1
|
Wang J, Fan W, Liu B, Pu N, Wu H, Xue R, Li S, Song Z, Tao Y. Encapsulated cell technology: Delivering cytokines to treat posterior ocular diseases. Pharmacol Res 2024; 203:107159. [PMID: 38554790 DOI: 10.1016/j.phrs.2024.107159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 03/14/2024] [Accepted: 03/24/2024] [Indexed: 04/02/2024]
Abstract
Encapsulated cell technology (ECT) is a targeted delivery method that uses the genetically engineered cells in semipermeable polymer capsules to deliver cytokines. Thus far, ECT has been extensively utilized in pharmacologic research, and shows enormous potentials in the treatment of posterior segment diseases. Due to the biological barriers within the eyeball, it is difficult to attain effective therapeutic concentration in the posterior segment through topical administration of drug molecules. Encouragingly, therapeutic cytokines provided by ECT can cross these biological barriers and achieve sustained release at the desired location. The encapsulation system uses permeable materials that allow growth factors and cytokines to diffuse efficiently into retinal tissue. Moreover, the ECT based treatment can be terminated timely when we need to retrieve the implant, which makes the therapy reversible and provides a safer alternative for intraocular gene therapy. Meanwhile, we also place special emphasis on optimizing encapsulation materials and enhancing preservation techniques to achieve the stable release of growth factors and cytokines in the eyeball. This technology holds great promise for the treatment of patients with dry AMD, RP, glaucoma and MacTel. These findings would enrich our understandings of ECT and promote its future applications in treatment of degenerative retinopathy. This review comprises articles evaluating the exactness of artificial intelligence-based formulas published from 2000 to March 2024. The papers were identified by a literature search of various databases (PubMed/MEDLINE, Google Scholar, Cochrane Library and Web of Science).
Collapse
Affiliation(s)
- Jiale Wang
- Department of Ophthalmology, Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou 450003, China; College of Medicine, Zhengzhou University, Zhengzhou 450001, China
| | - Wenhui Fan
- Department of Ophthalmology, Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou 450003, China; College of Medicine, Zhengzhou University, Zhengzhou 450001, China
| | - Bo Liu
- Department of Ophthalmology, Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou 450003, China; College of Medicine, Zhengzhou University, Zhengzhou 450001, China
| | - Ning Pu
- Department of Ophthalmology, Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou 450003, China; College of Medicine, Zhengzhou University, Zhengzhou 450001, China
| | - Hao Wu
- Department of Ophthalmology, Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou 450003, China; College of Medicine, Zhengzhou University, Zhengzhou 450001, China
| | - Rongyue Xue
- Department of Ophthalmology, Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou 450003, China; College of Medicine, Zhengzhou University, Zhengzhou 450001, China
| | - Siyu Li
- College of Medicine, Zhengzhou University, Zhengzhou 450001, China
| | - Zongming Song
- Department of Ophthalmology, Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou 450003, China; Eye Research institute, Henan Academy of Medical Sciences, China.
| | - Ye Tao
- Department of Ophthalmology, Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou 450003, China; College of Medicine, Zhengzhou University, Zhengzhou 450001, China; Eye Research institute, Henan Academy of Medical Sciences, China.
| |
Collapse
|
2
|
Appell MB, Pejavar J, Pasupathy A, Rompicharla SVK, Abbasi S, Malmberg K, Kolodziejski P, Ensign LM. Next generation therapeutics for retinal neurodegenerative diseases. J Control Release 2024; 367:708-736. [PMID: 38295996 PMCID: PMC10960710 DOI: 10.1016/j.jconrel.2024.01.063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 01/05/2024] [Accepted: 01/28/2024] [Indexed: 02/13/2024]
Abstract
Neurodegenerative diseases affecting the visual system encompass glaucoma, macular degeneration, retinopathies, and inherited genetic disorders such as retinitis pigmentosa. These ocular pathologies pose a serious burden of visual impairment and blindness worldwide. Current treatment modalities include small molecule drugs, biologics, or gene therapies, most of which are administered topically as eye drops or as injectables. However, the topical route of administration faces challenges in effectively reaching the posterior segment and achieving desired concentrations at the target site, while injections and implants risk severe complications, such as retinal detachment and endophthalmitis. This necessitates the development of innovative therapeutic strategies that can prolong drug release, deliver effective concentrations to the back of the eye with minimal systemic exposure, and improve patient compliance and safety. In this review, we introduce retinal degenerative diseases, followed by a discussion of the existing clinical standard of care. We then delve into detail about drug and gene delivery systems currently in preclinical and clinical development, including formulation and delivery advantages/drawbacks, with a special emphasis on potential for clinical translation.
Collapse
Affiliation(s)
- Matthew B Appell
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Jahnavi Pejavar
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21231, USA
| | - Ashwin Pasupathy
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21231, USA
| | - Sri Vishnu Kiran Rompicharla
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Saed Abbasi
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Kiersten Malmberg
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21231, USA
| | - Patricia Kolodziejski
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21231, USA
| | - Laura M Ensign
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21231, USA; Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Departments of Gynecology and Obstetrics, Biomedical Engineering, Oncology, and Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA.
