1
|
WGCNA Analysis of Important Modules and Hub Genes of Compound Probiotics Regulating Lipid Metabolism in Heat-Stressed Broilers. Animals (Basel) 2022; 12:ani12192644. [PMID: 36230385 PMCID: PMC9558994 DOI: 10.3390/ani12192644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/22/2022] [Accepted: 09/29/2022] [Indexed: 11/06/2022] Open
Abstract
This study aimed to study compound probiotics’ (Lactobacillus casei, Lactobacillus acidophilus and Bifidobacterium) effects on production performance, lipid metabolism and meat quality in heat-stressed broilers. A total of 400 one-day-old AA broilers were randomly divided into four groups, each containing the same five replicates, with 20 broilers in each replicate. The control (21 °C) and experiment 2 were fed a basic corn−soybean meal diet. Experiment 1 (21 °C) and experiment 3 were fed a basic corn−soybean meal diet with 10 g/kg compound probiotics on days 7 and 28, respectively. The ambient temperature of experiment 2 and experiment 3 was increased to 30−32 °C (9:00−17:00) for 28−42 days, while the temperature for the other time was kept at 21 °C. The results showed that, compared with the control, the production performance and the content of high-density lipoprotein cholesterol in experiment 1 and triglyceride (TG) in experiment 2 increased (p < 0.05). Compared with experiment 2, TG decreased and the production performance increased in experiment 3 (p < 0.05). However, there was no significant change in meat quality indicators. Weighted gene co-expression network analysis (WGCNA) was used to analyze the intramuscular fat, abdominal fat and five blood lipid indicators. We found five related modules. Fatty acid biosynthesis, glycerolipid metabolism, and fat digestion and absorption were the pathways for KEGG enrichment. Additionally, NKX2-1, TAS2R40, PTH, CPB1, SLCO1B3, GNB3 and AQP7 may be the hub genes of compound probiotics regulating lipid metabolism in heat-stressed broilers. In conclusion, this study identified the key genes of compound probiotics regulating lipid metabolism and provided a theoretical basis for the poultry breeding industry to alleviate heat stress.
Collapse
|
2
|
Monson MS, Bearson BL, Sylte MJ, Looft T, Lamont SJ, Bearson SMD. Transcriptional response of blood leukocytes from turkeys challenged with Salmonella enterica serovar Typhimurium UK1. Vet Immunol Immunopathol 2020; 232:110181. [PMID: 33401108 DOI: 10.1016/j.vetimm.2020.110181] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 12/14/2020] [Accepted: 12/21/2020] [Indexed: 12/25/2022]
Abstract
Non-typhoidal Salmonella is one of the most common causes of bacterial foodborne disease and consumption of contaminated poultry products, including turkey, is one source of exposure. Minimizing Salmonella colonization of commercial turkeys could decrease the incidence of Salmonella-associated human foodborne illness. Understanding host responses to these bacteria is critical in developing strategies to minimize colonization and reduce food safety risk. In this study, we evaluated bacterial load and blood leukocyte transcriptomic responses of 3-week-old turkeys challenged with the Salmonella enterica serovar Typhimurium (S. Typhimurium) UK1 strain. Turkeys (n = 8/dose) were inoculated by oral gavage with 108 or 1010 colony forming units (CFU) of S. Typhimurium UK1, and fecal shedding and tissue colonization were measured across multiple days post-inoculation (dpi). Fecal shedding was 1-2 log10 higher in the 1010 CFU group than the 108 CFU group, but both doses effectively colonized the crop, spleen, ileum, cecum, colon, bursa of Fabricius and cloaca without causing any detectable clinical signs in either group of birds. Blood leukocytes were isolated from a subset of the birds (n = 3-4/dpi) both pre-inoculation (0 dpi) and 2 dpi with 1010 CFU and their transcriptomic responses assayed by RNA-sequencing (RNA-seq). At 2 dpi, 647 genes had significant differential expression (DE), including large increases in expression of immune genes such as CCAH221, IL4I1, LYZ, IL13RA2, IL22RA2, and ACOD1. IL1β was predicted as a major regulator of DE in the leukocytes, which was predicted to activate cell migration, phagocytosis and proliferation, and to impact the STAT3 and toll-like receptor pathways. These analyses revealed genes and pathways by which turkey blood leukocytes responded to the pathogen and can provide potential targets for developing intervention strategies or diagnostic assays to mitigate S. Typhimurium colonization in turkeys.
