1
|
Sulangi AJ, Husain A, Lei H, Okun J. Neuronavigation in glioma resection: current applications, challenges, and clinical outcomes. Front Surg 2024; 11:1430567. [PMID: 39165667 PMCID: PMC11334078 DOI: 10.3389/fsurg.2024.1430567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 07/22/2024] [Indexed: 08/22/2024] Open
Abstract
Background Glioma resection aims for maximal tumor removal while preserving neurological function. Neuronavigation systems (NS), with intraoperative imaging, have revolutionized this process through precise tumor localization and detailed anatomical navigation. Objective To assess the efficacy and breadth of neuronavigation and intraoperative imaging in glioma resections, identify operational challenges, and provide educational insights to medical students and non-neurosurgeons regarding their practical applications. Methods This systematic review analyzed studies from 2012 to 2023 on glioma patients undergoing surgical resection with neuronavigation, sourced from MEDLINE (PubMed), Embase, and Web of Science. A database-specific search strategy was employed, with independent reviewers screening for eligibility using Rayyan and extracting data using the Joanna Briggs Institute (JBI) tool. Results The integration of neuronavigation systems with intraoperative imaging modalities such as iMRI, iUS, and 5-ALA significantly enhances gross total resection (GTR) rates and extent of resection (EOR). While advanced technology improves surgical outcomes, it does not universally reduce operative times, and its impact on long-term survival varies. Combinations like NS + iMRI and NS + 5-ALA + iMRI achieve higher GTR rates compared to NS alone, indicating that advanced imaging adjuncts enhance tumor resection accuracy and success. The results underscore the multifaceted nature of successful surgical outcomes. Conclusions Integrating intraoperative imaging with neuronavigation improves glioma resection. Ongoing research is vital to refine technology, enhance accuracy, reduce costs, and improve training, considering various factors impacting patient survival.
Collapse
Affiliation(s)
- Albert Joseph Sulangi
- Nova Southeastern University, Dr. Kiran C. Patel College of Osteopathic Medicine—Tampa Bay Regional Campus, Clearwater, FL, United States
| | - Adam Husain
- University of Texas Medical Branch, Galveston, TX, United States
| | - Haoyi Lei
- Elson S. Floyd College of Medicine, Spokane, WA, United States
| | - Jessica Okun
- Steward Medical Group, Fort Lauderdale, FL, United States
| |
Collapse
|
2
|
Chang CY, Chen CC. 5-aminolevulinic enhanced brain lesions mimic glioblastoma: A case report and literature review. Medicine (Baltimore) 2024; 103:e34518. [PMID: 38181251 PMCID: PMC10766299 DOI: 10.1097/md.0000000000034518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 07/06/2023] [Indexed: 01/07/2024] Open
Abstract
RATIONALE Glioblastoma multiforme (GBM) is a highly malignant primary brain tumor for which maximal tumor resection plays an important role in the treatment strategy. 5-aminolevulinic (5-ALA) is a powerful tool in fluorescence-guided surgery for GBM. However, 5-ALA- enhancing lesion can also be observed with different etiologies. PATIENTS CONCERNS Three cases of 5-ALA-enhancing lesions with etiologies different from glioma. DIAGNOSES The final diagnosis was abscess in 1 patient and diffuse large B-cell in the other 2 patients. INTERVENTIONS Three patients received 5-aminolevulinic acid-guided tumor resection under microscope with intraoperative neuromonitoring. OUTCOMES All of our patients showed improvement or stable neurological function outcomes. The final pathology revealed etiologies different from GBM. LESSONS The 5-aminolevulinic acid fluorescence-guided surgery has demonstrated its maximal extent of resection and safety profile in patients with high-grade glioma. Non-glioma etiologies may also mimic GBM in 5-ALA-guided surgeries. Therefore, patient history taking and consideration of brain images are necessary for the interpretation of 5-ALA-enhanced lesions.