| |
Collapse
|
3
|
Al-Qaysi ZK, Beadham IG, Schwikkard SL, Bear JC, Al-Kinani AA, Alany RG. Sustained release ocular drug delivery systems for glaucoma therapy. Expert Opin Drug Deliv 2023; 20:905-919. [PMID: 37249548 DOI: 10.1080/17425247.2023.2219053] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 05/24/2023] [Indexed: 05/31/2023]
Abstract
INTRODUCTION Glaucoma is a group of progressive optic neuropathies resulting in irreversible blindness. It is associated with an elevation of intraocular pressure (>21 mm Hg) and optic nerve damage. Reduction of the intraocular pressure (IOP) through the administration of ocular hypotensive eye drops is one of the most common therapeutic strategies. Patient adherence to conventional eye drops remains a major obstacle in preventing glaucoma progression. Additional problems emerge from inadequate patient education as well as local and systemic side effects associated with adminstering ocular hypotensive drugs. AREAS COVERED Sustained-release drug delivery systems for glaucoma treatment are classified into extraocular systems including wearable ocular surface devices or multi-use (immediate-release) eye formulations (such as aqueous solutions, gels; ocular inserts, contact lenses, periocular rings, or punctual plugs) and intraocular drug delivery systems (such as intraocular implants, and microspheres for supraciliary drug delivery). EXPERT OPINION Sustained release platforms for the delivery of ocular hypotensive drugs (small molecules and biologics) may improve patient adherence and prevent vision loss. Such innovations will only be widely adopted when efficacy and safety has been established through large-scale trials. Sustained release drug delivery can improve glaucoma treatment adherence and reverse/prevent vision deterioration. It is expected that these approaches will improve clinical management and prognosis of glaucoma.
Collapse
Affiliation(s)
- Zinah K Al-Qaysi
- Drug Discovery, Delivery and Patient Care (DDDPC) Theme, Department of Pharmacy, Kingston University London, Kingston Upon Thames, UK
| | - Ian G Beadham
- Drug Discovery, Delivery and Patient Care (DDDPC) Theme, Department of Pharmacy, Kingston University London, Kingston Upon Thames, UK
| | - Sianne L Schwikkard
- Department of Chemical and Pharmaceutical Sciences, Kingston University, Kingston Upon Thames, UK
| | - Joseph C Bear
- Department of Chemical and Pharmaceutical Sciences, Kingston University, Kingston Upon Thames, UK
| | - Ali A Al-Kinani
- Drug Discovery, Delivery and Patient Care (DDDPC) Theme, Department of Pharmacy, Kingston University London, Kingston Upon Thames, UK
| | - Raid G Alany
- Drug Discovery, Delivery and Patient Care (DDDPC) Theme, Department of Pharmacy, Kingston University London, Kingston Upon Thames, UK
- School of Pharmacy, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
4
|
Osi B, Khoder M, Al-Kinani AA, Alany RG. Pharmaceutical, Biomedical and Ophthalmic Applications of Biodegradable Polymers (BDPs): Literature and Patent Review. Pharm Dev Technol 2022; 27:341-356. [PMID: 35297285 DOI: 10.1080/10837450.2022.2055063] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In the last few decades, the interest in biodegradable materials for biomedical applications has increased significantly. Both natural and synthetic biodegradable polymers (BDPs) have been broadly explored for various biomedical applications. These include sutures and wound dressings, screws for bone fracture, scaffolds in tissue engineering, implants, and other carriers for targeted and sustained release drug delivery. Owing to their unique characteristics, including their surface charge variable copolymer block and composition and film-forming properties, BDPs have been widely used as favourable materials for ophthalmic drug delivery. Mucoadhesive BDPs have been used in ophthalmic formulations to prolong drug retention time and improve bioavailability, allowing ophthalmic controlled release systems to design. Furthermore, BDPs-based implants, microneedles, and injectable nano- and micro-particles enabled ocular posterior segment targeting and, most importantly, circumvented the need for removing the delivery systems after application. This review outlines the major advances of BDPs and highlights the latest progress of employing natural and synthetic BDPs for various biomedical applications, emphasising the treatment and management of ophthalmic conditions.
Collapse
Affiliation(s)
- Barzan Osi
- Drug Discovery, Delivery and Patient Care (DDDPC) Theme, School of Life Sciences, Pharmacy and Chemistry, Kingston University London, Kingston upon Thames, London, United Kingdom
| | - Mouhamad Khoder
- Drug Discovery, Delivery and Patient Care (DDDPC) Theme, School of Life Sciences, Pharmacy and Chemistry, Kingston University London, Kingston upon Thames, London, United Kingdom
| | - Ali A Al-Kinani
- Drug Discovery, Delivery and Patient Care (DDDPC) Theme, School of Life Sciences, Pharmacy and Chemistry, Kingston University London, Kingston upon Thames, London, United Kingdom
| | - Raid G Alany
- Drug Discovery, Delivery and Patient Care (DDDPC) Theme, School of Life Sciences, Pharmacy and Chemistry, Kingston University London, Kingston upon Thames, London, United Kingdom.,School of Pharmacy, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
5
|
Mohamdeen YMG, Tabriz AG, Tighsazzadeh M, Nandi U, Khalaj R, Andreadis I, Boateng JS, Douroumis D. Development of 3D printed drug-eluting contact lenses. J Pharm Pharmacol 2021; 74:1467-1476. [PMID: 34928372 DOI: 10.1093/jpp/rgab173] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 11/05/2021] [Accepted: 11/25/2021] [Indexed: 12/14/2022]
Abstract
OBJECTIVES The aim of the work was to introduce 3D printing technology for the design and fabrication of drug-eluting contact lenses (DECL) for the treatment of glaucoma. The development of 3D printed lenses can effectively overcome drawbacks of existing approaches by using biocompatible medical grade polymers that provide sustained drug release of timolol maleate for extended periods. METHODS Hot melt extrusion was coupled with fusion deposition modelling (FDM) to produce printable filaments of ethylene-vinyl acetate copolymer-polylactic acid blends at various ratios loaded with timolol maleate. Physicochemical and mechanical characterisation of the printed filaments was used to optimise the printing of the contact lenses. KEY FINDINGS 3D printed lenses with an aperture (opening) and specified dimensions could be printed using FDM technology. The lenses presented a smooth surface with good printing resolution while providing sustained release of timolol maleate over 3 days. The findings of this study can be used for the development of personalised DECL in the future.