Collapse
Affiliation(s)
- Melissa S Monson
- Iowa State University, Department of Animal Science, Ames, IA, United States
| | - Bradley L Bearson
- USDA, ARS, National Laboratory for Agriculture and the Environment, Ames, IA, United States
| | - Matthew J Sylte
- USDA, ARS, National Animal Disease Center, Ames, IA, United States
| | - Torey Looft
- USDA, ARS, National Animal Disease Center, Ames, IA, United States
| | - Susan J Lamont
- Iowa State University, Department of Animal Science, Ames, IA, United States
| | | |
Collapse
|
3
|
Wu A, Bai S, Ding X, Wang J, Zeng Q, Peng H, Wu B, Zhang K. The Systemic Zinc Homeostasis Was Modulated in Broilers Challenged by Salmonella. Biol Trace Elem Res 2020; 196:243-251. [PMID: 31641975 PMCID: PMC7289780 DOI: 10.1007/s12011-019-01921-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 09/26/2019] [Indexed: 12/17/2022]
Abstract
Salmonella challenge leads to systemic responses that induce the hypozincaemia in mice, which is considered a vital strategy against Salmonella invasion. However, it is not yet known if this phenomenon occurs in broilers. To investigate the change in zinc homeostasis of broilers against Salmonella challenge, 1-day-old male broilers were fed with the basal diet for 7 days. Afterwards, broilers were orally inoculated with either 0 or 0.5 × 108 CFU Salmonella Typhimurium (ST). The serum and selected tissues of Salmonella-challenged and non-challenged broilers were collected at 1, 3 and 7 days post-challenge for zinc homeostasis analysis. Our results showed that Salmonella challenge results in hypozincaemia (serum zinc decrease and liver zinc increase) via modulating the systemic zinc homeostasis of broilers. A profound, zinc transporter-mediated zinc absorption and redistribution affecting zinc homeostasis provided a mechanistic explanation for this phenomenon. In addition, we found that the zinc importers Zip5, Zip10, Zip11, Zip12, Zip13 and Zip14 were mainly downregulated in Salmonella-challenged broilers to reduce zinc absorption in the duodenum, while the Zip14 mRNA expression was upregulated to redistribute zinc into the liver. Collectively, these findings reveal that broilers counteract Salmonella infection via modulating their systemic zinc homeostasis.
Collapse
Affiliation(s)
- Aimin Wu
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Chengdu, 611130, Sichuan, China
| | - Shiping Bai
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Chengdu, 611130, Sichuan, China
| | - Xuemei Ding
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Chengdu, 611130, Sichuan, China
| | - Jianping Wang
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Chengdu, 611130, Sichuan, China
| | - Qiufeng Zeng
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Chengdu, 611130, Sichuan, China
| | - Huanwei Peng
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Chengdu, 611130, Sichuan, China
| | - Bing Wu
- Sichuan Chelota Group, Liangshui Village, Jinyu Town, Guanghan City, 618300, Sichuan, China
| | - Keying Zhang
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Chengdu, 611130, Sichuan, China.
