1
|
Colitti M, Stefanon B, Sandri M, Licastro D. Incubation of canine dermal fibroblasts with serum from dogs with atopic dermatitis activates extracellular matrix signalling and represses oxidative phosphorylation. Vet Res Commun 2023; 47:247-258. [PMID: 35665445 PMCID: PMC9873773 DOI: 10.1007/s11259-022-09947-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 05/25/2022] [Indexed: 01/28/2023]
Abstract
The aim of this study was to investigate the effects on gene expression in canine fibroblasts after incubation with a medium enriched with atopic dermatitis canine serum (CAD) compared with healthy canine serum (CTRL) and fetal bovine serum (FBS). Differential Expression and Pathway analysis (iDEP94) in R package (v0.92) was used to identify differentially expressed genes (DEGs) with a False Discovery Rate of 0.01. DEGs from fibroblasts incubated with CAD serum were significantly upregulated and enriched in the extracellular matrix (ECM) and focal adhesion signalling but downregulated in the oxidative phosphorylation pathway. Genes involved in profibrotic processes, such as TGFB1, INHBA, ERK1/2, and the downward regulated genes (collagens and integrins), were significantly upregulated after fibroblasts were exposed to CAD serum. The observed downregulation of genes involved in oxidative phosphorylation suggests metabolic dysregulation toward a myofibroblast phenotype responsible for fibrosis. No differences were found when comparing CTRL with FBS. The DEGs identified in fibroblasts incubated with CAD serum suggest activation of signalling pathways involved in gradual differentiation through a myofibroblast precursors that represent the onset of fibrosis. Molecular and metabolic knowledge of fibroblast changes can be used to identify biomarkers of the disease and new potential pharmacological targets.
Collapse
Affiliation(s)
- Monica Colitti
- Departement of AgroFood, Environmental and Animal Science, University of Udine, via delle Scienze 206, 33100, Udine, Italy
| | - Bruno Stefanon
- Departement of AgroFood, Environmental and Animal Science, University of Udine, via delle Scienze 206, 33100, Udine, Italy.
| | - Misa Sandri
- Departement of AgroFood, Environmental and Animal Science, University of Udine, via delle Scienze 206, 33100, Udine, Italy
| | | |
Collapse
|
2
|
Swaims-Kohlmeier A, Sheth AN, Brody J, Hardnett FP, Sharma S, Bonning EW, Ofotokun I, Massud I, García-Lerma JG. Proinflammatory oscillations over the menstrual cycle drives bystander CD4 T cell recruitment and SHIV susceptibility from vaginal challenge. EBioMedicine 2021; 69:103472. [PMID: 34229275 PMCID: PMC8264117 DOI: 10.1016/j.ebiom.2021.103472] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/02/2021] [Accepted: 06/15/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The menstrual cycle influences HIV infection-risk in women, although the timing and underlying mechanism are unclear. Here we investigated the contribution of the menstrual cycle to HIV susceptibility through evaluating immune behavior with infection-risk over time. METHODS Blood and vaginal lavage samples were collected from 18 pig-tailed macaques to evaluate immune changes over reproductive cycles, and from 5 additional animals undergoing repeated vaginal exposures to simian HIV (SHIV). Peripheral blood mononuclear cell (PBMC) samples from healthy women (n = 10) were prospectively collected over the course of a menstrual cycle to profile T cell populations. Immune properties from PBMC and vaginal lavage samples were measured by flow cytometry. Plasma progesterone was measured by enzyme immunoassay. The oscillation frequency of progesterone concentration and CCR5 expression on CD4 T cells was calculated using the Lomb-Scargle periodogram. SHIV infection was monitored in plasma by RT-PCR. Immune measures were compared using generalized estimating equations (GEE). FINDINGS Macaques cycle-phases were associated with fluctuations in systemic immune properties and a type-1 inflammatory T cell response with corresponding CCR5+ memory CD4 T cell (HIV target cell) infiltration into the vaginal lumen at the late luteal phase. Power spectral analysis identified CCR5 oscillation frequencies synchronized with reproductive cycles. In a repetitive low-dose vaginal challenge model, productive SHIV163P3 infection only occurred during intervals of mounting type-1 T cell responses (n = 5/5). Finally, we identify similar type-1 inflammatory T cell responses over the menstrual cycle are occurring in healthy women. INTERPRETATION These data demonstrate that periodic shifts in the immune landscape under menstrual cycle regulation drives bystander CCR5+ CD4 T cell recruitment and HIV susceptibility in the female reproductive tract. FUNDING This study was supported by the U.S. Centers for Disease Control and Prevention, Atlanta, GA 30329 and NIH grants to Emory University (K23AI114407 to A.N.S., the Emory University Center for AIDS research [P30AI050409], and Atlanta Clinical and Translational Sciences Institute [KLR2TR000455, UL1TR000454]). DISCLAIMER The findings and conclusions in this report are those of the authors and do not necessarily represent the views of the U.S. Centers for Disease Control and Prevention or the Department of Health and Human Services.