Collapse
Affiliation(s)
- Youssra Moustafa Gadelkareem Mohamdeen
- Faculty of Engineering and Science, School of Science, University of Greenwich, Chatham, Kent, UK.,Faculty of Biotechnology, October University for Modern Sciences and Arts (MSA), Cairo, Egypt
| | - Atabak Ghanizadeh Tabriz
- Faculty of Engineering and Science, School of Science, University of Greenwich, Chatham, Kent, UK.,CIPER: Centre for Innovation and Process Engineering Research, Kent, UK
| | - Mohammad Tighsazzadeh
- Faculty of Engineering and Science, School of Science, University of Greenwich, Chatham, Kent, UK
| | - Uttom Nandi
- Faculty of Engineering and Science, School of Science, University of Greenwich, Chatham, Kent, UK.,CIPER: Centre for Innovation and Process Engineering Research, Kent, UK
| | - Roxanne Khalaj
- Faculty of Engineering and Science, School of Science, University of Greenwich, Chatham, Kent, UK.,CIPER: Centre for Innovation and Process Engineering Research, Kent, UK
| | - Ioannis Andreadis
- Laboratory of Pharmaceutical Technology, Department of Pharmaceutical Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Joshua S Boateng
- Faculty of Engineering and Science, School of Science, University of Greenwich, Chatham, Kent, UK
| | - Dennis Douroumis
- Faculty of Engineering and Science, School of Science, University of Greenwich, Chatham, Kent, UK.,CIPER: Centre for Innovation and Process Engineering Research, Kent, UK
| |
Collapse
|
6
|
Fayzullin A, Bakulina A, Mikaelyan K, Shekhter A, Guller A. Implantable Drug Delivery Systems and Foreign Body Reaction: Traversing the Current Clinical Landscape. Bioengineering (Basel) 2021; 8:bioengineering8120205. [PMID: 34940358 PMCID: PMC8698517 DOI: 10.3390/bioengineering8120205] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 12/03/2021] [Accepted: 12/06/2021] [Indexed: 01/02/2023] Open
Abstract
Precise delivery of therapeutics to the target structures is essential for treatment efficiency and safety. Drug administration via conventional routes requires overcoming multiple transport barriers to achieve and maintain the local drug concentration and commonly results in unwanted off-target effects. Patients’ compliance with the treatment schedule remains another challenge. Implantable drug delivery systems (IDDSs) provide a way to solve these problems. IDDSs are bioengineering devices surgically placed inside the patient’s tissues to avoid first-pass metabolism and reduce the systemic toxicity of the drug by eluting the therapeutic payload in the vicinity of the target tissues. IDDSs present an impressive example of successful translation of the research and engineering findings to the patient’s bedside. It is envisaged that the IDDS technologies will grow exponentially in the coming years. However, to pave the way for this progress, it is essential to learn lessons from the past and present of IDDSs clinical applications. The efficiency and safety of the drug-eluting implants depend on the interactions between the device and the hosting tissues. In this review, we address this need and analyze the clinical landscape of the FDA-approved IDDSs applications in the context of the foreign body reaction, a key aspect of implant–tissue integration.
Collapse
Affiliation(s)
- Alexey Fayzullin
- Department of Experimental Morphology and Biobanking, Institute for Regenerative Medicine, Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (A.F.); (A.B.); (K.M.); (A.S.)
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia
- Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Alesia Bakulina
- Department of Experimental Morphology and Biobanking, Institute for Regenerative Medicine, Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (A.F.); (A.B.); (K.M.); (A.S.)
| | - Karen Mikaelyan
- Department of Experimental Morphology and Biobanking, Institute for Regenerative Medicine, Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (A.F.); (A.B.); (K.M.); (A.S.)
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia
| | - Anatoly Shekhter
- Department of Experimental Morphology and Biobanking, Institute for Regenerative Medicine, Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (A.F.); (A.B.); (K.M.); (A.S.)
| | - Anna Guller
- Department of Experimental Morphology and Biobanking, Institute for Regenerative Medicine, Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (A.F.); (A.B.); (K.M.); (A.S.)
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia
- Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW 2109, Australia
- Biomolecular Discovery Research Centre, Macquarie University, Sydney, NSW 2109, Australia
- Correspondence:
| |
Collapse
|
7
|
Synthesis and Characterization of Novel Succinyl Chitosan-Dexamethasone Conjugates for Potential Intravitreal Dexamethasone Delivery. Int J Mol Sci 2021; 22:ijms222010960. [PMID: 34681619 PMCID: PMC8535746 DOI: 10.3390/ijms222010960] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 10/05/2021] [Accepted: 10/07/2021] [Indexed: 12/25/2022] Open
Abstract
The development of intravitreal glucocorticoid delivery systems is a current global challenge for the treatment of inflammatory diseases of the posterior segment of the eye. The main advantages of these systems are that they can overcome anatomical and physiological ophthalmic barriers and increase local bioavailability while prolonging and controlling drug release over several months to improve the safety and effectiveness of glucocorticoid therapy. One approach to the development of optimal delivery systems for intravitreal injections is the conjugation of low-molecular-weight drugs with natural polymers to prevent their rapid elimination and provide targeted and controlled release. This study focuses on the development of a procedure for a two-step synthesis of dexamethasone (DEX) conjugates based on the natural polysaccharide chitosan (CS). We first used carbodiimide chemistry to conjugate DEX to CS via a succinyl linker, and we then modified the obtained systems with succinic anhydride to impart a negative ζ-potential to the polymer particle surface. The resulting polysaccharide carriers had a degree of substitution with DEX moieties of 2–4%, a DEX content of 50–85 μg/mg, and a degree of succinylation of 64–68%. The size of the obtained particles was 400–1100 nm, and the ζ-potential was −30 to −33 mV. In vitro release studies at pH 7.4 showed slow hydrolysis of the amide and ester bonds in the synthesized systems, with a total release of 8–10% for both DEX and succinyl dexamethasone (SucDEX) after 1 month. The developed conjugates showed a significant anti-inflammatory effect in TNFα-induced and LPS-induced inflammation models, suppressing CD54 expression in THP-1 cells by 2- and 4-fold, respectively. Thus, these novel succinyl chitosan-dexamethasone (SucCS-DEX) conjugates are promising ophthalmic carriers for intravitreal delivery.