- Animal Nutrition Institute, Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Sichuan Agricultural University, Huimin Road 211, Chengdu, 611130, China.
| |
Collapse
|
4
|
Wu Q, Liu Z, Li S, Jiao C, Wang Y, Wang Y. Effects of Glutamine on Digestive Function and Redox Regulation in the Intestines of Broiler Chickens Challenged with Salmonella Enteritidis. BRAZILIAN JOURNAL OF POULTRY SCIENCE 2019. [DOI: 10.1590/1806-9061-2019-1123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Q Wu
- Henan University of Science and Technology, China
| | - Z Liu
- Henan University of Science and Technology, China
| | - S Li
- Henan University of Science and Technology, China
| | - C Jiao
- Henan University of Science and Technology, China
| | - Y Wang
- Henan University of Science and Technology, China
| | - Y Wang
- Henan University of Science and Technology, China
| |
Collapse
|
5
|
Tohidi R, Javanmard A, Idris I. Immunogenetics applied to control salmonellosis in chicken: a review. JOURNAL OF APPLIED ANIMAL RESEARCH 2018. [DOI: 10.1080/09712119.2017.1301256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Reza Tohidi
- Department of Animal Science, Torbat-e Jam University of Agriculture, Torbat-e Jam, Iran
| | - Arash Javanmard
- Department of Animal Science, University of Tabriz, Tabriz, Iran
| | - Ismail Idris
- Department of Animal Science, Universiti Putra Malaysia, Serdang, Malaysia
| |
Collapse
|
6
|
Zhang QL, Xie ZQ, Liang MZ, Luo B, Wang XQ, Chen JY. Genome-wide gene expression analysis in the amphioxus, Branchiostoma belcheri after poly (I: C) challenge using strand-specific RNA-seq. Oncotarget 2017; 8:108392-108405. [PMID: 29312538 PMCID: PMC5752451 DOI: 10.18632/oncotarget.21553] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 10/02/2017] [Indexed: 02/07/2023] Open
Abstract
The gene expression associated with immune response to bacteria/bacterial mimic has been extensively analyzed in amphioxus, but remains largely unknown about how gene are involved in the immune response to viral invasion at expression level. Here, we analyze the rRNA-depleted transcriptomes of Branchiostoma belcheri using strand-specific RNA-seq in response to the viral mimic, poly (I:C) (pIC). A total of 5,317 differentially expressed genes were detected at treatment group by comparing with control. The gene with the most significant expression changes (top 15) after pIC challenge and 7 immune-related categories involving 58 differently expressed genes were scrutinized. By functional enrichment analysis of differently expressed genes, gene ontology terms involving response to stress and stimulus, apoptosis, catabolic and metabolic processes and enzyme activity were overrepresented, and several pathways related to immune signaling, immune response, cancer, apoptosis, viral disease, metabolism were activated after pIC injection. A positive correlation between the qRT-PCR and strand-specific RNA-seq data confirmed the accuracy of the RNA-seq results. Additionally, the expression of genes encoding NLRC5, CASP1, CASP6, CYP450, CAT, and MDA5 were induced in B. belcheri under pIC challenge. Our experiments provide insight into the immune response of amphioxus to pIC and valuable gene expression information for studying the evolution of antiviral immunity in vertebrates.
