. Exploration of the Effect and Mechanism of Fructus Lycii, Rehmanniae Radix Praeparata, and Paeonia lactiflora in the Treatment of AMD Based on Network Pharmacology and in vitro Experimental Verification. DRUG DESIGN DEVELOPMENT AND THERAPY 2021; 15:2831-2842. [PMID: 34234414 PMCID: PMC8254409 DOI: 10.2147/dddt.s310481] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 05/25/2021] [Indexed: 12/24/2022]
Abstract
Purpose The aim of this study was to observe the mechanism of Fructus Lycii (FL), Rehmanniae Radix Praeparata (RRP) and Paeonia lactiflora (PL) in treating age-related macular degeneration (AMD) based on network pharmacology and biological experiments. Methods Bioactive compounds, potential targets of FL, RRP and PL, and genes related to AMD, were acquired from public databases. Functional and pathway enrichment analyses of the core targets were conducted by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG). Subsequently, the finding was further verified with cell experiments. The MTT assay and flow cytometric analysis were used to assess cell viability and apoptosis. The production of reactive oxygen species (ROS) was analyzed by DCFH-DA staining; the activity of antioxidant enzymes was chemically measured with assay kits. The expression of key proteins was evaluated by Western blot analysis. Results Fifty-nine active compounds, 182 potential targets, and 2536 AMD-related human genes were identified. A total of 103 key targets of the three herbs on AMD were identified by protein-protein interaction (PPI) analysis. The abovementioned targets were correlated with nuclear receptor activity, oxidative stress, and apoptosis pathways according to the GO and KEGG analyses. MTT assay and flow cytometry demonstrated that pretreatment of ARPE-19 cells with the three herbs significantly increased cell viability and decreased apoptosis induced by H2O2. The three herbs might reduce the intracellular ROS levels and increase the SOD and CAT activities after H2O2. Furthermore, the three herbs significantly inhibited oxidative stress via increasing the expression of Nrf2, HO-1 and NQO1. Conclusion The combined results of network pharmacology and validation experiments showed that FL, RRP and PL reduce oxidative stress and apoptosis in RPE cells to exert its effect in the treatment of AMD.
Collapse
Affiliation(s)
- Xi Chen
- First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210029, People's Republic of China.,Department of Ophthalmology, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210029, People's Republic of China.,Key Laboratory for Metabolic Diseases in Chinese Medicine, First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210029, People's Republic of China
| | - Jing Zuo
- Department of Ophthalmology, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210029, People's Republic of China
| | - Tianming Hu
- Department of Ophthalmology, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210029, People's Republic of China
| | - Xiaoqing Shi
- First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210029, People's Republic of China.,Department of Ophthalmology, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210029, People's Republic of China.,Key Laboratory for Metabolic Diseases in Chinese Medicine, First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210029, People's Republic of China
| | - Yujie Zhu
- First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210029, People's Republic of China.,Department of Ophthalmology, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210029, People's Republic of China.,Key Laboratory for Metabolic Diseases in Chinese Medicine, First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210029, People's Republic of China
| | - Hao Wu
- Department of Ophthalmology, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210029, People's Republic of China
| | - Ying Xia
- Department of Ophthalmology, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210029, People's Republic of China
| | - Wei Shi
- Department of Ophthalmology, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210029, People's Republic of China
| | - Wei Wei
- First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210029, People's Republic of China.,Department of Ophthalmology, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210029, People's Republic of China
| |
Collapse
|
6
|
A Solid Dispersion of Quercetin Shows Enhanced Nrf2 Activation and Protective Effects against Oxidative Injury in a Mouse Model of Dry Age-Related Macular Degeneration. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:1479571. [PMID: 31781321 PMCID: PMC6875405 DOI: 10.1155/2019/1479571] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 09/17/2019] [Indexed: 12/15/2022]
Abstract
Age-related macular degeneration (AMD) represents a major reason for blindness in the elderly population. Oxidative stress is a predominant factor in the pathology of AMD. We previously evaluated the effects of phospholipid complex of quercetin (Q-PC) on oxidative injury in ARPE-19 cells, but the underlying mechanisms are not fully understood. Herein, the solid dispersion of quercetin-PC (Q-SD) was prepared with solubility being 235.54 μg/mL in water and 2.3×104 μg/mL in chloroform, which were significantly higher than that of quercetin (QT) and Q-PC. Q-SD also exhibited a considerably higher dissolution rate than QT and Q-PC. Additionally, Q-SD had Cmax of 4.143 μg/mL and AUC of 12.015 μg·h/mL in rats, suggesting better bioavailability than QT and Q-PC. Then, a mouse model of dry AMD (Nrf2 wild-type (WT) and Nrf2 knockout (KO)) was established for evaluating the effects of Q-SD in vivo. Q-SD more potently reduced retinal pigment epithelium sediments and Bruch's membrane thickness than QT and Q-PC at 200 mg/kg in Nrf2 WT mice and did not work in Nrf2 KO mice at the same dosage. Additionally, Q-SD significantly decreased ROS and MDA contents and restored SOD, GSH-PX, and CAT activities of serum and retinal tissues in Nrf2 WT mice, but not in Nrf2 KO mice. Furthermore, Q-SD more potently increased Nrf2 mRNA expression and stimulated its nuclear translocation in retinal tissues of Nrf2 WT mice. Q-SD significantly increased the expression of Nrf2 target genes HO-1, HQO-1, and GCL of retinal tissues in Nrf2 WT mice, not in Nrf2 KO mice. Altogether, Q-SD had improved physicochemical and pharmacokinetic properties compared to QT and Q-PC and exhibited more potent protective effects on retina oxidative injury in vivo. These effects were associated with activation of Nrf2 signaling and upregulation of antioxidant enzymes.