Collapse
|
8
|
Lorenzo-Veiga B, Alvarez-Lorenzo C, Loftsson T, Sigurdsson HH. Age-related ocular conditions: Current treatments and role of cyclodextrin-based nanotherapies. Int J Pharm 2021; 603:120707. [PMID: 33991594 DOI: 10.1016/j.ijpharm.2021.120707] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/07/2021] [Accepted: 05/10/2021] [Indexed: 02/03/2023]
Abstract
Age-related eye disorders are chronic diseases that affect millions of people worldwide. They cause visual impairment and, in some cases, irreversible blindness. Drug targeting to the retina is still a challenge due to the difficulties with drug distribution, crossing eye barriers, and reaching intraocular tissues in an effective therapeutic concentration. Although intravitreal injections can directly deliver drugs to the posterior segment of the eye, it remains an invasive technique and leads to several side effects. Conventional formulations such as emulsions, suspensions, or ointments have been related to frequent instillation and inability to reach intraocular tissues. New drug delivery systems and medical devices have also been designed. Nevertheless, these treatments are not always effective and sometimes require the presence of a specialist for the administration of the dose. Therefore, treatments for age-related ocular diseases remain as one of the major unmet clinical needs to manage these widespread eye conditions. Nanotechnology may become the adequate tool for developing effective and non-invasive therapies suitable for self-administration. In this review, we discuss emerging therapeutic options based on nanoengineering of cyclodextrin nanocarriers for the treatment of age-related eye disorders, including their pathophysiology, pharmacological options, and feasibility of clinical translation.
Collapse
Affiliation(s)
- Blanca Lorenzo-Veiga
- Faculty of Pharmaceutical Sciences, University of Iceland, Hofsvallagata 53, IS-107 Reykjavik, Iceland.
| | - Carmen Alvarez-Lorenzo
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D-Farma Group (GI-1645), Facultad de Farmacia and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain.
| | - Thorsteinn Loftsson
- Faculty of Pharmaceutical Sciences, University of Iceland, Hofsvallagata 53, IS-107 Reykjavik, Iceland.
| | - Hakon Hrafn Sigurdsson
- Faculty of Pharmaceutical Sciences, University of Iceland, Hofsvallagata 53, IS-107 Reykjavik, Iceland.
| |
Collapse
|
9
|
García-Estrada P, García-Bon MA, López-Naranjo EJ, Basaldúa-Pérez DN, Santos A, Navarro-Partida J. Polymeric Implants for the Treatment of Intraocular Eye Diseases: Trends in Biodegradable and Non-Biodegradable Materials. Pharmaceutics 2021; 13:701. [PMID: 34065798 PMCID: PMC8151640 DOI: 10.3390/pharmaceutics13050701] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/26/2021] [Accepted: 04/28/2021] [Indexed: 12/15/2022] Open
Abstract
Intraocular/Intravitreal implants constitute a relatively new method to treat eye diseases successfully due to the possibility of releasing drugs in a controlled and prolonged way. This particularity has made this kind of method preferred over other methods such as intravitreal injections or eye drops. However, there are some risks and complications associated with the use of eye implants, the body response being the most important. Therefore, material selection is a crucial factor to be considered for patient care since implant acceptance is closely related to the physical and chemical properties of the material from which the device is made. In this regard, there are two major categories of materials used in the development of eye implants: non-biodegradables and biodegradables. Although non-biodegradable implants are able to work as drug reservoirs, their surgical requirements make them uncomfortable and invasive for the patient and may put the eyeball at risk. Therefore, it would be expected that the human body responds better when treated with biodegradable implants due to their inherent nature and fewer surgical concerns. Thus, this review provides a summary and discussion of the most common non-biodegradable and biodegradable materials employed for the development of experimental and commercially available ocular delivery implants.
Collapse
Affiliation(s)
- Paulina García-Estrada
- Departamento de Ingenieria de Proyectos-CUCEI, Universidad de Guadalajara, C.P. 45157 Zapopan, Mexico; (P.G.-E.); (M.A.G.-B.); (E.J.L.-N.); (D.N.B.-P.)
| | - Miguel A. García-Bon
- Departamento de Ingenieria de Proyectos-CUCEI, Universidad de Guadalajara, C.P. 45157 Zapopan, Mexico; (P.G.-E.); (M.A.G.-B.); (E.J.L.-N.); (D.N.B.-P.)
| | - Edgar J. López-Naranjo
- Departamento de Ingenieria de Proyectos-CUCEI, Universidad de Guadalajara, C.P. 45157 Zapopan, Mexico; (P.G.-E.); (M.A.G.-B.); (E.J.L.-N.); (D.N.B.-P.)
| | - Dulce N. Basaldúa-Pérez
- Departamento de Ingenieria de Proyectos-CUCEI, Universidad de Guadalajara, C.P. 45157 Zapopan, Mexico; (P.G.-E.); (M.A.G.-B.); (E.J.L.-N.); (D.N.B.-P.)
| | - Arturo Santos
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Campus Guadalajara, C.P. 45138 Zapopan, Mexico;
| | - Jose Navarro-Partida
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Campus Guadalajara, C.P. 45138 Zapopan, Mexico;
| |
Collapse
|
10
|
Abstract
Dental implants are frequently used to support fixed or removable dental prostheses to replace missing teeth. The clinical success of titanium dental implants is owed to the exceptional biocompatibility and osseointegration with the bone. Therefore, the enhanced therapeutic effectiveness of dental implants had always been preferred. Several concepts for implant coating and local drug delivery had been developed during the last decades. A drug is generally released by diffusion-controlled, solvent-controlled, and chemical controlled methods. Although a range of surface modifications and coatings (antimicrobial, bioactive, therapeutic drugs) have been explored for dental implants, it is still a long way from designing sophisticated therapeutic implant surfaces to achieve the specific needs of dental patients. The present article reviews various interdisciplinary aspects of surface coatings on dental implants from the perspectives of biomaterials, coatings, drug release, and related therapeutic effects. Additionally, the various types of implant coatings, localized drug release from coatings, and how released agents influence the bone–implant surface interface characteristics are discussed. This paper also highlights several strategies for local drug delivery and their limitations in dental implant coatings as some of these concepts are yet to be applied in clinical settings due to the specific requirements of individual patients.