Collapse
Affiliation(s)
- Alison Swaims-Kohlmeier
- Division of HIV/AIDS Prevention, National Center for HIV/AIDS, Viral Hepatitis, STD, and TB Prevention, Centers for Disease Control and Prevention, Atlanta, GA 30329, United States..
| | - Anandi N Sheth
- Division of Infectious Diseases, Department of Medicine, Emory University, Atlanta, GA 30322, United States
| | - Jed Brody
- Department of Physics, Emory University, Atlanta, GA 30322, United States
| | - Felicia P Hardnett
- Division of HIV/AIDS Prevention, National Center for HIV/AIDS, Viral Hepatitis, STD, and TB Prevention, Centers for Disease Control and Prevention, Atlanta, GA 30329, United States
| | - Sunita Sharma
- Division of HIV/AIDS Prevention, National Center for HIV/AIDS, Viral Hepatitis, STD, and TB Prevention, Centers for Disease Control and Prevention, Atlanta, GA 30329, United States
| | - Erin Wells Bonning
- Department of Physics, Emory University, Atlanta, GA 30322, United States
| | - Igho Ofotokun
- Division of Infectious Diseases, Department of Medicine, Emory University, Atlanta, GA 30322, United States
| | - Ivana Massud
- Division of HIV/AIDS Prevention, National Center for HIV/AIDS, Viral Hepatitis, STD, and TB Prevention, Centers for Disease Control and Prevention, Atlanta, GA 30329, United States
| | - J Gerardo García-Lerma
- Division of HIV/AIDS Prevention, National Center for HIV/AIDS, Viral Hepatitis, STD, and TB Prevention, Centers for Disease Control and Prevention, Atlanta, GA 30329, United States
| |
Collapse
|
3
|
Catherine J, Roufosse F. What does elevated TARC/CCL17 expression tell us about eosinophilic disorders? Semin Immunopathol 2021; 43:439-458. [PMID: 34009399 PMCID: PMC8132044 DOI: 10.1007/s00281-021-00857-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 04/14/2021] [Indexed: 12/19/2022]
Abstract
Eosinophilic disorders encompass a large spectrum of heterogeneous diseases sharing the presence of elevated numbers of eosinophils in blood and/or tissues. Among these disorders, the role of eosinophils can vary widely, ranging from a modest participation in the disease process to the predominant perpetrator of tissue damage. In many cases, eosinophilic expansion is polyclonal, driven by enhanced production of interleukin-5, mainly by type 2 helper cells (Th2 cells) with a possible contribution of type 2 innate lymphoid cells (ILC2s). Among the key steps implicated in the establishment of type 2 immune responses, leukocyte recruitment toward inflamed tissues is particularly relevant. Herein, the contribution of the chemo-attractant molecule thymus and activation-regulated chemokine (TARC/CCL17) to type 2 immunity will be reviewed. The clinical relevance of this chemokine and its target, C-C chemokine receptor 4 (CCR4), will be illustrated in the setting of various eosinophilic disorders. Special emphasis will be put on the potential diagnostic, prognostic, and therapeutic implications related to activation of the TARC/CCL17-CCR4 axis.
Collapse
Affiliation(s)
- Julien Catherine
- Department of Internal Medicine, Hôpital Erasme, 808 Route de Lennik, 1070, Brussels, Belgium. .,Institute for Medical Immunology, Université Libre de Bruxelles, 6041 Gosselies, Brussels, Belgium.
| | - Florence Roufosse
- Department of Internal Medicine, Hôpital Erasme, 808 Route de Lennik, 1070, Brussels, Belgium.,Institute for Medical Immunology, Université Libre de Bruxelles, 6041 Gosselies, Brussels, Belgium
| |
Collapse
|
4
|
Patel AA, Ginhoux F, Yona S. Monocytes, macrophages, dendritic cells and neutrophils: an update on lifespan kinetics in health and disease. Immunology 2021; 163:250-261. [PMID: 33555612 DOI: 10.1111/imm.13320] [Citation(s) in RCA: 90] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 01/13/2021] [Accepted: 01/17/2021] [Indexed: 12/16/2022] Open
Abstract
Phagocytes form a family of immune cells that play a crucial role in tissue maintenance and help orchestrate the immune response. This family of cells can be separated by their nuclear morphology into mononuclear and polymorphonuclear phagocytes. The generation of these cells in the bone marrow, to the blood and finally into tissues is a tightly regulated process. Ensuring the adequate production of these cells and their timely removal is key for both the initiation and resolution of inflammation. Insight into the kinetic profiles of innate myeloid cells during steady state and pathology will permit the rational development of therapies to boost the production of these cells in times of need or reduce them when detrimental.
