1
|
Bharti S, Anant PS, Kumar A. Nanotechnology in stem cell research and therapy. JOURNAL OF NANOPARTICLE RESEARCH 2023; 25:6. [DOI: 10.1007/s11051-022-05654-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 12/14/2022] [Indexed: 01/04/2025]
|
2
|
Quantum dots-βcyclodextrin-histidine labeled human adipose stem cells-laden chitosan hydrogel for bone tissue engineering. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2020; 27:102217. [DOI: 10.1016/j.nano.2020.102217] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 04/14/2020] [Accepted: 04/21/2020] [Indexed: 12/15/2022]
|
3
|
Krishna L, Dhamodaran K, Jayadev C, Chatterjee K, Shetty R, Khora SS, Das D. Nanostructured scaffold as a determinant of stem cell fate. Stem Cell Res Ther 2016; 7:188. [PMID: 28038681 PMCID: PMC5203716 DOI: 10.1186/s13287-016-0440-y] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The functionality of stem cells is tightly regulated by cues from the niche, comprising both intrinsic and extrinsic cell signals. Besides chemical and growth factors, biophysical signals are important components of extrinsic signals that dictate the stem cell properties. The materials used in the fabrication of scaffolds provide the chemical cues whereas the shape of the scaffolds provides the biophysical cues. The effect of the chemical composition of the scaffolds on stem cell fate is well researched. Biophysical signals such as nanotopography, mechanical forces, stiffness of the matrix, and roughness of the biomaterial influence the fate of stem cells. However, not much is known about their role in signaling crosstalk, stem cell maintenance, and directed differentiation. Among the various techniques for scaffold design, nanotechnology has special significance. The role of nanoscale topography in scaffold design for the regulation of stem cell behavior has gained importance in regenerative medicine. Nanotechnology allows manipulation of highly advanced surfaces/scaffolds for optimal regulation of cellular behavior. Techniques such as electrospinning, soft lithography, microfluidics, carbon nanotubes, and nanostructured hydrogel are described in this review, along with their potential usage in regenerative medicine. We have also provided a brief insight into the potential signaling crosstalk that is triggered by nanomaterials that dictate a specific outcome of stem cells. This concise review compiles recent developments in nanoscale architecture and its importance in directing stem cell differentiation for prospective therapeutic applications.
Collapse
Affiliation(s)
- Lekshmi Krishna
- Stem Cell Research Lab, GROW Lab, Narayana Nethralaya Foundation, Bangalore, Karnataka, India.,School of Bioscience and Technology, VIT University, Vellore, Tamil Nadu, India
| | - Kamesh Dhamodaran
- Stem Cell Research Lab, GROW Lab, Narayana Nethralaya Foundation, Bangalore, Karnataka, India.,School of Bioscience and Technology, VIT University, Vellore, Tamil Nadu, India
| | - Chaitra Jayadev
- Vitreoretina Services, Narayana Nethralaya Eye Hospital, Bangalore, Karnataka, India
| | - Kaushik Chatterjee
- Department of Materials Engineering, Indian Institute of Science, Bangalore, Karnataka, India
| | - Rohit Shetty
- Department of Cornea and Refractive Surgery, Narayana Nethralaya Eye Hospital, Bangalore, Karnataka, India
| | - S S Khora
- School of Bioscience and Technology, VIT University, Vellore, Tamil Nadu, India
| | - Debashish Das
- Stem Cell Research Lab, GROW Lab, Narayana Nethralaya Foundation, Bangalore, Karnataka, India.