Collapse
|
7
|
Kwa FA, Dulull NK, Roessner U, Dias DA, Rupasinghe TW. Lipidomics reveal the protective effects of a vegetable-derived isothiocyanate against retinal degeneration. F1000Res 2019; 8:1067. [PMID: 33145006 PMCID: PMC7590896 DOI: 10.12688/f1000research.19598.5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/23/2020] [Indexed: 11/20/2022] Open
Abstract
Background: Age-related macular degeneration (AMD) is a leading cause of blindness in the ageing population. Without effective treatment strategies that can prevent disease progression, there is an urgent need for novel therapeutic interventions to reduce the burden of vision loss and improve patients' quality of life. Dysfunctional innate immune responses to oxidative stress observed in AMD can be caused by the formation of oxidised lipids, whilst polyunsaturated fatty acids have shown to increase the risk of AMD and disease progression in affected individuals. Previously, our laboratory has shown that the vegetable-derived isothiocyanate, L-sulforaphane (LSF), can protect human adult pigment epithelial cells from oxidative damage by upregulating gene expression of the oxidative stress enzyme Glutathione-S-Transferase µ1. This study aims to validate the protective effects of LSF on human retinal cells under oxidative stress conditions and to reveal the key players in fatty acid and lipid metabolism that may facilitate this protection. Methods: The in vitro oxidative stress model of AMD was based on the exposure of an adult retinal pigment epithelium-19 cell line to 200µM hydrogen peroxide. Percentage cell proliferation following LSF treatment was measured using tetrazolium salt-based assays. Untargeted fatty acid profiling was performed by gas chromatography-mass spectrometry. Untargeted lipid profiling was performed by liquid chromatography-mass spectrometry. Results: Under hydrogen peroxide-induced oxidative stress conditions, LSF treatment induced dose-dependent cell proliferation. The key fatty acids that were increased by LSF treatment of the retinal cells include oleic acid and eicosatrienoic acid. LSF treatment also increased levels of the lipid classes phosphatidylcholine, cholesteryl ester and oxo-phytodienoic acid but decreased levels of phosphatidylethanolamine lipids. Conclusions: We propose that retinal cells at risk of oxidative damage and apoptosis can be pre-conditioned with LSF to regulate levels of selected fatty acids and lipids known to be implicated in the pathogenesis and progression of AMD.