Collapse
Affiliation(s)
| | - Florent Ginhoux
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (ASTAR), Singapore, Singapore.,Shanghai Institute of Immunology, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Translational Immunology Institute, SingHealth Duke-NUS Academic Medical Centre, Singapore, Singapore
| | - Simon Yona
- Institute of Dental Sciences, Faculty of Dental Medicine, Hebrew University, Jerusalem, Israel
| |
Collapse
|
5
|
Therapeutic Benefit in Allergic Dermatitis Derived from the Inhibitory Effect of Byakkokaninjinto on the Migration of Plasmacytoid Dendritic Cells. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:9532475. [PMID: 33149758 PMCID: PMC7603581 DOI: 10.1155/2020/9532475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 09/07/2020] [Accepted: 09/23/2020] [Indexed: 11/18/2022]
Abstract
Dendritic cells (DCs) are well known to be essential immunocytes involved in innate and adaptive immunity. DCs are classified as conventional dendritic cells (cDCs) and plasmacytoid dendritic cells (pDCs). Recently, the accumulation of pDCs in inflamed tissues and lymphoid tissues has been considered to be a possible contributing factor in the development of immunological diseases, but little is known about the pathophysiological roles of pDCs in immunological diseases. To date, many studies have demonstrated that many kinds of Kampo formulas can regulate immunological reactions in human immune diseases. Thus, we screened Kampo formulas to identify an agent that inhibits pDC migration. Furthermore, we investigated the therapeutic effects of these formulas on a murine DNFB-induced allergic contact dermatitis model. Bone marrow-derived pDCs (BMpDCs) were derived from the bone marrow cells of BALB/c mice in a culture medium with Flt3 ligand. The effects of Kampo formulas on BMpDC migration were evaluated by assessing the number, velocity, and directionality of BMpDCs chemotaxing toward the more concentrated side of a chemokine (C-C motif) ligand 21 (CCL21) gradient. The Kampo formulas that exerted inhibitory effects on pDC migration were orally administered to DNFB-induced allergic contact dermatitis model mice. Byakkokaninjinto reduced the number of migrated BMpDCs and suppressed the velocity and directionality of BMpDC migration in a chemotaxis assay. Gypsum Fibrosum and Ginseng Radix, which are components of byakkokaninjinto, obviously suppressed the velocity of BMpDC migration. Furthermore, Gypsum Fibrosum significantly suppressed the directionality of BMpDC migration. In DNFB-induced allergic contact dermatitis model mice, byakkokaninjinto markedly abrogated ear swelling in late-phase allergic reactions. In conclusions, byakkokaninjinto, which has an inhibitory effect on pDC migration, was able to prevent the occurrence of allergic contact dermatitis, suggesting that pDCs were involved in the onset of allergic contact dermatitis in the mouse model. Therefore, byakkokaninjinto is anticipated to be a therapeutic agent for disorders related to pDC migration.
Collapse
|
6
|
Activin-A in the regulation of immunity in health and disease. J Autoimmun 2019; 104:102314. [PMID: 31416681 DOI: 10.1016/j.jaut.2019.102314] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 07/28/2019] [Indexed: 02/08/2023]
Abstract
The TGF-β superfamily of cytokines plays pivotal roles in the regulation of immune responses protecting against or contributing to diseases, such as, allergy, autoimmunity and cancer. Activin-A, a member of the TGF-β superfamily, was initially identified as an inducer of follicle-stimulating hormone secretion. Extensive research over the past decades illuminated fundamental roles for activin-A in essential biologic processes, including embryonic development, stem cell maintenance and differentiation, haematopoiesis, cell proliferation and tissue fibrosis. Activin-A signals through two type I and two type II receptors which, upon ligand binding, activate their kinase activity, phosphorylate the SMAD2 and 3 intracellular signaling mediators that form a complex with SMAD4, translocate to the nucleus and activate or silence gene expression. Most immune cell types, including macrophages, dendritic cells (DCs), T and B lymphocytes and natural killer cells have the capacity to produce and respond to activin-A, although not in a similar manner. In innate immune cells, including macrophages, DCs and neutrophils, activin-A exerts a broad range of pro- or anti-inflammatory functions depending on the cell maturation and activation status and the spatiotemporal context. Activin-A also controls the differentiation and effector functions of Th cell subsets, including Th9 cells, TFH cells, Tr1 Treg cells and Foxp3+ Treg cells. Moreover, activin-A affects B cell responses, enhancing mucosal IgA secretion and inhibiting pathogenic autoantibody production. Interestingly, an array of preclinical and clinical studies has highlighted crucial functions of activin-A in the initiation, propagation and resolution of human diseases, including autoimmune diseases, such as, systemic lupus erythematosus, rheumatoid arthritis and pulmonary alveolar proteinosis, in allergic disorders, including allergic asthma and atopic dermatitis, in cancer and in microbial infections. Here, we provide an overview of the biology of activin-A and its signaling pathways, summarize recent studies pertinent to the role of activin-A in the modulation of inflammation and immunity, and discuss the potential of targeting activin-A as a novel therapeutic approach for the control of inflammatory diseases.