Collapse
Affiliation(s)
- Chao-Yuan Chang
- Neurosurgical Department, China Medical University Hospital, Taichung, Taiwan
| | - Chun-Chung Chen
- Neurosurgical Department, China Medical University Hospital, Taichung, Taiwan
- Department of Surgery, College of Medicine, China Medical University, Taichung, Taiwan
| |
Collapse
|
3
|
Albalkhi I, Shafqat A, Bin-Alamer O, Abou Al-Shaar AR, Mallela AN, Fernández-de Thomas RJ, Zinn PO, Gerszten PC, Hadjipanayis CG, Abou-Al-Shaar H. Fluorescence-guided resection of intradural spinal tumors: a systematic review and meta-analysis. Neurosurg Rev 2023; 47:10. [PMID: 38085385 DOI: 10.1007/s10143-023-02230-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/13/2023] [Accepted: 11/25/2023] [Indexed: 12/18/2023]
Abstract
Intradural spinal tumors present significant challenges due to involvement of critical motor and sensory tracts. Achieving maximal resection while preserving functional tissue is therefore crucial. Fluorescence-guided surgery aims to improve resection accuracy and is well studied for brain tumors, but its efficacy has not been fully assessed for spinal tumors. This meta-analysis aims to delineate the efficacy of fluorescence guidance in intradural spinal tumor resection. The authors performed a systematic review in four databases. We included studies that have utilized fluorescence agents, 5-aminolevulinic acid (5-ALA) or sodium fluorescein, for the resection of intradural spinal tumors. A meta-analysis was performed in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement. A total of 12 studies involving 552 patients undergoing fluorescence-guided intradural spinal tumor resection were included. Meningiomas demonstrated a 98% fluorescence rate and were associated with a homogenous florescence pattern; however, astrocytomas had variable fluorescence rate with pooled proportion of 70%. There was no significant difference in gross total resection (GTR) rates between fluorescein and 5-ALA (94% vs 84%, p = .22). Pre-operative contrast enhancement was significantly associated with intraoperative fluorescence with fluorescein. Intramedullary tumors with positive intraoperative fluorescence were significantly associated with higher GTR rates (96% vs 73%, p = .03). Utilizing fluorescence guidance during intradural spinal tumor resection holds promise of improving intraoperative visualization for specific intradural spinal tumors. Meningiomas and ependymomas have the highest fluorescence rates especially with sodium fluorescein; on the other hand, astrocytomas have variable fluorescence rates with no superiority of either agent. Positive fluorescence of intramedullary tumors is associated with a higher degree of resection.
Collapse
Affiliation(s)
- Ibrahem Albalkhi
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
- Department of Neuroradiology, Great Ormond Street Hospital NHS Foundation Trust, London, UK
| | - Areez Shafqat
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - Othman Bin-Alamer
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | | | - Arka N Mallela
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | | | - Pascal O Zinn
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Peter C Gerszten
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | | | - Hussam Abou-Al-Shaar
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, USA.
| |
Collapse
|
4
|
Yang Z, Zhao C, Zong S, Piao J, Zhao Y, Chen X. A review on surgical treatment options in gliomas. Front Oncol 2023; 13:1088484. [PMID: 37007123 PMCID: PMC10061125 DOI: 10.3389/fonc.2023.1088484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 02/24/2023] [Indexed: 03/17/2023] Open
Abstract
Gliomas are one of the most common primary central nervous system tumors, and surgical treatment remains the principal role in the management of any grade of gliomas. In this study, based on the introduction of gliomas, we review the novel surgical techniques and technologies in support of the extent of resection to achieve long-term disease control and summarize the findings on how to keep the balance between cytoreduction and neurological morbidity from a list of literature searched. With modern neurosurgical techniques, gliomas resection can be safely performed with low morbidity and extraordinary long-term functional outcomes.
Collapse
Affiliation(s)
- Zhongxi Yang
- Department of Neurosurgery, The First Hospital of Jilin University, Jilin, China
| | - Chen Zhao
- Department of Neurosurgery, The First Hospital of Jilin University, Jilin, China
| | - Shan Zong
- Department of Gynecology Oncology, The First Hospital of Jilin University, Jilin, China
| | - Jianmin Piao
- Department of Neurosurgery, The First Hospital of Jilin University, Jilin, China
| | - Yuhao Zhao
- Department of Neurosurgery, The First Hospital of Jilin University, Jilin, China
| | - Xuan Chen
- Department of Neurosurgery, The First Hospital of Jilin University, Jilin, China
- *Correspondence: Xuan Chen,
| |
Collapse
|
5
|
Ghani I, Patel S, Ghimire P, Bodi I, Bhangoo R, Vergani F, Ashkan K, Lavrador JP. Case report: 'Photodynamics of Subependymal Giant Cell Astrocytoma with 5-Aminolevulinic acid'. Front Surg 2023; 9:1065979. [PMID: 36684213 PMCID: PMC9853524 DOI: 10.3389/fsurg.2022.1065979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 12/02/2022] [Indexed: 01/07/2023] Open
Abstract
Subependymal Giant Cell Astrocytoma (SEGA) is a common diagnosis in patients with Tuberous Sclerosis. Although surgical treatment is often required, resection may entail a significant risk for cognitive function given the anatomical relation with critical structures such as the fornices and subgenual area. Therefore, target subtotal resections using minimal invasive approaches focused in the higher metabolic areas are valuable options to preserve quality of life while addressing specific problems caused by the tumor, such as hydrocephalus or progressive growth of a specific component of the tumor. In this report, the authors explore the potential role of 5-ALA in the identification of highly metabolic areas during SEGA resection in the context of minimal invasive approaches.