Collapse
Affiliation(s)
- Qi-Lin Zhang
- LPS, Nanjing Institute of Geology and Paleontology, Chinese Academy of Science, Nanjing, China.,State Key Laboratory of Pharmaceutical Biotechnology, School of Life Science, Nanjing University, Nanjing, China
| | - Zheng-Qing Xie
- LPS, Nanjing Institute of Geology and Paleontology, Chinese Academy of Science, Nanjing, China.,State Key Laboratory of Pharmaceutical Biotechnology, School of Life Science, Nanjing University, Nanjing, China
| | - Ming-Zhong Liang
- Department of Marine Science, Qinzhou University, Qinzhou, China
| | - Bang Luo
- Guangxi Academy of Fishery Sciences, Nanning, China
| | - Xiu-Qiang Wang
- LPS, Nanjing Institute of Geology and Paleontology, Chinese Academy of Science, Nanjing, China
| | - Jun-Yuan Chen
- LPS, Nanjing Institute of Geology and Paleontology, Chinese Academy of Science, Nanjing, China
| |
Collapse
|
7
|
Ma T, Xu L, Wang H, Guo X, Li Z, Wan F, Chen J, Liu L, Liu X, Chang G, Chen G. Identification of the crucial genes in the elimination and survival process of Salmonella enterica ser. Pullorum in the chicken spleen. Anim Genet 2017; 48:303-314. [PMID: 28176342 DOI: 10.1111/age.12533] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/08/2016] [Indexed: 12/11/2022]
Abstract
Salmonella enterica ser. Pullorum is one of the most easily re-infecting pathogens in poultry production because of its mechanism of escaping from immune elimination. We used the transcriptome method to investigate the variation in gene expression in chicken spleen resulting from the interaction between hosts and S. Pullorum in the survival process. The expression of various genes related to the maturation and activation of B cells was activated before S. Pullorum was eliminated, which might help S. Pullorum escape from the elimination process. The suppression of some genes involved in the fusion of autophagosomes and lysosomes, such as MYO6, was identified and may be regulated by the secretion systems of S. Pullorum. In addition, a large proportion of these differentially expressed genes could be localized in the identified quantitative trait loci regions associated with the antibody response to bacteria. Collectively, these identified genes provided an outline for further understanding the interaction between chicken immune cells and S. Pullorum in chicken spleen.
Collapse
Affiliation(s)
- T Ma
- Animal Genetic Resources Laboratory, College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - L Xu
- Animal Genetic Resources Laboratory, College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - H Wang
- Animal Genetic Resources Laboratory, College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - X Guo
- Animal Genetic Resources Laboratory, College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Z Li
- Animal Genetic Resources Laboratory, College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - F Wan
- Animal Genetic Resources Laboratory, College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - J Chen
- Animal Genetic Resources Laboratory, College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - L Liu
- Animal Genetic Resources Laboratory, College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - X Liu
- Poultry Institute, Chinese Academy of Agricultural Sciences, Yangzhou, Jiangsu, 225125, China
| | - G Chang
- Animal Genetic Resources Laboratory, College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - G Chen
- Animal Genetic Resources Laboratory, College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| |
Collapse
|
8
|
Expression patterns of NLRC5 and key genes in the STAT1 pathway following infection with Salmonella pullorum. Gene 2016; 597:23-29. [PMID: 27771450 DOI: 10.1016/j.gene.2016.10.026] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2016] [Revised: 09/26/2016] [Accepted: 10/18/2016] [Indexed: 02/06/2023]
Abstract
NLRC5, a protein belonging to the NOD-like receptor protein family (NLRs), is highly expressed in immune tissues and cells. NLRC5 plays an important role in the immune response of humans, where its regulatory mechanism has been elucidated. However, the function and regulation of NLRC5 in chickens remains unclear. In this study, temporal expression characteristics of NLRC5 and associated genes in the STAT1 pathway in chickens following infection with Salmonella pullorum were investigated using quantitative real-time polymerase chain reaction and hierarchical cluster analyses. The role of transcription factor STAT1 in NLRC5 promoter activity was studied via point mutation of the STAT1-binding cis-element and dual-luciferase assays. Our results showed a strong correlation between NLRC5 and NF-κB. In addition, STAT1 played a crucial role in NLRC5 promoter activity, and may be activated via the interferon pathway. There was also a close relationship between CD80 and NF-κB, and CD80 may up-regulate NF-κB expression and enhance its protein activity in chickens. These findings reveal the temporal characteristics of chicken NLRC5 and STAT1 genes during S. pullorum infection, and highlight the role of STAT1 in NLRC5 promoter activity. This information aids our understanding of the regulatory mechanisms of NLRC5 and associated genes, and will help elucidate their function in the immune response of chickens.
Collapse
|