Collapse
|
7
|
Sousa L, Martín-Sierra C, Pereira C, Loureiro G, Tavares B, Pedreiro S, Martinho A, Paiva A. Subcutaneous immunotherapy induces alterations in monocytes and dendritic cells homeostasis in allergic rhinitis patients. Allergy Asthma Clin Immunol 2018; 14:45. [PMID: 30459816 PMCID: PMC6236941 DOI: 10.1186/s13223-018-0271-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 06/14/2018] [Indexed: 02/07/2023] Open
Abstract
Background Specific subcutaneous immunotherapy (SCIT) can achieve long-term remission in patients with allergic rhinitis (AR) through complex and still unknown mechanisms. The aim of this study is to evaluate the effect of SCIT over CD16+ and CD16− monocytes, myeloid (mDCs) and plasmacytoid dendritic cells (pDCs) in patients with AR, comparatively to pharmacological standard treatment (non-SIT). Methods The relative frequency and absolute number of monocytes and DC subsets, the frequency of these cells producing TNFα after in vitro stimulation with Dermatophagoides pteronyssinus (Dpt) extract, and the expression levels of receptor-bound IgE or IgG were assessed by flow cytometry, in peripheral blood samples from 23 healthy individuals (HG) and 43 participants with AR mono-sensitized to Dpt; 10 with non-SIT treatment and 33 under SCIT, just before (SCIT-T0) and 4 h after administration (SCIT-T4). Moreover, IFNα mRNA expression was evaluated in purified pDCs, by qRT-PCR. Results After SCIT administration we observed a strong decrease of circulating pDCs, although accompanied by higher levels of IFNα mRNA expression, and an increase of circulating CD16+ monocytes. AR participants under SCIT exhibited a higher expression of receptor-bound IgE in all cell populations that expressed the high affinity receptor for IgE (FcεRI) and a higher frequency of CD16+ monocytes producing TNFα. Conversely, we observed a decrease in the frequency of mDCs producing TNFα in AR under SCIT, similar to the observed in the control group. Conclusions SCIT seems to induce numeric, phenotypic, and functional changes in circulating monocytes and dendritic cells, contributing at least in part to the well described immunological alterations induced by this type of immunotherapy.
Collapse
Affiliation(s)
- Letícia Sousa
- 1Stemlab, S.A, Biocant Park, Núcleo 4, Lote 2, Cantanhede, Portugal
| | - Carmen Martín-Sierra
- 2Flow Cytometry Unit, Clinical Pathology Service, Centro Hospitalar e Universitário de Coimbra, Praceta Prof. Mota Pinto, Ed. S. Jerónimo, 3° piso, 30001-301 Coimbra, Portugal
| | - Celso Pereira
- 3Immunoallergology Department, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
| | - Graça Loureiro
- 3Immunoallergology Department, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
| | - Beatriz Tavares
- 3Immunoallergology Department, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
| | - Susana Pedreiro
- 2Flow Cytometry Unit, Clinical Pathology Service, Centro Hospitalar e Universitário de Coimbra, Praceta Prof. Mota Pinto, Ed. S. Jerónimo, 3° piso, 30001-301 Coimbra, Portugal
| | - António Martinho
- Portuguese Institute of Blood and Transplantation, Coimbra, Portugal
| | - Artur Paiva
- 2Flow Cytometry Unit, Clinical Pathology Service, Centro Hospitalar e Universitário de Coimbra, Praceta Prof. Mota Pinto, Ed. S. Jerónimo, 3° piso, 30001-301 Coimbra, Portugal.,5CIMAGO-Center of Investigation on Environment Genetics and Oncobiology, Faculdade de Medicina da Universidade de Coimbra, Coimbra, Portugal
| |
Collapse
|
8
|
Zaniboni MC, Samorano LP, Orfali RL, Aoki V. Skin barrier in atopic dermatitis: beyond filaggrin. An Bras Dermatol 2017; 91:472-8. [PMID: 27579743 PMCID: PMC4999106 DOI: 10.1590/abd1806-4841.20164412] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 05/05/2015] [Indexed: 12/27/2022] Open
Abstract
Atopic dermatitis is a chronic inflammatory skin disease with a complex
pathogenesis, where changes in skin barrier and imbalance of the immune system
are relevant factors. The skin forms a mechanic and immune barrier, regulating
water loss from the internal to the external environment, and protecting the
individual from external aggressions, such as microorganisms, ultraviolet
radiation and physical trauma. Main components of the skin barrier are located
in the outer layers of the epidermis (such as filaggrin), the proteins that form
the tight junction (TJ) and components of the innate immune system. Recent data
involving skin barrier reveal new information regarding its structure and its
role in the mechanic-immunological defense; atopic dermatitis (AD) is an example
of a disease related to dysfunctions associated with this complex.