Collapse
Affiliation(s)
- Faith A. Kwa
- Discipline of Laboratory Medicine, School of Health and Biomedical Sciences, Royal Melbourne Institute of Technology University, Bundoora, Victoria, 3083, Australia
- Department of Health Sciences and Biostatistic, School of Health and Biomedical Sciences, Swinburne University of Technology, Victoria 3122, Australia
| | - Nabeela K. Dulull
- Discipline of Laboratory Medicine, School of Health and Biomedical Sciences, Royal Melbourne Institute of Technology University, Bundoora, Victoria, 3083, Australia
| | - Ute Roessner
- Metabolomics Australia, School of BioSciences, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Daniel A. Dias
- Discipline of Laboratory Medicine, School of Health and Biomedical Sciences, Royal Melbourne Institute of Technology University, Bundoora, Victoria, 3083, Australia
| | - Thusitha W. Rupasinghe
- Metabolomics Australia, School of BioSciences, The University of Melbourne, Parkville, Victoria, 3010, Australia
| |
Collapse
|
8
|
Chen Y, Wang Z, Huang Y, Feng S, Zheng Z, Liu X, Liu M. Label-free detection of hydrogen peroxide-induced oxidative stress in human retinal pigment epithelium cells via laser tweezers Raman spectroscopy. BIOMEDICAL OPTICS EXPRESS 2019; 10:500-513. [PMID: 30800495 PMCID: PMC6377875 DOI: 10.1364/boe.10.000500] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 12/11/2018] [Accepted: 12/17/2018] [Indexed: 05/03/2023]
Abstract
Human retinal pigment epithelium cells under hydrogen peroxide-induced oxidative stress and a ligustrazine-based protective effect were investigated using laser tweezers Raman spectroscopy. Protein and lipid were significantly affected by oxidative damage, along with increased reactive oxygen species (ROS) level within cells. The effects of ligustrazine against the reaction of ROS with protein seemed to be able to inhibit such damages but were limited during the desamidization of amides, along with additional effect on nucleic acid base and DNA phosphoric acid skeleton. This work laid the basis for both understanding the molecular mechanisms of oxidative stress-induced injury and highlighting possible biomarkers in retinal diseases.
Collapse
Affiliation(s)
- Yang Chen
- Department of Laboratory Medicine, Fujian Medical University, Fuzhou 350004, China
| | - ZhiQiang Wang
- Department of Ophthalmology & Optometry, Fujian Medical University, Fuzhou 350004, China
| | - Yan Huang
- Department of Ophthalmology & Optometry, Fujian Medical University, Fuzhou 350004, China
| | - ShangYuan Feng
- Key Laboratory of Optoelectronic Science and Technology for Medicine, Ministry of Education, Fujian Normal University, Fuzhou 350007, China
| | - ZuCi Zheng
- Key Laboratory of Optoelectronic Science and Technology for Medicine, Ministry of Education, Fujian Normal University, Fuzhou 350007, China
| | - XiuJie Liu
- Key Laboratory of Optoelectronic Science and Technology for Medicine, Ministry of Education, Fujian Normal University, Fuzhou 350007, China
| | - MengMeng Liu
- Key Laboratory of Optoelectronic Science and Technology for Medicine, Ministry of Education, Fujian Normal University, Fuzhou 350007, China
| |
Collapse
|
9
|
Chong YS, Mai CW, Leong CO, Wong LC. Lutein improves cell viability and reduces Alu RNA accumulation in hydrogen peroxide challenged retinal pigment epithelial cells. Cutan Ocul Toxicol 2018; 37:52-60. [PMID: 28554225 DOI: 10.1080/15569527.2017.1335748] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
PURPOSE Dysfunction of the microRNA (miRNA)-processing enzyme DICER1 and Alu RNA accumulation are linked to the pathogenesis of age-related macular degeneration (AMD). This study determined the optimal dose of lutein (LUT) and zeaxanthin (ZEA) to protect human retinal pigment epithelium (RPE) cells against hydrogen peroxide (H2O2). The effect of the optimal dose of LUT and ZEA as DICER1 and Alu RNA modulators in cultured human RPE cells challenged with H2O2 was investigated. MATERIALS AND METHODS ARPE-19 cells were pre-treated with LUT, ZEA, or both for 24 h before 200 μM H2O2 challenge. Cell viability was measured by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. DICER1 and Alu RNA were quantified by western blotting and real-time polymerase chain reaction, respectively. RESULTS H2O2 increased cell Alu RNA expression and decreased cell viability of ARPE-19, but had no significant impact on the DICER1 protein level. LUT, alone and in combination with ZEA pre-treatment, prior to H2O2 challenge significantly improved cell viability of ARPE-19 and reduced the level of Alu RNA compared to the negative control. CONCLUSIONS These results support the use of LUT alone, and in combination with ZEA, in AMD prevention and treatment. This study is also the first to report LUT modulating effects on Alu RNA.