Collapse
Affiliation(s)
- Imran Ghani
- King's Neuro Lab, Department of Neurosurgery, London, United Kingdom
- Department of Neurosurgery, King's College Hospital NHS Foundation Trust, London, United Kingdom
| | - Sabina Patel
- King's Neuro Lab, Department of Neurosurgery, London, United Kingdom
- Department of Neurosurgery, King's College Hospital NHS Foundation Trust, London, United Kingdom
| | - Prajwal Ghimire
- School of Biomedical Engineering and Imaging Studies, King's College London, London, United Kingdom
- Department of Neurosurgery, King's College Hospital NHS Foundation Trust, London, United Kingdom
| | - Istvan Bodi
- Department of Neuropathology, King's College Hospital NHS Foundation Trust, London, United Kingdom
| | - Ranjeev Bhangoo
- Department of Neurosurgery, King's College Hospital NHS Foundation Trust, London, United Kingdom
| | - Francesco Vergani
- Department of Neurosurgery, King's College Hospital NHS Foundation Trust, London, United Kingdom
| | - Keyoumars Ashkan
- Department of Neurosurgery, King's College Hospital NHS Foundation Trust, London, United Kingdom
| | - Jose Pedro Lavrador
- King's Neuro Lab, Department of Neurosurgery, London, United Kingdom
- Department of Neurosurgery, King's College Hospital NHS Foundation Trust, London, United Kingdom
| |
Collapse
|
6
|
Lam FC, Tsedev U, Kasper EM, Belcher AM. Forging the Frontiers of Image-Guided Neurosurgery—The Emerging Uses of Theranostics in Neurosurgical Oncology. Front Bioeng Biotechnol 2022; 10:857093. [PMID: 35903794 PMCID: PMC9315239 DOI: 10.3389/fbioe.2022.857093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 05/31/2022] [Indexed: 11/13/2022] Open
Affiliation(s)
- Fred C. Lam
- The David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, United States
- Division of Neurosurgery, Saint Elizabeth’s Medical Center, Brighton, MA, United States
- *Correspondence: Fred C. Lam,
| | - Uyanga Tsedev
- The David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, United States
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Ekkehard M. Kasper
- Division of Neurosurgery, Saint Elizabeth’s Medical Center, Brighton, MA, United States
| | - Angela M. Belcher
- The David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, United States
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
| |
Collapse
|
7
|
Salvalaggio A, Silvestri E, Sansone G, Pinton L, Magri S, Briani C, Anglani M, Lombardi G, Zagonel V, Della Puppa A, Mandruzzato S, Corbetta M, Bertoldo A. Magnetic Resonance Imaging Correlates of Immune Microenvironment in Glioblastoma. Front Oncol 2022; 12:823812. [PMID: 35392230 PMCID: PMC8980808 DOI: 10.3389/fonc.2022.823812] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 02/18/2022] [Indexed: 11/13/2022] Open
Abstract
Background Glioblastoma (GBM) is the most commonly occurring primary malignant brain tumor, and it carries a dismal prognosis. Focusing on the tumor microenvironment may provide new insights into pathogenesis, but no clinical tools are available to do this. We hypothesized that the infiltration of different leukocyte populations in the tumoral and peritumoral brain tissues may be measured by magnetic resonance imaging (MRI). Methods Pre-operative MRI was combined with immune phenotyping of intraoperative tumor tissue based on flow cytometry of myeloid cell populations that are associated with immune suppression, namely, microglia and bone marrow-derived macrophages (BMDM). These cell populations were measured from the central and marginal areas of the lesion identified intraoperatively with 5-aminolevulinic acid-guided surgery. MRI features (volume, mean and standard deviation of signal intensity, and fractality) were derived from all MR sequences (T1w, Gd+ T1w, T2w, FLAIR) and ADC MR maps and from different tumor areas (contrast- and non-contrast-enhancing tumor, necrosis, and edema). The principal components of MRI features were correlated with different myeloid cell populations by Pearson's correlation. Results We analyzed 126 samples from 62 GBM patients. The ratio between BMDM and microglia decreases significantly from the central core to the periphery. Several MRI-derived principal components were significantly correlated (p <0.05, r range: [-0.29, -0.41]) with the BMDM/microglia ratio collected in the central part of the tumor. Conclusions We report a significant correlation between structural MRI clinical imaging and the ratio of recruited vs. resident macrophages with different immunomodulatory activities. MRI features may represent a novel tool for investigating the microenvironment of GBM.