Collapse
|
11
|
Adams CM, Stacy R, Rangaswamy N, Bigelow C, Grosskreutz CL, Prasanna G. Glaucoma - Next Generation Therapeutics: Impossible to Possible. Pharm Res 2018; 36:25. [PMID: 30547244 DOI: 10.1007/s11095-018-2557-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Accepted: 11/12/2018] [Indexed: 12/28/2022]
Abstract
The future of next generation therapeutics for glaucoma is strong. The recent approval of two novel intraocular pressure (IOP)-lowering drugs with distinct mechanisms of action is the first in over 20 years. However, these are still being administered as topical drops. Efforts are underway to increase patient compliance and greater therapeutic benefits with the development of sustained delivery technologies. Furthermore, innovations from biologics- and gene therapy-based therapeutics are being developed in the context of disease modification, which are expected to lead to more permanent therapies for patients. Neuroprotection, including the preservation of retinal ganglion cells (RGCs) and optic nerve is another area that is actively being explored for therapeutic options. With improvements in imaging technologies and determination of new surrogate clinical endpoints, the therapeutic potential for translation of neuroprotectants is coming close to clinical realization. This review summarizes the aforementioned topics and other related aspects.
Collapse
Affiliation(s)
- Christopher M Adams
- Global Discovery Chemistry, Novartis Institutes for Biomedical Research (NIBR),, Cambridge, Massachusetts, USA
| | - Rebecca Stacy
- Translational Medicine, Ophthalmology, NIBR, Cambridge, Massachusetts, USA
| | - Nalini Rangaswamy
- Ophthalmology Research, Novartis Institutes for Biomedical Research, 22 Windsor Street, Cambridge, Massachusetts, 02139, USA
| | - Chad Bigelow
- Ophthalmology Research, Novartis Institutes for Biomedical Research, 22 Windsor Street, Cambridge, Massachusetts, 02139, USA
| | - Cynthia L Grosskreutz
- Ophthalmology Research, Novartis Institutes for Biomedical Research, 22 Windsor Street, Cambridge, Massachusetts, 02139, USA
| | - Ganesh Prasanna
- Ophthalmology Research, Novartis Institutes for Biomedical Research, 22 Windsor Street, Cambridge, Massachusetts, 02139, USA.
| |
Collapse
|
12
|
Stewart SA, Domínguez-Robles J, Donnelly RF, Larrañeta E. Implantable Polymeric Drug Delivery Devices: Classification, Manufacture, Materials, and Clinical Applications. Polymers (Basel) 2018; 10:E1379. [PMID: 30961303 PMCID: PMC6401754 DOI: 10.3390/polym10121379] [Citation(s) in RCA: 182] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 12/10/2018] [Indexed: 12/27/2022] Open
Abstract
The oral route is a popular and convenient means of drug delivery. However, despite its advantages, it also has challenges. Many drugs are not suitable for oral delivery due to: first pass metabolism; less than ideal properties; and side-effects of treatment. Additionally, oral delivery relies heavily on patient compliance. Implantable drug delivery devices are an alternative system that can achieve effective delivery with lower drug concentrations, and as a result, minimise side-effects whilst increasing patient compliance. This article gives an overview of classification of these drug delivery devices; the mechanism of drug release; the materials used for manufacture; the various methods of manufacture; and examples of clinical applications of implantable drug delivery devices.
Collapse
Affiliation(s)
- Sarah A Stewart
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK.
| | - Juan Domínguez-Robles
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK.
| | - Ryan F Donnelly
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK.
| | - Eneko Larrañeta
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK.
| |
Collapse
|
13
|
Kim S, Ozalp EI, Darwish M, Weldon JA. Electrically gated nanoporous membranes for smart molecular flow control. NANOSCALE 2018; 10:20740-20747. [PMID: 30398271 DOI: 10.1039/c8nr05906c] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
We report a novel conductive nanoporous membrane platform for a smart drug delivery system, which allows low-power electrically controlled delivery of therapeutic drug molecules via field-effect gating. The device was fabricated and tested with two oppositely charged drug molecules for glaucoma treatment. Drug molecules with the same polarity as the channel potential are excluded from the nanochannel by electrostatic repulsion, while molecules with opposite charge are enriched due to electrostatic attraction. Accordingly, the diffusive flow of the charged molecules can be controlled by a single DC gate voltage without the need for any other mechanism. An anodic aluminum oxide (AAO) membrane with 80 nm pore diameter was functionalized by sputtering a chromium (Cr)-gold (Au)-chromium (Cr) stack. The exterior chromium layer was left to oxidize creating the insulation layer for the gate electrode. The resulting pore size was 50 nm in diameter. The +2 V gate voltage increased the transport rate of the ethacrynic acid, which is negatively charged at pH 7.4, by 337% and the -2 V gate voltage decreased the transport rate by 48%. The transport rate of the timolol maleate, which is positively charged in pH 7.4, was decreased by 66% with +2 V gate voltage and increased by 116% with -2 V gate voltage. The transport control was quantified by the on-off ratio (OOR), which is the ratio between the maximum and minimum transport rate. The OOR was altered by surface treatment of the membrane. Removal of the surface charge decreased the OOR of ethacrynic acid from 6.94 to 5.61 and increased the OOR of timolol maleate from 1.36 to 1.99. These measurements were verified by our simulation results. In the simulations, the OOR of ethacrynic acid was decreased from 5.22 to 3.25 and the OOR of timolol maleate was increased from 1.90 to 3.25.