Collapse
Affiliation(s)
| | | | | | - Valéria Aoki
- Universidade de São Paulo (USP) - São Paulo (SP), Brazil
| |
Collapse
|
9
|
dos Santos VG, Orfali RL, de Oliveira Titz T, da Silva Duarte AJ, Sato MN, Aoki V. Evidence of regulatory myeloid dendritic cells and circulating inflammatory epidermal dendritic cells-like modulated by Toll-like receptors 2 and 7/8 in adults with atopic dermatitis. Int J Dermatol 2017; 56:630-635. [DOI: 10.1111/ijd.13537] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 09/19/2016] [Accepted: 11/14/2016] [Indexed: 12/14/2022]
Affiliation(s)
- Vanessa G. dos Santos
- Department of Dermatology; Laboratory of Dermatology and Immunodeficiency (LIM-56); University of Sao Paulo School of Medicine; Sao Paulo-SP Brazil
| | - Raquel L. Orfali
- Department of Dermatology; Laboratory of Dermatology and Immunodeficiency (LIM-56); University of Sao Paulo School of Medicine; Sao Paulo-SP Brazil
| | - Tiago de Oliveira Titz
- Department of Dermatology; Laboratory of Dermatology and Immunodeficiency (LIM-56); University of Sao Paulo School of Medicine; Sao Paulo-SP Brazil
| | - Alberto J. da Silva Duarte
- Department of Dermatology; Laboratory of Dermatology and Immunodeficiency (LIM-56); University of Sao Paulo School of Medicine; Sao Paulo-SP Brazil
| | - Maria N. Sato
- Department of Dermatology; Laboratory of Dermatology and Immunodeficiency (LIM-56); University of Sao Paulo School of Medicine; Sao Paulo-SP Brazil
| | | |
Collapse
|
10
|
Schrøder M, Melum GR, Landsverk OJB, Bujko A, Yaqub S, Gran E, Aamodt H, Bækkevold ES, Jahnsen FL, Richter L. CD1c-Expression by Monocytes - Implications for the Use of Commercial CD1c+ Dendritic Cell Isolation Kits. PLoS One 2016; 11:e0157387. [PMID: 27311059 PMCID: PMC4911075 DOI: 10.1371/journal.pone.0157387] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 05/27/2016] [Indexed: 12/24/2022] Open
Abstract
Conventional dendritic cells (cDCs) comprise a heterogeneous population of cells that are important regulators of immunity and homeostasis. CD1c+ cDCs are present in human blood and tissues, and found to efficiently activate naïve CD4+ T cells. While CD1c is thought to specifically identify this subset of human cDCs, we show here that also classical and intermediate monocytes express CD1c. Accordingly, the commercial CD1c (BDCA-1)+ Dendritic Cell Isolation Kit isolates two distinct cell populations from blood: CD1c+CD14− cDCs and CD1c+CD14+ monocytes. CD1c+ cDCs and CD1c+ monocytes exhibited strikingly different properties, including their differential regulation of surface marker expression, their levels of cytokine production, and their ability to stimulate naïve CD4+ T cells. These results demonstrate that a commercial CD1c (BDCA-1)+ Dendritic Cell Isolation Kit isolates two functionally different cell populations, which has important implications for the interpretation of previously generated data using this kit to characterize CD1c+ cDCs.