Collapse
Affiliation(s)
- Alessandro Salvalaggio
- Department of Neuroscience, University of Padova, Padova, Italy.,Padova Neuroscience Center, University of Padova, Padova, Italy
| | - Erica Silvestri
- Padova Neuroscience Center, University of Padova, Padova, Italy.,Department of Information Engineering, University of Padova, Padova, Italy
| | - Giulio Sansone
- Department of Neuroscience, University of Padova, Padova, Italy
| | - Laura Pinton
- Veneto Institute of Oncology - Istituto di Ricovero e Cura a Carattere Scientifico (IOV-IRCCS), Padova, Italy
| | - Sara Magri
- Department of Surgery, Oncology and Gastroenterology, University of Padova, Padova, Italy
| | - Chiara Briani
- Department of Neuroscience, University of Padova, Padova, Italy
| | | | - Giuseppe Lombardi
- Department of Oncology, Oncology 1, Veneto Institute of Oncology IOV-IRCCS, Padova, Italy
| | - Vittorina Zagonel
- Department of Oncology, Oncology 1, Veneto Institute of Oncology IOV-IRCCS, Padova, Italy
| | - Alessandro Della Puppa
- Neurosurgery, Department of NEUROFARBA, University Hospital of Careggi, University of Florence, Florence, Italy
| | - Susanna Mandruzzato
- Veneto Institute of Oncology - Istituto di Ricovero e Cura a Carattere Scientifico (IOV-IRCCS), Padova, Italy.,Department of Surgery, Oncology and Gastroenterology, University of Padova, Padova, Italy
| | - Maurizio Corbetta
- Department of Neuroscience, University of Padova, Padova, Italy.,Padova Neuroscience Center, University of Padova, Padova, Italy.,Venetian Institute of Molecular Medicine, Fondazione Biomedica, Padova, Italy
| | - Alessandra Bertoldo
- Padova Neuroscience Center, University of Padova, Padova, Italy.,Department of Information Engineering, University of Padova, Padova, Italy
| |
Collapse
|
8
|
Mazurek M, Szczepanek D, Orzyłowska A, Rola R. Analysis of Factors Affecting 5-ALA Fluorescence Intensity in Visualizing Glial Tumor Cells-Literature Review. Int J Mol Sci 2022; 23:ijms23020926. [PMID: 35055109 PMCID: PMC8779265 DOI: 10.3390/ijms23020926] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/11/2022] [Accepted: 01/13/2022] [Indexed: 01/27/2023] Open
Abstract
Glial tumors are one of the most common lesions of the central nervous system. Despite the implementation of appropriate treatment, the prognosis is not successful. As shown in the literature, maximal tumor resection is a key element in improving therapeutic outcome. One of the methods to achieve it is the use of fluorescent intraoperative navigation with 5-aminolevulinic acid. Unfortunately, often the level of fluorescence emitted is not satisfactory, resulting in difficulties in the course of surgery. This article summarizes currently available knowledge regarding differences in the level of emitted fluorescence. It may depend on both the histological type and the genetic profile of the tumor, which is reflected in the activity and expression of enzymes involved in the intracellular metabolism of fluorescent dyes, such as PBGD, FECH, UROS, and ALAS. The transport of 5-aminolevulinic acid and its metabolites across the blood–brain barrier and cell membranes mediated by transporters, such as ABCB6 and ABCG2, is also important. Accompanying therapies, such as antiepileptic drugs or steroids, also have an impact on light emission by tumor cells. Accurate determination of the factors influencing the fluorescence of 5-aminolevulinic acid-treated cells may contribute to the improvement of fluorescence navigation in patients with highly malignant gliomas.
Collapse
|
9
|
Intraoperative 5-ALA fluorescence-guided resection of high-grade glioma leads to greater extent of resection with better outcomes: a systematic review. J Neurooncol 2022; 156:233-256. [PMID: 34989964 DOI: 10.1007/s11060-021-03901-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 11/12/2021] [Indexed: 12/13/2022]
Abstract
IMPORTANCE High-grade gliomas (HGG) are the most aggressive and common malignant brain tumors in adults. They have a dismally fatal prognosis. Even if gross total resection of the enhancing tumor is achieved, inevitably, invading tumor cells that are indistinguishable to the un-aided eye are left behind, which eventually leads to tumor recurrence. 5-aminolevulinic acid (5-ALA) is an increasingly utilized intraoperative fluorescent imaging agent for patients with HGG. It enhances visualization of HGG tissue. Despite early promising randomized clinical trial data suggesting a survival benefit for 5-ALA-guided surgery, the growing body of literature must be analyzed to confirm efficacy on patient outcomes. OBJECTIVE To perform a systematic review of the literature to evaluate whether there is a beneficial effect upon survival and extent of resection due to the utilization of 5-ALA in HGG surgery. EVIDENCE REVIEW Literature regarding 5-ALA usage in HGG surgery was reviewed according to the PRISMA guidelines. Two databases, PubMed and SCOPUS, were searched for assorted combinations of the keywords "5-ALA," "high-grade glioma," "5-aminolevulinic acid," and "resection" in July 2020 for case reports and retrospective, prospective, and randomized clinical trials assessing and analyzing 5-ALA intraoperative use in patients with HGG. Entailed studies on PubMed and SCOPUS were found for screening using a snowball search technique upon the initially searched papers. Systematic reviews and meta-analyses were excluded from our PRISMA table. FINDINGS 3756 previously published studies were screened, 536 of which were further evaluated, and ultimately 45 were included in our systematic review. There were no date restrictions on the screened publications. Our literature search was finalized on July 16, 2020. We found an observed increase in the overall survival (OS) and progression-free survival (PFS) of the 5-ALA group compared to the white light group, as well as an observed increase in the OS and PFS of complete resections compared to incomplete resections. Of the studies that directly compared the use of 5-ALA to white light (13 of the total analyzed 45, or 28.9%), 5-ALA lead to a better PFS and OS in 88.4 and 67.5% of patients, respectively. When the studies that reported postoperative neurologic outcomes of surgeries using 5-ALA vs. white light were analyzed, 42.2% of subjects demonstrated 5-ALA use was associated with less post-op neurological deficits, whereas 34.5% demonstrated no difference between 5-ALA and without. 23.3% of studies showed that intraoperative 5-ALA guided surgeries lead to more post-op neurological deficits. CONCLUSIONS AND RELEVANCE Utilization of 5-ALA was found to be associated with a greater extent of resection in HGG surgeries, as well as longer OS and PFS. Postop neurologic deficit rates were mixed and inconclusive when comparing 5-ALA groups to white light groups. 5-ALA is a useful surgical adjunct for resection of HGG when patient safety is preserved.