Collapse
Affiliation(s)
- Sungho Kim
- Department of Electrical & Computer Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | | | | | | |
Collapse
|
14
|
Sánchez-López E, Egea MA, Davis BM, Guo L, Espina M, Silva AM, Calpena AC, Souto EMB, Ravindran N, Ettcheto M, Camins A, García ML, Cordeiro MF. Memantine-Loaded PEGylated Biodegradable Nanoparticles for the Treatment of Glaucoma. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:1701808. [PMID: 29154484 DOI: 10.1002/smll.201701808] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 08/10/2017] [Indexed: 05/20/2023]
Abstract
Glaucoma is a multifactorial neurodegenerative disease associated with retinal ganglion cells (RGC) loss. Increasing reports of similarities in glaucoma and other neurodegenerative conditions have led to speculation that therapies for brain neurodegenerative disorders may also have potential as glaucoma therapies. Memantine is an N-methyl-d-aspartate (NMDA) antagonist approved for Alzheimer's disease treatment. Glutamate-induced excitotoxicity is implicated in glaucoma and NMDA receptor antagonism is advocated as a potential strategy for RGC preservation. This study describes the development of a topical formulation of memantine-loaded PLGA-PEG nanoparticles (MEM-NP) and investigates the efficacy of this formulation using a well-established glaucoma model. MEM-NPs <200 nm in diameter and incorporating 4 mg mL-1 of memantine were prepared with 0.35 mg mL-1 localized to the aqueous interior. In vitro assessment indicated sustained release from MEM-NPs and ex vivo ocular permeation studies demonstrated enhanced delivery. MEM-NPs were additionally found to be well tolerated in vitro (human retinoblastoma cells) and in vivo (Draize test). Finally, when applied topically in a rodent model of ocular hypertension for three weeks, MEM-NP eye drops were found to significantly (p < 0.0001) reduce RGC loss. These results suggest that topical MEM-NP is safe, well tolerated, and, most promisingly, neuroprotective in an experimental glaucoma model.
Collapse
Affiliation(s)
- Elena Sánchez-López
- Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy, Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, Barcelona, 08028, Spain
- Biomedical Research and Networking Center in Neurodegenerative diseases (CIBERNED), Madrid, 28031, Spain
| | - Maria Antonia Egea
- Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy, Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, Barcelona, 08028, Spain
| | - Benjamin Michael Davis
- Glaucoma and Retinal Neurodegeneration Research, Visual Neuroscience, UCL Institute of Ophthalmology, Bath Street, London, EC1V 9EL, UK
| | - Li Guo
- Glaucoma and Retinal Neurodegeneration Research, Visual Neuroscience, UCL Institute of Ophthalmology, Bath Street, London, EC1V 9EL, UK
| | - Marta Espina
- Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy, Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, Barcelona, 08028, Spain
| | - Amelia Maria Silva
- Department of Biology and Environment, School of Life and Environmental sciences (ECVA, UTAD), and Centre for Research and Technology of Agro-Environmental and Biological Sciences (CITAB-UTAD), University of Trás-os-Montes e Alto Douro, Quinta de Prados, 5001-801, Vila Real, Portugal
| | - Ana Cristina Calpena
- Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy, Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, Barcelona, 08028, Spain
| | - Eliana Maria Barbosa Souto
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra (FFUC) and REQUIMTE/Group of Pharmaceutical Technology, Polo das Ciências da Saúde Azinhaga de Santa Comba, 3000-548, Coimbra, Portugal
| | - Nivedita Ravindran
- Glaucoma and Retinal Neurodegeneration Research, Visual Neuroscience, UCL Institute of Ophthalmology, Bath Street, London, EC1V 9EL, UK
| | - Miren Ettcheto
- Biomedical Research and Networking Center in Neurodegenerative diseases (CIBERNED), Madrid, 28031, Spain
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy, University of Barcelona, Barcelona, 08028, Spain
| | - Antonio Camins
- Biomedical Research and Networking Center in Neurodegenerative diseases (CIBERNED), Madrid, 28031, Spain
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy, University of Barcelona, Barcelona, 08028, Spain
| | - Maria Luisa García
- Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy, Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, Barcelona, 08028, Spain
| | - Maria Francesca Cordeiro
- Glaucoma and Retinal Neurodegeneration Research, Visual Neuroscience, UCL Institute of Ophthalmology, Bath Street, London, EC1V 9EL, UK
- Western Eye Hospital, Imperial College Healthcare Trust, London, UK
| |
Collapse
|
15
|
Abstract
Drug delivery to the posterior segment via the periocular route is a promising route for delivery of a range of formulations. In this review, we have highlighted the challenges and opportunities of posterior segment drug delivery via the periocular route. Consequently, we have discussed different types of periocular routes, physiological barriers that limit effective drug delivery, practical challenges regarding patient compliance and acceptability and recent advances in developing innovative strategies to enhance periocular drug delivery. We conclude with a perspective on how we envisage the importance of understanding complex barrier functions so as to continue to develop innovative drug-delivery systems.
Collapse
|
16
|
Approaches in topical ocular drug delivery and developments in the use of contact lenses as drug-delivery devices. Ther Deliv 2017. [DOI: 10.4155/tde-2017-0018] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Drug-delivery approaches have diversified over the last two decades with the emergence of nanotechnologies, smart polymeric systems and multimodal functionalities. The intended target for specific treatment of disease is the key defining developing parameter. One such area which has undergone significant advancements relates to ocular delivery. This has been expedited by the development of material advancement, mechanistic concepts and through the deployment of advanced process technologies. This review will focus on the developments within lens-based drug delivery while touching on conventional and current methods of topical ocular drug delivery. A summary table will provide quick reference to note the key findings in this area. In addition, the review also elucidates current theranostic and diagnostic approaches based on ocular lenses.