Collapse
Affiliation(s)
- Martine Schrøder
- Department of Pathology, Oslo University Hospital, Oslo, Norway
- Centre for Immune Regulation, University of Oslo, Oslo, Norway
| | | | - Ole J. B. Landsverk
- Department of Pathology, Oslo University Hospital, Oslo, Norway
- Centre for Immune Regulation, University of Oslo, Oslo, Norway
| | - Anna Bujko
- Department of Pathology, Oslo University Hospital, Oslo, Norway
- Centre for Immune Regulation, University of Oslo, Oslo, Norway
| | - Sheraz Yaqub
- Department of Gastrointestinal Surgery, Oslo University Hospital, Oslo, Norway
| | - Einar Gran
- Department of Otolaryngology, Lovisenberg Diakonale Hospital, Oslo, Norway
| | - Henrik Aamodt
- Department of Cardiothoracic Surgery, Oslo University Hospital, Oslo, Norway
- Tumor Immunology Group, Department of Pathology, Oslo University Hospital, Oslo, Norway
| | - Espen S. Bækkevold
- Department of Pathology, Oslo University Hospital, Oslo, Norway
- Centre for Immune Regulation, University of Oslo, Oslo, Norway
| | - Frode L. Jahnsen
- Department of Pathology, Oslo University Hospital, Oslo, Norway
- Centre for Immune Regulation, University of Oslo, Oslo, Norway
| | - Lisa Richter
- Department of Pathology, Oslo University Hospital, Oslo, Norway
- Centre for Immune Regulation, University of Oslo, Oslo, Norway
- * E-mail:
| |
Collapse
|
11
|
Hardy CL, Rolland JM, O'Hehir RE. The immunoregulatory and fibrotic roles of activin A in allergic asthma. Clin Exp Allergy 2016; 45:1510-22. [PMID: 25962695 PMCID: PMC4687413 DOI: 10.1111/cea.12561] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Activin A, a member of the TGF-β superfamily of cytokines, was originally identified as an inducer of follicle stimulating hormone release, but has since been ascribed roles in normal physiological processes, as an immunoregulatory cytokine and as a driver of fibrosis. In the last 10–15 years, it has also become abundantly clear that activin A plays an important role in the regulation of asthmatic inflammation and airway remodelling. This review provides a brief introduction to the activin A/TGF-β superfamily, focussing on the regulation of receptors and signalling pathways. We examine the contradictory evidence for generalized pro- vs. anti-inflammatory effects of activin A in inflammation, before appraising its role in asthmatic inflammation and airway remodelling specifically by evaluating data from both murine models and clinical studies. We identify key issues to be addressed, paving the way for safe exploitation of modulation of activin A function for treatment of allergic asthma and other inflammatory lung diseases.
Collapse
Affiliation(s)
- C L Hardy
- Department of Allergy, Immunology & Respiratory Medicine, Monash University and The Alfred Hospital, Melbourne, Vic., Australia.,Department of Immunology, Monash University, Melbourne, Vic., 3004, Australia
| | - J M Rolland
- Department of Allergy, Immunology & Respiratory Medicine, Monash University and The Alfred Hospital, Melbourne, Vic., Australia.,Department of Immunology, Monash University, Melbourne, Vic., 3004, Australia
| | - R E O'Hehir
- Department of Allergy, Immunology & Respiratory Medicine, Monash University and The Alfred Hospital, Melbourne, Vic., Australia.,Department of Immunology, Monash University, Melbourne, Vic., 3004, Australia
| |
Collapse
|
12
|
Samitas K, Poulos N, Semitekolou M, Morianos I, Tousa S, Economidou E, Robinson DS, Kariyawasam HH, Zervas E, Corrigan CJ, Ying S, Xanthou G, Gaga M. Activin-A is overexpressed in severe asthma and is implicated in angiogenic processes. Eur Respir J 2016; 47:769-82. [PMID: 26869672 DOI: 10.1183/13993003.00437-2015] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 12/04/2015] [Indexed: 02/06/2023]
Abstract
Activin-A is a pleiotropic cytokine that regulates allergic inflammation. Its role in the regulation of angiogenesis, a key feature of airways remodelling in asthma, remains unexplored. Our objective was to investigate the expression of activin-A in asthma and its effects on angiogenesis in vitro.Expression of soluble/immunoreactive activin-A and its receptors was measured in serum, bronchoalveolar lavage fluid (BALF) and endobronchial biopsies from 16 healthy controls, 19 patients with mild/moderate asthma and 22 severely asthmatic patients. In vitro effects of activin-A on baseline and vascular endothelial growth factor (VEGF)-induced human endothelial cell angiogenesis, signalling and cytokine release were compared with BALF concentrations of these cytokines in vivo.Activin-A expression was significantly elevated in serum, BALF and bronchial tissue of the asthmatics, while expression of its protein receptors was reduced. In vitro, activin-A suppressed VEGF-induced endothelial cell proliferation and angiogenesis, inducing autocrine production of anti-angiogenic soluble VEGF receptor (R)1 and interleukin (IL)-18, while reducing production of pro-angiogenic VEGFR2 and IL-17. In parallel, BALF concentrations of soluble VEGFR1 and IL-18 were significantly reduced in severe asthmatics in vivo and inversely correlated with angiogenesis.Activin-A is overexpressed and has anti-angiogenic effects in vitro that are not propagated in vivo, where reduced basal expression of its receptors is observed particularly in severe asthma.