Collapse
|
10
|
A systematic review and meta-analysis of fluorescent-guided resection and therapy-based photodynamics on the survival of patients with glioma. Lasers Med Sci 2021; 37:789-797. [PMID: 34581904 DOI: 10.1007/s10103-021-03426-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 09/22/2021] [Indexed: 10/20/2022]
Abstract
Glioma is the most common primary central nervous system tumor; many methods are currently being used to research and treat glioma. In recent years, fluorescent-guided resection (FGR) and photodynamic therapy (PDT) have become hot spots in the treatment of glioma. Based on the existing literatures regarding the FGR enhancing resection rate and regarding efficacy of PDT for the treatment of glioma, this paper made a systematic review of FGR for gross total resection of patients and the PDT for the survival of patients with glioma. Meta-analysis of eligible studies was performed to derive precise estimation of PDT on the prognosis of patients with glioma by searching all related literatures in PubMed, EMBASE, Cochrane, and Web of Science databases, and further to evaluate (GTR) under FGR and the efficacy of PDT therapy, including 1-year and 2-year survival rates, overall survival (OS), and progression-free survival (PFS). According to the inclusion and exclusion criteria, a total of 1294 patients with glioma were included in the final analysis of 31 articles, among which a 73.00% (95% CI, 68.00 ~ 79.00%, P < 0.01) rate of GTR in 27 groups included in 23 articles was reported for those receiving FGR. The OS was 17.78 months (95% CI, 8.89 ~ 26.67, P < 0.01) in 5 articles on PDT-treated patients with glioma, and the mean difference of OS was 6.18 (95% CI, 3.3 ~ 9.06, P < 0.01) between PDT treatment and conventional glioma surgery, showing a statistically significant difference (P < 0.01). The PFS was 10.82 months (95% CI, 7.04 ~ 14.61, P < 0.01) in 5 articles on PDT-treated patients with glioma. A 1-year survival rate of 59.00% (95% CI, 38.00 ~ 77.00%, P < 0.01) in 10 groups included in 8 articles and 2-year survival rate of 25.00% (95% CI, 15.00 ~ 36.00%, P < 0.01) in 7 groups included in 6 articles were reported for those with PDT. FGR and PDT are feasible for treatment of patients with glioma, because FGR can effectively increase the resection rate, at the same time, PDT can prolong the survival time. However, due to the limitation of small sample size in the existing studies, larger samples and randomized controlled clinical trials are needed to analyze the resection under FGR and efficacy of PDT in patients with glioma.
Collapse
|
11
|
Sun R, Cuthbert H, Watts C. Fluorescence-Guided Surgery in the Surgical Treatment of Gliomas: Past, Present and Future. Cancers (Basel) 2021; 13:cancers13143508. [PMID: 34298721 PMCID: PMC8304525 DOI: 10.3390/cancers13143508] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 07/06/2021] [Accepted: 07/08/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Gliomas are aggressive central nervous system tumours. The emergence and recent widespread adoption of 5-aminolevulinic acid and fluorescence guided surgery have improved the extent of resection, with implications for improved survival and progression-free survival. This review describes the history, rationale and mechanism behind the use of 5-aminolevulinic acid and fluorescence-guided surgery. We also discuss current limitations and future directions for this important adjunct to glioma surgery. This review aims to provide readers with an up-to-date overview and evidence base on this important topic. Abstract Gliomas are central nervous systems tumours which are diffusely infiltrative and difficult to treat. The extent of surgical resection is correlated with improved outcomes, including survival and disease-free progression. Cancerous tissue can be directly visualised intra-operatively under fluorescence by administration of 5-aminolevulinic acid to the patient. The adoption of this technique has allowed surgeons worldwide to achieve greater extents of resection, with implications for improved prognosis. However, there are practical limitations to use of 5-aminolevulinic acid. New adjuncts in the field of fluorescence-guided surgery aim to improve recognition of the interface between tumour and brain with the objective of improving resection and patient outcomes.