Collapse
|
17
|
Rotenstreich Y, Tzameret A, Kalish SE, Bubis E, Belkin M, Moroz I, Rosner M, Levy I, Margel S, Sher I. A minimally invasive adjustable-depth blunt injector for delivery of pharmaceuticals into the posterior pole. Acta Ophthalmol 2017; 95:e197-e205. [PMID: 27778476 DOI: 10.1111/aos.13238] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 07/25/2016] [Indexed: 12/17/2022]
Abstract
PURPOSE To investigate the feasibility and safety of a novel minimally invasive adjustable-depth blunt injector for pharmaceuticals delivery into the posterior segment. METHODS Indocyanine green (ICG), sodium fluorescein and iron oxide nanoparticles (IONPs) were injected using the new injector into the extravascular spaces of the choroid (EVSC) compartment of rabbits and cadaver pig eyes. Spectral domain optical coherence tomography (SD-OCT), fundus imaging and histology analysis were performed for assessment of injection safety and efficacy. RESULTS Indocyanine green, fluorescein and IONPs were detected across the EVSC in rabbit eyes, covering over 80 per cent of the posterior eye surface. Injected IONPs were retained in the EVSC for at least 2 weeks following injection. No retinal detachment, choroidal haemorrhage or inflammation was detected in any of the injected eyes. In cadaver pig eyes, ICG was detected across the EVSC. CONCLUSIONS This novel minimally invasive delivery system may be used to safely deliver large volumes of pharmaceuticals into a new treatment reservoir compartment - the EVSC which can serve as a depot, in close proximity to the retina, covering most of the surface of the back of the eye without insertion of surgical instruments under the central retina. This system is predicted to enhance the therapeutic effect of treatments for posterior eye disorders.
Collapse
Affiliation(s)
- Ygal Rotenstreich
- Sheba Medical Center; The Maurice and Gabriela Goldschleger Eye Institute; Tel Hashomer Israel
- The Sackler School of Medicine; Tel Aviv University; Tel Aviv Israel
| | - Adi Tzameret
- Sheba Medical Center; The Maurice and Gabriela Goldschleger Eye Institute; Tel Hashomer Israel
- The Sackler School of Medicine; Tel Aviv University; Tel Aviv Israel
| | - Sapir E. Kalish
- Sheba Medical Center; The Maurice and Gabriela Goldschleger Eye Institute; Tel Hashomer Israel
- The Sackler School of Medicine; Tel Aviv University; Tel Aviv Israel
| | - Ettel Bubis
- Sheba Medical Center; The Maurice and Gabriela Goldschleger Eye Institute; Tel Hashomer Israel
- The Sackler School of Medicine; Tel Aviv University; Tel Aviv Israel
| | - Michael Belkin
- Sheba Medical Center; The Maurice and Gabriela Goldschleger Eye Institute; Tel Hashomer Israel
- The Sackler School of Medicine; Tel Aviv University; Tel Aviv Israel
| | - Iris Moroz
- Sheba Medical Center; The Maurice and Gabriela Goldschleger Eye Institute; Tel Hashomer Israel
| | - Mordechai Rosner
- Sheba Medical Center; The Maurice and Gabriela Goldschleger Eye Institute; Tel Hashomer Israel
- The Sackler School of Medicine; Tel Aviv University; Tel Aviv Israel
| | - Itay Levy
- Department of Chemistry; Bar-Ilan Institute of Nanotechnology and Advanced Materials; Ramat-Gan Israel
| | - Shlomo Margel
- Department of Chemistry; Bar-Ilan Institute of Nanotechnology and Advanced Materials; Ramat-Gan Israel
| | - Ifat Sher
- Sheba Medical Center; The Maurice and Gabriela Goldschleger Eye Institute; Tel Hashomer Israel
- The Sackler School of Medicine; Tel Aviv University; Tel Aviv Israel
| |
Collapse
|
18
|
Szigiato AA, Podbielski DW, Ahmed IIK. Sustained drug delivery for the management of glaucoma. EXPERT REVIEW OF OPHTHALMOLOGY 2017. [DOI: 10.1080/17469899.2017.1280393] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
| | - Dominik W. Podbielski
- Department of Ophthalmology and Vision Sciences, University of Toronto, Toronto, ON, Canada
| | - Iqbal Ike K. Ahmed
- Department of Ophthalmology and Vision Sciences, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
19
|
Owen A, Rannard S. Considerations for clinically-relevant nanomedicine therapies for chronic diseases. Nanomedicine (Lond) 2015; 10:3103-7. [PMID: 26446297 DOI: 10.2217/nnm.15.135] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Affiliation(s)
- Andrew Owen
- Department of Molecular & Clinical Pharmacology, University of Liverpool, Block H, 70 Pembroke Place, Liverpool L69 3GF, UK
| | - Steve Rannard
- Department of Chemistry, University of Liverpool, Crown Street, Liverpool L69 7ZD, UK
| |
Collapse
|
20
|
Voss K, Falke K, Bernsdorf A, Grabow N, Kastner C, Sternberg K, Minrath I, Eickner T, Wree A, Schmitz KP, Guthoff R, Witt M, Hovakimyan M. Development of a novel injectable drug delivery system for subconjunctival glaucoma treatment. J Control Release 2015; 214:1-11. [PMID: 26160303 DOI: 10.1016/j.jconrel.2015.06.035] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Revised: 06/26/2015] [Accepted: 06/27/2015] [Indexed: 12/11/2022]
Abstract
In this study we present the development of an injectable polymeric drug delivery system for subconjunctival treatment of primary open angle glaucoma. The system consists of hyaluronic acid sodium salt (HA), which is commonly used in ophthalmology in anterior segment surgery, and an isocyanate-functionalized 1,2-ethylene glycol bis(dilactic acid) (ELA-NCO). The polymer mixtures with different ratios of HA to ELA-NCO (1/1, 1/4, and 1/10 (v/v)) were investigated for biocompatibility, degradation behavior and applicability as a sustained release system. For the latter, the lipophilic latanoprost ester pro-drug (LA) was incorporated into the HA/ELA-NCO system. In vitro, a sustained LA release over a period of about 60days was achieved. In cell culture experiments, the HA/ELA-NCO (1/1, (v/v)) system was proven to be biocompatible for human and rabbit Tenon's fibroblasts. Examination of in vitro degradation behavior revealed a total mass loss of more than 60% during the observation period of 26weeks. In vivo, LA was continuously released for 152days into rabbit aqueous humor and serum. Histological investigations revealed a marked leuko-lymphocytic infiltration soon after subconjunctival injection. Thereafter, the initial tissue reaction declined concomitantly with a continuous degradation of the polymer, which was completed after 10months. Our study demonstrates the suitability of the polymer resulting from the reaction of HA with ELA-NCO as an injectable local drug delivery system for glaucoma therapy, combining biocompatibility and biodegradability with prolonged drug release.