Collapse
Affiliation(s)
- Konstantinos Samitas
- Cellular Immunology Laboratory, Division of Cell Biology, Centre for Basic Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece 7th Respiratory Medicine Department and Asthma Centre, Athens Chest Hospital "Sotiria", Athens, Greece These authors contributed equally
| | - Nikolaos Poulos
- Cellular Immunology Laboratory, Division of Cell Biology, Centre for Basic Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece These authors contributed equally
| | - Maria Semitekolou
- Cellular Immunology Laboratory, Division of Cell Biology, Centre for Basic Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece These authors contributed equally
| | - Ioannis Morianos
- Cellular Immunology Laboratory, Division of Cell Biology, Centre for Basic Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Sofia Tousa
- Cellular Immunology Laboratory, Division of Cell Biology, Centre for Basic Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Erasmia Economidou
- 7th Respiratory Medicine Department and Asthma Centre, Athens Chest Hospital "Sotiria", Athens, Greece
| | - Douglas S Robinson
- Medical Research Council and Asthma UK Centre for Mechanisms of Allergic Asthma, National Heart and Lung Institute, Faculty of Medicine, Imperial College, London, UK
| | - Harsha H Kariyawasam
- Medical Research Council and Asthma UK Centre for Mechanisms of Allergic Asthma, National Heart and Lung Institute, Faculty of Medicine, Imperial College, London, UK Department of Allergy and Medical Rhinology, Royal National Throat, Nose and Ear Hospital, University College, London, UK
| | - Eleftherios Zervas
- 7th Respiratory Medicine Department and Asthma Centre, Athens Chest Hospital "Sotiria", Athens, Greece
| | - Christopher J Corrigan
- Department of Asthma, Allergy and Respiratory Science, King's College London School of Medicine, London, UK
| | - Sun Ying
- Department of Asthma, Allergy and Respiratory Science, King's College London School of Medicine, London, UK
| | - Georgina Xanthou
- Cellular Immunology Laboratory, Division of Cell Biology, Centre for Basic Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece Both authors contributed equally
| | - Mina Gaga
- 7th Respiratory Medicine Department and Asthma Centre, Athens Chest Hospital "Sotiria", Athens, Greece Both authors contributed equally
| |
Collapse
|
13
|
Lundberg K, Rydnert F, Broos S, Andersson M, Greiff L, Lindstedt M. Allergen-Specific Immunotherapy Alters the Frequency, as well as the FcR and CLR Expression Profiles of Human Dendritic Cell Subsets. PLoS One 2016; 11:e0148838. [PMID: 26863539 PMCID: PMC4749279 DOI: 10.1371/journal.pone.0148838] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 01/25/2016] [Indexed: 11/19/2022] Open
Abstract
Allergen-specific immunotherapy (AIT) induces tolerance and shifts the Th2 response towards a regulatory T-cell profile. The underlying mechanisms are not fully understood, but dendritic cells (DC) play a vital role as key regulators of T-cell responses. DCs interact with allergens via Fc receptors (FcRs) and via certain C-type lectin receptors (CLRs), including CD209/DC-SIGN, CD206/MR and Dectin-2/CLEC6A. In this study, the effect of AIT on the frequencies as well as the FcR and CLR expression profiles of human DC subsets was assessed. PBMC was isolated from peripheral blood from seven allergic donors before and after 8 weeks and 1 year of subcutaneous AIT, as well as from six non-allergic individuals. Cells were stained with antibodies against DC subset-specific markers and a panel of FcRs and CLRs and analyzed by flow cytometry. After 1 year of AIT, the frequency of CD123+ DCs was increased and a larger proportion expressed FcεRI. Furthermore, the expression of CD206 and Dectin-2 was reduced on CD141+ DCs after 1 year of treatment and CD206 as well as Dectin-1 was additionally down regulated in CD1c+ DCs. Interestingly, levels of DNGR1/CLEC9A on CD141+ DCs were increased by AIT, reaching levels similar to cells isolated from non-allergic controls. The modifications in phenotype and occurrence of specific DC subsets observed during AIT suggest an altered capacity of DC subsets to interact with allergens, which can be part of the mechanisms by which AIT induces allergen tolerance.