Collapse
Affiliation(s)
- Rosa Sun
- Department of Neurosurgery, Queen Elizabeth Hospital, Birmingham B15 2GW, UK;
- Correspondence: (R.S.); (H.C.)
| | - Hadleigh Cuthbert
- Department of Neurosurgery, Queen Elizabeth Hospital, Birmingham B15 2GW, UK;
- Correspondence: (R.S.); (H.C.)
| | - Colin Watts
- Department of Neurosurgery, Queen Elizabeth Hospital, Birmingham B15 2GW, UK;
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham B15 2SY, UK
| |
Collapse
|
12
|
Palmieri G, Cofano F, Salvati LF, Monticelli M, Zeppa P, Perna GD, Melcarne A, Altieri R, La Rocca G, Sabatino G, Barbagallo GM, Tartara F, Zenga F, Garbossa D. Fluorescence-Guided Surgery for High-Grade Gliomas: State of the Art and New Perspectives. Technol Cancer Res Treat 2021; 20:15330338211021605. [PMID: 34212784 PMCID: PMC8255554 DOI: 10.1177/15330338211021605] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
High-grade gliomas are aggressive tumors that require multimodal management and gross total resection is considered to be the first crucial step of treatment. Because of their infiltrative nature, intraoperative differentiation of neoplastic tissue from normal parenchyma can be challenging. For these reasons, in the recent years, neurosurgeons have increasingly performed this surgery under the guidance of tissue fluorescence. Sodium fluoresceine and 5-aminolevulinic acid represent the 2 main compounds that allow real-time identification of residual malignant tissue and have been associated with improved gross total resection and radiological outcomes. Though presenting different profiles of sensitivity and specificity and further investigations concerning cost-effectiveness are need, Sodium fluoresceine, 5-aminolevulinic acid and new phluorophores, such as Indocyanine green, represent some of the most important tools in the neurosurgeon’s hands to achieve gross total resection.
Collapse
Affiliation(s)
- Giuseppe Palmieri
- Unit of Neurosurgery, Department of Neuroscience "Rita Levi Montalcini," University of Turin, Turin, Italy
| | - Fabio Cofano
- Unit of Neurosurgery, Department of Neuroscience "Rita Levi Montalcini," University of Turin, Turin, Italy.,Neurosurgery/Spine Surgery, Humanitas Gradenigo Hospital, Turin, Italy
| | - Luca Francesco Salvati
- Unit of Neurosurgery, Department of Neuroscience "Rita Levi Montalcini," University of Turin, Turin, Italy
| | - Matteo Monticelli
- Unit of Neurosurgery, Department of Neuroscience "Rita Levi Montalcini," University of Turin, Turin, Italy
| | - Pietro Zeppa
- Unit of Neurosurgery, Department of Neuroscience "Rita Levi Montalcini," University of Turin, Turin, Italy
| | - Giuseppe Di Perna
- Unit of Neurosurgery, Department of Neuroscience "Rita Levi Montalcini," University of Turin, Turin, Italy
| | - Antonio Melcarne
- Unit of Neurosurgery, Department of Neuroscience "Rita Levi Montalcini," University of Turin, Turin, Italy
| | - Roberto Altieri
- Department of Medical and Surgical Sciences and Advanced Technologies (G.F. Ingrassia), Neurological Surgery, Policlinico "G. Rodolico-San Marco" University Hospital, University of Catania, Italy
| | - Giuseppe La Rocca
- Institute of Neurosurgery, Fondazione Policlinico Universitario A. Gemelli Irccs, Catholic University, Rome, Italy.,Department of Neurosurgery, Mater Olbia Hospital, Olbia, Italy
| | - Giovanni Sabatino
- Institute of Neurosurgery, Fondazione Policlinico Universitario A. Gemelli Irccs, Catholic University, Rome, Italy.,Department of Neurosurgery, Mater Olbia Hospital, Olbia, Italy
| | - Giuseppe Maria Barbagallo
- Department of Medical and Surgical Sciences and Advanced Technologies (G.F. Ingrassia), Neurological Surgery, Policlinico "G. Rodolico-San Marco" University Hospital, University of Catania, Italy
| | - Fulvio Tartara
- Unit of Neurosurgery, Istituto Clinico Città Studi, Milan, Italy
| | - Francesco Zenga
- Unit of Neurosurgery, Department of Neuroscience "Rita Levi Montalcini," University of Turin, Turin, Italy
| | - Diego Garbossa
- Unit of Neurosurgery, Department of Neuroscience "Rita Levi Montalcini," University of Turin, Turin, Italy
| |
Collapse
|
13
|
Application of Multiparametric Intraoperative Ultrasound in Glioma Surgery. BIOMED RESEARCH INTERNATIONAL 2021; 2021:6651726. [PMID: 33954192 PMCID: PMC8068524 DOI: 10.1155/2021/6651726] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 04/05/2021] [Accepted: 04/09/2021] [Indexed: 12/30/2022]
Abstract
Gliomas are the most invasive and fatal primary malignancy of the central nervous system that have poor prognosis, with maximal safe resection representing the gold standard for surgical treatment. To achieve gross total resection (GTR), neurosurgery relies heavily on generating continuous, real-time, intraoperative glioma descriptions based on image guidance. Given the limitations of currently available equipment, developing a real-time image-guided resection technique that provides reliable functional and anatomical information during intraoperative settings is imperative. Nowadays, the application of intraoperative ultrasound (IOUS) has been shown to improve resection rates and maximize brain function preservation. IOUS, which presents an attractive option due to its low cost, minimal operational flow interruptions, and lack of radiation exposure, is able to provide real-time localization and accurate tumor size and shape descriptions while helping distinguish residual tumors and addressing brain shift. Moreover, the application of new advancements in ultrasound technology, such as contrast-enhanced ultrasound, three-dimensional ultrasound, navigable ultrasound, ultrasound elastography, and functional ultrasound, could help to achieve GTR during glioma surgery. The current review describes current advancements in ultrasound technology and evaluates the role and limitation of IOUS in glioma surgery.