Collapse
Affiliation(s)
- You Sheng Chong
- a School of Medicine , International Medical University , Kuala Lumpur , Malaysia
| | - Chun Wai Mai
- b Department of Pharmaceutical Chemistry, School of Pharmacy , International Medical University , Kuala Lumpur , Malaysia
| | - Chee Onn Leong
- c Department of Life Sciences, School of Pharmacy , International Medical University , Kuala Lumpur , Malaysia
| | - Lai Chun Wong
- b Department of Pharmaceutical Chemistry, School of Pharmacy , International Medical University , Kuala Lumpur , Malaysia
| |
Collapse
|
10
|
Jia YP, Sun L, Yu HS, Liang LP, Li W, Ding H, Song XB, Zhang LJ. The Pharmacological Effects of Lutein and Zeaxanthin on Visual Disorders and Cognition Diseases. Molecules 2017; 22:E610. [PMID: 28425969 PMCID: PMC6154331 DOI: 10.3390/molecules22040610] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 04/05/2017] [Accepted: 04/06/2017] [Indexed: 12/19/2022] Open
Abstract
Lutein (L) and zeaxanthin (Z) are dietary carotenoids derived from dark green leafy vegetables, orange and yellow fruits that form the macular pigment of the human eyes. It was hypothesized that they protect against visual disorders and cognition diseases, such as age-related macular degeneration (AMD), age-related cataract (ARC), cognition diseases, ischemic/hypoxia induced retinopathy, light damage of the retina, retinitis pigmentosa, retinal detachment, uveitis and diabetic retinopathy. The mechanism by which they are involved in the prevention of eye diseases may be due their physical blue light filtration properties and local antioxidant activity. In addition to their protective roles against light-induced oxidative damage, there are increasing evidences that L and Z may also improve normal ocular function by enhancing contrast sensitivity and by reducing glare disability. Surveys about L and Z supplementation have indicated that moderate intakes of L and Z are associated with decreased AMD risk and less visual impairment. Furthermore, this review discusses the appropriate consumption quantities, the consumption safety of L, side effects and future research directions.
Collapse
Affiliation(s)
- Yu-Ping Jia
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China.
| | - Lei Sun
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China.
| | - He-Shui Yu
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China.
| | - Li-Peng Liang
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China.
| | - Wei Li
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China.
| | - Hui Ding
- Tianjin Zhongyi Pharmaceutical Co., Ltd., Tianjin 300193, China.
| | - Xin-Bo Song
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China.
- Tianjin Zhongyi Pharmaceutical Co., Ltd., Tianjin 300193, China.
| | - Li-Juan Zhang
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China.
| |
Collapse
|
11
|
Kim JK, Park SU. Current results on the potential health benefits of lutein. EXCLI JOURNAL 2016; 15:308-14. [PMID: 27298616 PMCID: PMC4897658 DOI: 10.17179/excli2016-278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Accepted: 04/23/2016] [Indexed: 11/10/2022]
Affiliation(s)
- Jae Kwang Kim
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon, 406-772, Korea
| | - Sang Un Park
- Department of Crop Science, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon, 305-764, Korea,*To whom correspondence should be addressed: Sang Un Park, Department of Crop Science, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon, 305-764, Korea; Phone: +82-42-821-5730, Fax: +82-42-822-2631, E-mail:
| |
Collapse
|
12
|
Silván JM, Reguero M, de Pascual-Teresa S. A protective effect of anthocyanins and xanthophylls on UVB-induced damage in retinal pigment epithelial cells. Food Funct 2016; 7:1067-76. [DOI: 10.1039/c5fo01368b] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Cyanidin-3-glucoside and zeaxanthin, alone or in combination, protect against UVB-induced retinal cells damage throw redox and MAPK activation regulation.