Collapse
Affiliation(s)
- Kristina Lundberg
- Department of Immunotechnology, Lund University, Lund, Sweden
- * E-mail:
| | - Frida Rydnert
- Department of Immunotechnology, Lund University, Lund, Sweden
| | - Sissela Broos
- Department of Immunotechnology, Lund University, Lund, Sweden
| | - Morgan Andersson
- Department of Otorhinolaryngology, Head & Neck Surgery, Skåne University Hospital, Lund, Sweden
| | - Lennart Greiff
- Department of Otorhinolaryngology, Head & Neck Surgery, Skåne University Hospital, Lund, Sweden
| | - Malin Lindstedt
- Department of Immunotechnology, Lund University, Lund, Sweden
| |
Collapse
|
14
|
Yilmaz A, Ratka J, Rohm I, Pistulli R, Goebel B, Asadi Y, Petri A, Kiehntopf M, Figulla HR, Jung C. Decrease in circulating plasmacytoid dendritic cells during short-term systemic normobaric hypoxia. Eur J Clin Invest 2016; 46:115-22. [PMID: 25652640 DOI: 10.1111/eci.12416] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Accepted: 01/31/2015] [Indexed: 12/23/2022]
Abstract
BACKGROUND During exposure to high altitude, the immune system is altered. During hypoxia, an increase in interleukin (IL)-6 and high sensitivity C-reactive protein (hs-CRP), and an increase in natural killer cells and decrease in T cells in blood was shown. However, the impact of hypoxia on dendritic cells has not been investigated yet. MATERIAL AND METHODS Twelve healthy volunteers were subjected to a transient normobaric hypoxia for 6·5 h simulating an oxygen concentration at 5500 m. During exposure to hypoxia, blood samples were collected and analysed by flow cytometrical cell sorting (FACS) for circulating myeloid (mDCs) and plasmacytoid (pDCs) DCs. Serum levels of IL-6 and tumour necrosis factor (TNF)-α were analysed. In a cell culture hypoxia chamber, blood samples were subjected to the same hypoxia and analysed regarding DCs. RESULTS Exposure to normobaric hypoxia induced a significant decrease in circulating pDCs about 45% (P = 0·001) but not of mDC compared to baseline normoxia. Furthermore, we observed a significant increase of TNF-α about 340% (P = 0·03) and of IL-6 about 286% (P = 0·002). In cell culture experiments exposure of blood to hypoxia led to no significant changes in DCs, so that a direct cytotoxic effect was excluded. During hypoxia, we observed a transient increase in stromal-derived factor 1 (SDF-1) which is important for pDC tissue recruitment. CONCLUSIONS We show a significant decrease in circulating pDCs during hypoxia in parallel to a pro-inflammatory response. Further studies are necessary to evaluate whether the decrease in circulating pDCs might be the result of an enhanced tissue recruitment.
Collapse
Affiliation(s)
- Atilla Yilmaz
- Internal Medicine II, Elisabeth Hospital Schmalkalden, Schmalkalden, Germany
| | - Josi Ratka
- Clinic for Internal Medicine I, University Hospital of Jena, Jena, Germany
| | - Ilonka Rohm
- Clinic for Internal Medicine I, University Hospital of Jena, Jena, Germany
| | - Rudin Pistulli
- Clinic for Internal Medicine I, University Hospital of Jena, Jena, Germany
| | - Bjorn Goebel
- Clinic for Internal Medicine I, University Hospital of Jena, Jena, Germany
| | - Yahya Asadi
- Clinic for Internal Medicine I, University Hospital of Jena, Jena, Germany
| | - Alexander Petri
- Clinic for Internal Medicine I, University Hospital of Jena, Jena, Germany
| | - Michael Kiehntopf
- Department of Clinical Chemistry & Laboratory Medicine, University Hospital of Jena, Jena, Germany
| | - Hans R Figulla
- Clinic for Internal Medicine I, University Hospital of Jena, Jena, Germany
| | - Christian Jung
- Clinic for Internal Medicine I, University Hospital of Jena, Jena, Germany
| |
Collapse
|
15
|
The TGF-β superfamily in dendritic cell biology. Cytokine Growth Factor Rev 2015; 26:647-57. [PMID: 26115564 DOI: 10.1016/j.cytogfr.2015.06.002] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 06/15/2015] [Indexed: 12/18/2022]
Abstract
The TGF-β superfamily consists of a large group of pleiotropic cytokines that are involved in the regulation of many developmental, physiological and pathological processes. Dendritic cells are antigen-presenting cells that play a key role in innate and adaptive immune responses. Dendritic cells have a complex relationship with the TGF-β cytokine superfamily being both source and targets for many of these cytokines. Some TGF-β family members are expressed by dendritic cells and modulate immune responses, for instance through the induction of T cell polarization. Others play a crucial role in the development and function of the different dendritic cell subsets. This review summarizes the current knowledge on the role of TGF-β family cytokines in dendritic cell biology, focusing on TGF-β as well as on other, less characterized, members of these important immune mediators.
Collapse
|