Collapse
|
14
|
Proescholdt MA, Schödel P, Doenitz C, Pukrop T, Höhne J, Schmidt NO, Schebesch KM. The Management of Brain Metastases-Systematic Review of Neurosurgical Aspects. Cancers (Basel) 2021; 13:1616. [PMID: 33807384 PMCID: PMC8036330 DOI: 10.3390/cancers13071616] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 03/23/2021] [Accepted: 03/26/2021] [Indexed: 02/07/2023] Open
Abstract
The multidisciplinary management of patients with brain metastases (BM) consists of surgical resection, different radiation treatment modalities, cytotoxic chemotherapy, and targeted molecular treatment. This review presents the current state of neurosurgical technology applied to achieve maximal resection with minimal morbidity as a treatment paradigm in patients with BM. In addition, we discuss the contribution of neurosurgical resection on functional outcome, advanced systemic treatment strategies, and enhanced understanding of the tumor biology.
Collapse
Affiliation(s)
- Martin A. Proescholdt
- Department of Neurosurgery, University Hospital Regensburg, 93053 Regensburg, Germany; (M.A.P.); (P.S.); (C.D.); (J.H.); (N.O.S.)
- Wilhelm Sander Neuro-Oncology Unit, University Hospital Regensburg, 93053 Regensbur, Germany;
| | - Petra Schödel
- Department of Neurosurgery, University Hospital Regensburg, 93053 Regensburg, Germany; (M.A.P.); (P.S.); (C.D.); (J.H.); (N.O.S.)
- Wilhelm Sander Neuro-Oncology Unit, University Hospital Regensburg, 93053 Regensbur, Germany;
| | - Christian Doenitz
- Department of Neurosurgery, University Hospital Regensburg, 93053 Regensburg, Germany; (M.A.P.); (P.S.); (C.D.); (J.H.); (N.O.S.)
- Wilhelm Sander Neuro-Oncology Unit, University Hospital Regensburg, 93053 Regensbur, Germany;
| | - Tobias Pukrop
- Wilhelm Sander Neuro-Oncology Unit, University Hospital Regensburg, 93053 Regensbur, Germany;
- Department of Medical Oncology, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Julius Höhne
- Department of Neurosurgery, University Hospital Regensburg, 93053 Regensburg, Germany; (M.A.P.); (P.S.); (C.D.); (J.H.); (N.O.S.)
- Wilhelm Sander Neuro-Oncology Unit, University Hospital Regensburg, 93053 Regensbur, Germany;
| | - Nils Ole Schmidt
- Department of Neurosurgery, University Hospital Regensburg, 93053 Regensburg, Germany; (M.A.P.); (P.S.); (C.D.); (J.H.); (N.O.S.)
- Wilhelm Sander Neuro-Oncology Unit, University Hospital Regensburg, 93053 Regensbur, Germany;
| | - Karl-Michael Schebesch
- Department of Neurosurgery, University Hospital Regensburg, 93053 Regensburg, Germany; (M.A.P.); (P.S.); (C.D.); (J.H.); (N.O.S.)
