1
|
Villanueva-Mejia F, Navarro-Santos P, Rodríguez-Kessler PL, Herrera-Bucio R, Rivera JL. Reactivity of Atomically Functionalized C-Doped Boron Nitride Nanoribbons and Their Interaction with Organosulfur Compounds. NANOMATERIALS 2019; 9:nano9030452. [PMID: 30889813 PMCID: PMC6474104 DOI: 10.3390/nano9030452] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Academic Contribution Register] [Received: 01/29/2019] [Revised: 03/04/2019] [Accepted: 03/07/2019] [Indexed: 11/23/2022]
Abstract
The electronic and reactivity properties of carbon doped (C-doped) boron nitride nanoribbons (BNNRs) as a function of the carbon concentration were investigated in the framework of the density functional theory within the generalized gradient approximation. We found that the main routes to stabilize energetically the C-doped BNNRs involve substituting boron atoms near the edges. However, the effect of doping on the electronic properties depends of the sublattice where the C atoms are located; for instance, negative doping (partial occupations of electronic states) is found replacing B atoms, whereas positive doping (partial inoccupation of electronic states) is found when replacing N atoms with respect to the pristine BNNRs. Independently of the even or odd number of dopants of the C-doped BNNRs studied in this work, the solutions of the Kohn Sham equations suggest that the most stable solution is the magnetic one. The reactivity of the C-doped BNNRs is inferred from results of the dual descriptor, and it turns out that the main electrophilic sites are located near the dopants along the C-doped BNNRs. The reactivity of these nanostructures is tested by calculating the interaction energy between undesirable organosulfur compounds present in oil fuels on the C-doped BNNRs, finding that organosulfur compounds prefer to interact over nanosurfaces with dopants substituted on the B sublattice of the C-doped BNNRs. Most importantly, the selective C doping on the BNNRs offers the opportunity to tune the properties of the BNNRs to fit novel technological applications.
Collapse
Affiliation(s)
- Francisco Villanueva-Mejia
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Francisco J. Múgica, s/n, Morelia 58030, Michoacán, Mexico.
| | - Pedro Navarro-Santos
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Francisco J. Múgica, s/n, Morelia 58030, Michoacán, Mexico.
- Laboratorio de Cómputo de Alto Desempeño, CONACYT-Universidad Michoacana de San Nicolás de Hidalgo, Edif. B-1, Ciudad Universitaria, Francisco J. Múgica, s/n, Morelia 58030, Michoacán, Mexico.
| | - Peter Ludwig Rodríguez-Kessler
- Departamento de Física Aplicada, Centro de Investigación y de Estudios Avanzados, Unidad Mérida, Km 6 Antigua Carretera Progreso, Apdo. Postal 73, Cordemex, Mérida 97310, Yucatán, Mexico.
| | - Rafael Herrera-Bucio
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Francisco J. Múgica, s/n, Morelia 58030, Michoacán, Mexico.
| | - José Luis Rivera
- Facultad de Ingeniería Química, Universidad Michoacana de San Nicolás de Hidalgo, Francisco J. Múgica, s/n, Morelia 58030, Michoacán, Mexico.
| |
Collapse
|
2
|
Paixão SM, Silva TP, Arez BF, Alves L. Advances in the Reduction of the Costs Inherent to Fossil Fuels' Biodesulfurization towards Its Potential Industrial Application. APPLYING NANOTECHNOLOGY TO THE DESULFURIZATION PROCESS IN PETROLEUM ENGINEERING 2016. [DOI: 10.4018/978-1-4666-9545-0.ch013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 01/06/2023]
Abstract
Biodesulfurization (BDS) process consists on the use of microorganisms for the removal of sulfur from fossil fuels. Through BDS it is possible to treat most of the organosulfur compounds recalcitrant to the conventional hydrodesulfurization (HDS), the petroleum industry's solution, at mild operating conditions, without the need for molecular hydrogen or metal catalysts. This technique results in lower emissions, smaller residue production and less energy consumption, which makes BDS an eco-friendly process that can complement HDS making it more efficient. BDS has been extensively studied and much is already known about the process. Clearly, BDS presents advantages as a complementary technique to HDS; however its commercial use has been delayed by several limitations both upstream and downstream the process. This study will comprehensively review and discuss key issues, like reduction of the BDS costs, advances and/or challenges for a competitive BDS towards its potential industrial application aiming ultra low sulfur fuels.
Collapse
Affiliation(s)
| | | | - Bruno F. Arez
- Laboratório Nacional de Energia e Geologia, Portugal
| | - Luís Alves
- Laboratório Nacional de Energia e Geologia, Portugal
| |
Collapse
|