Collapse
Affiliation(s)
- Jose Manuel Silván
- Department of Metabolism and Nutrition
- Institute of Food Science
- Food Technology and Nutrition (ICTAN)
- Spanish National Research Council (CSIC)
- 28040 - Madrid
| | - Marina Reguero
- Department of Metabolism and Nutrition
- Institute of Food Science
- Food Technology and Nutrition (ICTAN)
- Spanish National Research Council (CSIC)
- 28040 - Madrid
| | - Sonia de Pascual-Teresa
- Department of Metabolism and Nutrition
- Institute of Food Science
- Food Technology and Nutrition (ICTAN)
- Spanish National Research Council (CSIC)
- 28040 - Madrid
| |
Collapse
|
13
|
Xu XR, Yu HT, Yang Y, Hang L, Yang XW, Ding SH. Quercetin phospholipid complex significantly protects against oxidative injury in ARPE-19 cells associated with activation of Nrf2 pathway. Eur J Pharmacol 2015; 770:1-8. [PMID: 26643168 DOI: 10.1016/j.ejphar.2015.11.050] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Revised: 11/20/2015] [Accepted: 11/26/2015] [Indexed: 11/29/2022]
Abstract
Age-related macular degeneration (AMD) is a major cause of blindness worldwide. Oxidative stress plays a crucial role in the pathogenesis of dry AMD. Quercetin has potent anti-oxidative activities, but poor bioavailability limits its therapeutic application. Herein, we prepared the phospholipid complex of quercetin (quercetin-PC), characterized its structure by differential scanning calorimetry, infrared spectrum and x-ray diffraction. Quercetin-PC had equilibrium solubility of 38.36 and 1351.27μg/ml in water and chloroform, respectively, which was remarkably higher than those of quercetin alone. Then we established hydrogen peroxide (H2O2)-induced oxidative injury model in human ARPE-19 cells to examine the effects of quercetin-PC. Quercetin-PC, stronger than quercetin, promoted cell proliferation, and the proliferation rate was increased to be 78.89% when treated with Quercetin-PC at 400μM. Moreover, quercetin-PC effectively prevented ARPE-19 cells from apoptosis, and the apoptotic rate was reduced to be 3.1% when treated with Quercetin-PC at 200μM. In addition, quercetin-PC at 200μM significantly increased the activities of SOD, CAT and GSH-PX, and reduced the levels of reactive oxygen species and MDA in H2O2-treated ARPE-19 cells, but quercetin at 200μM failed to do so. Molecular examinations revealed that quercetin-PC at 200μM significantly activated Nrf2 nuclear translocation and significantly enhanced the expression of target genes HO-1, NQO-1 and GCL by different folds at both mRNA and protein levels. Our current data collectively indicated that quercetin-PC had stronger protective effects against oxidative-induced damages in ARPE-19 cells, which was associated with activation of Nrf2 pathway and its target genes implicated in antioxidant defense.
Collapse
Affiliation(s)
- Xin-Rong Xu
- Department of Ophthalmology, Affiliated Hospital of Nanjing University of Traditional Chinese Medicine, Nanjing 210029, China.
| | - Hai-Tao Yu
- College of Pharmacy, Nanjing University of Traditional Chinese Medicine, Nanjing 210023, China
| | - Yan Yang
- Department of Ophthalmology, Affiliated Hospital of Nanjing University of Traditional Chinese Medicine, Nanjing 210029, China
| | - Li Hang
- Department of Ophthalmology, Affiliated Hospital of Nanjing University of Traditional Chinese Medicine, Nanjing 210029, China
| | - Xue-Wen Yang
- Department of Clinical Laboratory, Affiliated Hospital of Nanjing University of Traditional Chinese Medicine, Nanjing 210029, China
| | - Shu-Hua Ding
- Department of Ophthalmology, Affiliated Hospital of Nanjing University of Traditional Chinese Medicine, Nanjing 210029, China
| |
Collapse
|
14
|
Choi MJ, Choi BT, Shin HK, Shin BC, Han YK, Baek JU. Establishment of a comprehensive list of candidate antiaging medicinal herb used in korean medicine by text mining of the classical korean medical literature, "dongeuibogam," and preliminary evaluation of the antiaging effects of these herbs. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2015; 2015:873185. [PMID: 25861371 PMCID: PMC4377522 DOI: 10.1155/2015/873185] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Revised: 01/03/2015] [Accepted: 01/08/2015] [Indexed: 12/28/2022]
Abstract
The major objectives of this study were to provide a list of candidate antiaging medicinal herbs that have been widely utilized in Korean medicine and to organize preliminary data for the benefit of experimental and clinical researchers to develop new drug therapies by analyzing previous studies. "Dongeuibogam," a representative source of the Korean medicine literature, was selected to investigate candidate antiaging medicinal herbs and to identify appropriate terms that describe the specific antiaging effects that these herbs are predicted to elicit. In addition, we aimed to review previous studies that referenced the selected candidate antiaging medicinal herbs. From our chosen source, "Dongeuibogam," we were able to screen 102 terms describing antiaging effects, which were further classified into 11 subtypes. Ninety-seven candidate antiaging medicinal herbs were selected using the criterion that their antiaging effects were described using the same terms as those employed in "Dongeuibogam." These candidates were classified into 11 subtypes. Of the 97 candidate antiaging medicinal herbs selected, 47 are widely used by Korean medical doctors in Korea and were selected for further analysis of their antiaging effects. Overall, we found an average of 7.7 previous studies per candidate herb that described their antiaging effects.