| |
Collapse
|
4
|
Schmuck EG, Koch JM, Centanni JM, Hacker TA, Braun RK, Eldridge M, Hei DJ, Hematti P, Raval AN. Biodistribution and Clearance of Human Mesenchymal Stem Cells by Quantitative Three-Dimensional Cryo-Imaging After Intravenous Infusion in a Rat Lung Injury Model. Stem Cells Transl Med 2016; 5:1668-1675. [PMID: 27460855 PMCID: PMC5189648 DOI: 10.5966/sctm.2015-0379] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 05/13/2016] [Indexed: 12/30/2022] Open
Abstract
To study three-dimensional (3D) cryo-imaging to measure cell biodistribution and clearance after intravenous infusion, the authors established a lung injury model in rats. Human mesenchymal stem cells (hMSCs) labeled with QTracker were infused via jugular vein. Organs were cryopreserved, followed by 3D cryo-imaging. At 60 minutes, 82 ± 9.7% of cells were detected, and at day 2, 0.06% of cells were detected. hMSCs were retained primarily in the liver, with fewer detected in lungs and spleen. Cell tracking is a critical component of the safety and efficacy evaluation of therapeutic cell products. To date, cell-tracking modalities have been hampered by poor resolution, low sensitivity, and inability to track cells beyond the shortterm. Three-dimensional (3D) cryo-imaging coregisters fluorescent and bright-field microcopy images and allows for single-cell quantification within a 3D organ volume. We hypothesized that 3D cryo-imaging could be used to measure cell biodistribution and clearance after intravenous infusion in a rat lung injury model compared with normal rats. A bleomycin lung injury model was established in Sprague-Dawley rats (n = 12). Human mesenchymal stem cells (hMSCs) labeled with QTracker655 were infused via jugular vein. After 2, 4, or 8 days, a second dose of hMSCs labeled with QTracker605 was infused, and animals were euthanized after 60, 120, or 240 minutes. Lungs, liver, spleen, heart, kidney, testis, and intestine were cryopreserved, followed by 3D cryo-imaging of each organ. At 60 minutes, 82% ± 9.7% of cells were detected; detection decreased to 60% ± 17% and 66% ± 22% at 120 and 240 minutes, respectively. At day 2, 0.06% of cells were detected, and this level remained constant at days 4 and 8 postinfusion. At 60, 120, and 240 minutes, 99.7% of detected cells were found in the liver, lungs, and spleen, with cells primarily retained in the liver. This is the first study using 3D cryo-imaging to track hMSCs in a rat lung injury model. hMSCs were retained primarily in the liver, with fewer detected in lungs and spleen. Significance Effective bench-to-bedside clinical translation of cellular therapies requires careful understanding of cell fate through tracking. Tracking cells is important to measure cell retention so that delivery methods and cell dose can be optimized and so that biodistribution and clearance can be defined to better understand potential off-target toxicity and redosing strategies. This article demonstrates, for the first time, the use of three-dimensional cryo-imaging for single-cell quantitative tracking of intravenous infused clinical-grade mesenchymal stem cells in a clinically relevant model of lung injury. The important information learned in this study will help guide future clinical and translational stem cell therapies for lung injuries.
Collapse
Affiliation(s)
- Eric G Schmuck
- Department of Medicine, Division of Cardiovascular Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Jill M Koch
- Cardiovascular Research Center, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - John M Centanni
- Department of Medicine, Division of Cardiovascular Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Timothy A Hacker
- Cardiovascular Research Center, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Rudolf K Braun
- Department of Pediatrics, University of Wisconsin, Madison, Wisconsin, USA
| | - Marlowe Eldridge
- Department of Pediatrics, University of Wisconsin, Madison, Wisconsin, USA
| | - Derek J Hei
- Waisman Biomanufacturing, Madison, Wisconsin, USA
| | - Peiman Hematti
- Department of Medicine, Division of Hematology/Oncology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
- University of Wisconsin Carbone Cancer Center, Madison, Wisconsin, USA
| | - Amish N Raval
- Department of Medicine, Division of Cardiovascular Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
- Department of Biomedical Engineering, University of Wisconsin, Madison, Wisconsin, USA
| |
Collapse
|
5
|
Oh E, Liu R, Nel A, Gemill KB, Bilal M, Cohen Y, Medintz IL. Meta-analysis of cellular toxicity for cadmium-containing quantum dots. NATURE NANOTECHNOLOGY 2016; 11:479-86. [PMID: 26925827 DOI: 10.1038/nnano.2015.338] [Citation(s) in RCA: 281] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Accepted: 12/16/2015] [Indexed: 04/14/2023]
Abstract
Understanding the relationships between the physicochemical properties of engineered nanomaterials and their toxicity is critical for environmental and health risk analysis. However, this task is confounded by material diversity, heterogeneity of published data and limited sampling within individual studies. Here, we present an approach for analysing and extracting pertinent knowledge from published studies focusing on the cellular toxicity of cadmium-containing semiconductor quantum dots. From 307 publications, we obtain 1,741 cell viability-related data samples, each with 24 qualitative and quantitative attributes describing the material properties and experimental conditions. Using random forest regression models to analyse the data, we show that toxicity is closely correlated with quantum dot surface properties (including shell, ligand and surface modifications), diameter, assay type and exposure time. Our approach of integrating quantitative and categorical data provides a roadmap for interrogating the wide-ranging toxicity data in the literature and suggests that meta-analysis can help develop methods for predicting the toxicity of engineered nanomaterials.