Collapse
Affiliation(s)
- Karsten Voss
- Institute for Biomedical Engineering, Rostock University Medical Center, Friederich-Barnewitz-Strasse 4, D-18119 Rostock, Germany.
| | - Karen Falke
- Department of Ophthalmology, Rostock University Medical Center, Doberaner Strasse 140, D-18057 Rostock, Germany.
| | - Arne Bernsdorf
- Institute for Biomedical Engineering, Rostock University Medical Center, Friederich-Barnewitz-Strasse 4, D-18119 Rostock, Germany.
| | - Niels Grabow
- Institute for Biomedical Engineering, Rostock University Medical Center, Friederich-Barnewitz-Strasse 4, D-18119 Rostock, Germany.
| | - Christian Kastner
- Institute for Biomedical Engineering, Rostock University Medical Center, Friederich-Barnewitz-Strasse 4, D-18119 Rostock, Germany.
| | - Katrin Sternberg
- Institute for Biomedical Engineering, Rostock University Medical Center, Friederich-Barnewitz-Strasse 4, D-18119 Rostock, Germany.
| | - Ingo Minrath
- Institute for Biomedical Engineering, Rostock University Medical Center, Friederich-Barnewitz-Strasse 4, D-18119 Rostock, Germany.
| | - Thomas Eickner
- Institute for Biomedical Engineering, Rostock University Medical Center, Friederich-Barnewitz-Strasse 4, D-18119 Rostock, Germany
| | - Andreas Wree
- Department of Anatomy, Rostock University Medical Center, Gertrudenstrasse 9a, D-18057 Rostock, Germany.
| | - Klaus-Peter Schmitz
- Institute for Biomedical Engineering, Rostock University Medical Center, Friederich-Barnewitz-Strasse 4, D-18119 Rostock, Germany.
| | - Rudolf Guthoff
- Institute for Biomedical Engineering, Rostock University Medical Center, Friederich-Barnewitz-Strasse 4, D-18119 Rostock, Germany.
| | - Martin Witt
- Department of Anatomy, Rostock University Medical Center, Gertrudenstrasse 9a, D-18057 Rostock, Germany.
| | - Marina Hovakimyan
- Institute for Biomedical Engineering, Rostock University Medical Center, Friederich-Barnewitz-Strasse 4, D-18119 Rostock, Germany.
| |
Collapse
|
21
|
Wentz SM, Kim NJ, Wang J, Amireskandari A, Siesky B, Harris A. Novel therapies for open-angle glaucoma. F1000PRIME REPORTS 2014; 6:102. [PMID: 25580256 PMCID: PMC4229725 DOI: 10.12703/p6-102] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Open-angle glaucoma is a multifactorial optic neuropathy characterized by progressive loss of retinal ganglion cells and their axons. It is an irreversible disease with no established cure. The only currently approved treatment is aimed at lowering intraocular pressure, the most significant risk factor known to date. However, it is now clear that there are other risk factors involved in glaucoma's pathophysiology. To achieve future improvements in glaucoma management, new approaches to therapies and novel targets must be developed. Such therapies may include new tissue targets for lowering intraocular pressure, molecules influencing ocular hemodynamics, and treatments providing neuroprotection of retinal ganglion cells. Furthermore, novel drug delivery systems are in development that may improve patient compliance, increase bioavailability, and decrease adverse side effects.
Collapse
|
22
|
Kim YC, Chiang B, Wu X, Prausnitz MR. Ocular delivery of macromolecules. J Control Release 2014; 190:172-81. [PMID: 24998941 PMCID: PMC4142116 DOI: 10.1016/j.jconrel.2014.06.043] [Citation(s) in RCA: 162] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2014] [Accepted: 06/23/2014] [Indexed: 12/22/2022]
Abstract
Biopharmaceuticals are making increasing impact on medicine, including treatment of indications in the eye. Macromolecular drugs are typically given by physician-administered invasive delivery methods, because non-invasive ocular delivery methods, such as eye drops, and systemic delivery, have low bioavailability and/or poor ocular targeting. There is a need to improve delivery of biopharmaceuticals to enable less-invasive delivery routes, less-frequent dosing through controlled-release drug delivery and improved drug targeting within the eye to increase efficacy and reduce side effects. This review discusses the barriers to drug delivery via various ophthalmic routes of administration in the context of macromolecule delivery and discusses efforts to develop controlled-release systems for delivery of biopharmaceuticals to the eye. The growing number of macromolecular therapies in the eye needs improved drug delivery methods that increase drug efficacy, safety and patient compliance.
Collapse
Affiliation(s)
- Yoo Chun Kim
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Bryce Chiang
- Wallace Coulter Department of Biomedical Engineering at Georgia Tech and Emory University, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Xianggen Wu
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA; State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong Academy of Medical Sciences, Qingdao 266071, China
| | - Mark R Prausnitz
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA; Wallace Coulter Department of Biomedical Engineering at Georgia Tech and Emory University, Georgia Institute of Technology, Atlanta, GA 30332, USA.
| |
Collapse
|