Collapse
Affiliation(s)
- Moo Jin Choi
- Division of Humanities and Social Medicine, School of Korean Medicine, Pusan National University, Yangsan 626-870, Republic of Korea
| | - Byung Tae Choi
- Division of Meridian and Structural Medicine, School of Korean Medicine, Pusan National University, Yangsan 626-870, Republic of Korea
| | - Hwa Kyoung Shin
- Division of Meridian and Structural Medicine, School of Korean Medicine, Pusan National University, Yangsan 626-870, Republic of Korea
| | - Byung Cheul Shin
- Department of Korean Rehabilitation Medicine, Pusan National University Korean Medicine Hospital, Yangsan 626-789, Republic of Korea
| | - Yoo Kyoung Han
- Division of Humanities and Social Medicine, School of Korean Medicine, Pusan National University, Yangsan 626-870, Republic of Korea
| | - Jin Ung Baek
- Division of Humanities and Social Medicine, School of Korean Medicine, Pusan National University, Yangsan 626-870, Republic of Korea
| |
Collapse
|
15
|
Novel lutein loaded lipid nanoparticles on porcine corneal distribution. J Ophthalmol 2014; 2014:304694. [PMID: 25101172 PMCID: PMC4101940 DOI: 10.1155/2014/304694] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Revised: 06/06/2014] [Accepted: 06/10/2014] [Indexed: 12/22/2022] Open
Abstract
Topical delivery has the advantages including being user friendly and cost effective. Development of topical delivery carriers for lutein is becoming an important issue for the ocular drug delivery. Quantification of the partition coefficient of drug in the ocular tissue is the first step for the evaluation of delivery efficacy. The objectives of this study were to evaluate the effects of lipid nanoparticles and cyclodextrin (CD) on the corneal lutein accumulation and to measure the partition coefficients in the porcine cornea. Lipid nanoparticles combined with 2% HPβCD could enhance lutein accumulation up to 209.2 ± 18 (μg/g) which is 4.9-fold higher than that of the nanoparticles. CD combined nanoparticles have 68% of drug loading efficiency and lower cytotoxicity in the bovine cornea cells. From the confocal images, this improvement is due to the increased partitioning of lutein to the corneal epithelium by CD in the lipid nanoparticles. The novel lipid nanoparticles could not only improve the stability and entrapment efficacy of lutein but also enhance the lutein accumulation and partition in the cornea. Additionally the corneal accumulation of lutein was further enhanced by increasing the lutein payload in the vehicles.
Collapse
|
16
|
N-acetyl-serotonin protects HepG2 cells from oxidative stress injury induced by hydrogen peroxide. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2014; 2014:310504. [PMID: 25013541 PMCID: PMC4074966 DOI: 10.1155/2014/310504] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2014] [Revised: 04/10/2014] [Accepted: 05/03/2014] [Indexed: 12/12/2022]
Abstract
Oxidative stress plays an important role in the pathogenesis of liver diseases. N-Acetyl-serotonin (NAS) has been reported to protect against oxidative damage, though the mechanisms by which NAS protects hepatocytes from oxidative stress remain unknown. To determine whether pretreatment with NAS could reduce hydrogen peroxide- (H2O2-) induced oxidative stress in HepG2 cells by inhibiting the mitochondrial apoptosis pathway, we investigated the H2O2-induced oxidative damage to HepG2 cells with or without NAS using MTT, Hoechst 33342, rhodamine 123, Terminal dUTP Nick End Labeling Assay (TUNEL), dihydrodichlorofluorescein (H2DCF), Annexin V and propidium iodide (PI) double staining, immunocytochemistry, and western blot. H2O2 produced dramatic injuries in HepG2 cells, represented by classical morphological changes of apoptosis, increased levels of malondialdehyde (MDA) and intracellular reactive oxygen species (ROS), decreased activity of superoxide dismutase (SOD), and increased activities of caspase-9 and caspase-3, release of cytochrome c (Cyt-C) and apoptosis-inducing factor (AIF) from mitochondria, and loss of membrane potential (ΔΨm). NAS significantly inhibited H2O2-induced changes, indicating that it protected against H2O2-induced oxidative damage by reducing MDA levels and increasing SOD activity and that it protected the HepG2 cells from apoptosis through regulating the mitochondrial apoptosis pathway, involving inhibition of mitochondrial hyperpolarization, release of mitochondrial apoptogenic factors, and caspase activity.
Collapse
|