Collapse
Affiliation(s)
- Eunkeu Oh
- Optical Sciences Division, Code 5611, US Naval Research Laboratory, Washington, Washington DC 20375, USA
- Sotera Defense Solutions, Columbia, Maryland 21046, USA
| | - Rong Liu
- Institute of the Environment and Sustainability, University of California, Los Angeles, California 90095-1496, USA
- Center for Environmental Implications of Nanotechnology, University of California, Los Angeles, California 90095-7227, USA
| | - Andre Nel
- Center for Environmental Implications of Nanotechnology, University of California, Los Angeles, California 90095-7227, USA
- Department of Medicine, Division of NanoMedicine, University of California, Los Angeles, California 90095, USA
| | - Kelly Boeneman Gemill
- Center for Bio/Molecular Science and Engineering, Code 6900, US Naval Research Laboratory, SW Washington, Washington DC 20375, USA
| | - Muhammad Bilal
- Center for Environmental Implications of Nanotechnology, University of California, Los Angeles, California 90095-7227, USA
| | - Yoram Cohen
- Institute of the Environment and Sustainability, University of California, Los Angeles, California 90095-1496, USA
- Center for Environmental Implications of Nanotechnology, University of California, Los Angeles, California 90095-7227, USA
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, California 90095-1592, USA
| | - Igor L Medintz
- Center for Bio/Molecular Science and Engineering, Code 6900, US Naval Research Laboratory, SW Washington, Washington DC 20375, USA
| |
Collapse
|
6
|
Wu CG, Zhang JC, Xie CQ, Parolini O, Silini A, Huang YZ, Lian B, Zhang M, Huang YC, Deng L. In vivo tracking of human placenta derived mesenchymal stem cells in nude mice via ¹⁴C-TdR labeling. BMC Biotechnol 2015; 15:55. [PMID: 26070459 PMCID: PMC4465458 DOI: 10.1186/s12896-015-0174-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Accepted: 05/29/2015] [Indexed: 02/05/2023] Open
Abstract
Background In order to shed light on the regenerative mechanism of mesenchymal stem cells (MSCs) in vivo, the bio-distribution profile of implanted cells using a stable and long-term tracking method is needed. We herein investigated the bio-distribution of human placental deciduas basalis derived MSCs (termed as PDB-MSCs) in nude mice after intravenous injection by carbon radioisotope labeling thymidine (14C-TdR), which is able to incorporate into new DNA strands during cell replication. Results The proliferation rate and radioactive emission of human PDB-MSCs after labeled with different concentrations of 14C-TdR were measured. PDB-MSCs labeled with 1 μCi possessed high radioactivity, and the biological characteristics (i.e. morphology, colony forming ability, differentiation capabilities, karyotype and cell cycle) showed no significant changes after labeling. Thus, 1 μCi was the optimal concentration in this experimental design. In nude mice, 1 × 10614C-TdR-labeled PDB-MSCs were injected intravenously and the organs were collected at days 1, 2, 3, 5, 30 and 180 after injection, respectively. Radiolabeled PDB-MSCs were found mainly in the lung, liver, spleen, stomach and left femur of the recipient nude mice at the whole observation period. Conclusions This work provided solid evidence that 14C-TdR labeling did not alter the biological characteristics of human placental MSCs, and that this labeling method has potential to decrease the signal from non-infused or dead cells for cell tracking. Therefore, this labeling technique can be utilized to quantify the infused cells after long-term follow-up in pre-clinical studies.
Collapse
Affiliation(s)
- Cheng-Guang Wu
- Laboratory of Stem Cell and Tissue Engineering, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China.
| | - Ji-Chun Zhang
- Laboratory of Stem Cell and Tissue Engineering, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China.
| | - Cheng-Quan Xie
- Laboratory of Stem Cell and Tissue Engineering, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China.
| | - Ornella Parolini
- Centro di Ricerca E.Menni, Fondazione Poliambulanza, Brescia, Italy.
| | - Antonietta Silini
- Centro di Ricerca E.Menni, Fondazione Poliambulanza, Brescia, Italy.
| | - Yi-Zhou Huang
- Laboratory of Stem Cell and Tissue Engineering, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China.
| | - Bing Lian
- West China School of Pharmacy, Sichuan University, Chengdu, People's Republic of China.
| | - Min Zhang
- Center Laboratory For Isotopy, West China Hospital, Sichuan University, Chengdu, People's Republic of China.
| | - Yong-Can Huang
- Department of Orthopaedics and Traumatology, The University of Hong Kong, Hong Kong, SAR, People's Republic of China.
| | - Li Deng
- Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, People's Republic of China.
| |
Collapse
|
7
|
Wegner KD, Hildebrandt N. Quantum dots: bright and versatile in vitro and in vivo fluorescence imaging biosensors. Chem Soc Rev 2015; 44:4792-4834. [DOI: 10.1039/c4cs00532e] [Citation(s) in RCA: 567] [Impact Index Per Article: 56.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Abstract
Colourful cells and tissues: semiconductor quantum dots and their versatile applications in multiplexed bioimaging research.
Collapse
Affiliation(s)
- K. David Wegner
- NanoBioPhotonics
- Institut d'Electronique Fondamentale
- Université Paris-Sud
- 91405 Orsay Cedex
- France
| | - Niko Hildebrandt
- NanoBioPhotonics
- Institut d'Electronique Fondamentale
- Université Paris-Sud
- 91405 Orsay Cedex
- France
| |
Collapse
|
8
|
Xiang L, Chan RWS, Ng EHY, Yeung WSB. Nanoparticle labeling identifies slow cycling human endometrial stromal cells. Stem Cell Res Ther 2014; 5:84. [PMID: 24996487 PMCID: PMC4230801 DOI: 10.1186/scrt473] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Accepted: 06/27/2014] [Indexed: 02/06/2023] Open
Abstract
Introduction Evidence suggests that the human endometrium contains stem or progenitor cells that are responsible for its remarkable regenerative capability. A common property of somatic stem cells is their quiescent state. It remains unclear whether slow-cycling cells exist in the human endometrium. We hypothesized that the human endometrium contains a subset of slow-cycling cells with somatic stem cell properties. Here, we established an in vitro stem cell assay to isolate human endometrial-derived mesenchymal stem-like cells (eMSC). Methods Single-cell stromal cultures were initially labeled with fluorescent nanoparticles and a small population of fluorescent persistent cells (FPC) remained after culture of 21 days. Two populations of stromal cells, namely FPC and non-FPC were sorted. Results Quantitative analysis of functional assays demonstrated that the FPC had higher colony forming ability, underwent more rounds of self-renewal and had greater enrichment of phenotypically defined prospective eMSC markers: CD146+/CD140b+ and W5C5+ than the non-FPC. They also differentiate into multiple mesenchymal lineages and the expression of lineage specific markers was lower than that of non-FPC. The FPC exhibit low proliferation activities. A proliferation dynamics study revealed that more FPC had a prolonged G1 phase. Conclusions With this study we present an efficient method to label and isolate slow-proliferating cells obtained from human endometrial stromal cultures without genetic modifications. The FPC population could be easily maintained in vitro and are of interest for tissue-repair and engineering perspectives. In summary, nanoparticle labeling is a promising tool for the identification of putative somatic stem or progenitor cells when their surface markers are undefined.
Collapse
|
9
|
Hachani R, Lowdell M, Birchall M, Thanh NTK. Tracking stem cells in tissue-engineered organs using magnetic nanoparticles. NANOSCALE 2013; 5:11362-11373. [PMID: 24108444 DOI: 10.1039/c3nr03861k] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The use of human stem cells (SCs) in tissue engineering holds promise in revolutionising the treatment of numerous diseases. There is a pressing need to comprehend the distribution, movement and role of SCs once implanted onto scaffolds. Nanotechnology has provided a platform to investigate this through the development of inorganic magnetic nanoparticles (MNPs). MNPs can be used to label and track SCs by magnetic resonance imaging (MRI) since this clinically available imaging modality has high spatial resolution. In this review, we highlight recent applications of iron oxide and gadolinium based MNPs in SC labelling and MRI; and offer novel considerations for their future development.
Collapse
Affiliation(s)
- Roxanne Hachani
- Department of Physics & Astronomy, University College London, Gower Street, London WC1E 6BT, UK.
| | | | | | | |
Collapse
|