- Wilhelm Sander Neuro-Oncology Unit, University Hospital Regensburg, 93053 Regensbur, Germany;
| |
Collapse
|
15
|
Baig Mirza A, Christodoulides I, Lavrador JP, Giamouriadis A, Vastani A, Boardman T, Ahmed R, Norman I, Murphy C, Devi S, Vergani F, Gullan R, Bhangoo R, Ashkan K. 5-Aminolevulinic acid-guided resection improves the overall survival of patients with glioblastoma-a comparative cohort study of 343 patients. Neurooncol Adv 2021; 3:vdab047. [PMID: 34131646 PMCID: PMC8193902 DOI: 10.1093/noajnl/vdab047] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Background 5-Aminolevulic acid-guided surgery (5-ALA-GS) improves the extent of resection (EoR) and progression-free survival in patients with glioblastoma multiforme (GBM). Methods A single-center retrospective cohort study of adult patients with GBM who had surgical resection between 2013 and 2019, 5-ALA guided versus a non-5-ALA cohort. The primary outcome was the overall survival (OS). Secondary outcomes were EoR, performance status (PS), and new focal neurological deficit. Results Three hundred and forty-three patients were included: 253 patients in 5-ALA-GS group and 90 patients in the non-5-ALA-GS group. The OS (17.47 vs 10.63 months, P < .0001), postoperative PS (P < .0001), PS at 6 months (P = .002), new focal neurological deficit (23.3% vs 44.9%, P < .0001), and radiological EoR (gross total resection [GTR]-47.4% vs 22.9%, P < .0001) were significantly better in the 5-ALA-GS group compared to non-5-ALA-GS group. In multivariate analysis, use of 5-ALA (P = .003) and MGMT promoter methylation (P = .001) were significantly related with a better OS. In patients with radiological GTR, OS was also significantly better (P < .0001) in the 5-ALA-GS group compared to the non-5-ALA-GS group. Conclusions 5-ALA-GS is associated with a significant improvement in the OS, PS after surgery and at 6 months, larger EoR, and fewer new motor deficits in patients with GBM.
Collapse
Affiliation(s)
- Asfand Baig Mirza
- Department of Neurosurgery, King's College Hospital NHS Foundation Trust, London, UK
| | | | - Jose Pedro Lavrador
- Department of Neurosurgery, King's College Hospital NHS Foundation Trust, London, UK
| | | | - Amisha Vastani
- Department of Neurosurgery, King's College Hospital NHS Foundation Trust, London, UK
| | - Timothy Boardman
- GKT School of Medical Education, King's College London, London, UK
| | - Razna Ahmed
- GKT School of Medical Education, King's College London, London, UK
| | - Irena Norman
- GKT School of Medical Education, King's College London, London, UK
| | - Christopher Murphy
- Department of Neurosurgery, King's College Hospital NHS Foundation Trust, London, UK
| | - Sharmila Devi
- GKT School of Medical Education, King's College London, London, UK
| | - Francesco Vergani
- Department of Neurosurgery, King's College Hospital NHS Foundation Trust, London, UK
| | - Richard Gullan
- Department of Neurosurgery, King's College Hospital NHS Foundation Trust, London, UK
| | - Ranjeev Bhangoo
- Department of Neurosurgery, King's College Hospital NHS Foundation Trust, London, UK
| | - Keyoumars Ashkan
- Department of Neurosurgery, King's College Hospital NHS Foundation Trust, London, UK
| |
Collapse
|
16
|
Mazurek M, Kulesza B, Stoma F, Osuchowski J, Mańdziuk S, Rola R. Characteristics of Fluorescent Intraoperative Dyes Helpful in Gross Total Resection of High-Grade Gliomas-A Systematic Review. Diagnostics (Basel) 2020; 10:E1100. [PMID: 33339439 PMCID: PMC7766001 DOI: 10.3390/diagnostics10121100] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 12/10/2020] [Accepted: 12/11/2020] [Indexed: 12/12/2022] Open
Abstract
Background: A very important aspect in the treatment of high-grade glioma is gross total resection to reduce the risk of tumor recurrence. One of the methods to facilitate this task is intraoperative fluorescence navigation. The aim of the study was to compare the dyes used in this technique fluorescent intraoperative navigation in terms of the mechanism of action and influence on the treatment of patients. Methods: The review was carried out on the basis of articles found in PubMed, Google Scholar, and BMC search engines, as well as those identified by searched bibliographies and suggested by experts during the preparation of the article. The database analysis was performed for the following phrases: "glioma", "glioblastoma", "ALA", "5ALA", "5-ALA", "aminolevulinic acid", "levulinic acid", "fluorescein", "ICG", "indocyanine green", and "fluorescence navigation". Results: After analyzing 913 citations identified on the basis of the search criteria, we included 36 studies in the review. On the basis of the analyzed articles, we found that 5-aminolevulinic acid and fluorescein are highly effective in improving the percentage of gross total resection achieved in high-grade glioma surgery. At the same time, the limitations resulting from the use of these methods are marked-higher costs of the procedure and the need to have neurosurgical microscope in combination with a special light filter in the case of 5-aminolevulinic acid (5-ALA), and low specificity for neoplastic cells and the dependence on the degree of damage to the blood-brain barrier in the intensity of fluorescence in the case of fluorescein. The use of indocyanine green in the visualization of glioma cells is relatively unknown, but some researchers have suggested its utility and the benefits of using it simultaneously with other dyes. Conclusion: The use of intraoperative fluorescence navigation with the use of 5-aminolevulinic acid and fluorescein allows the range of high-grade glioma resection to be increased.
Collapse
Affiliation(s)
- Marek Mazurek
- Chair and Department of Neurosurgery and Pediatric Neurosurgery, Medical University of Lublin, 20-954 Lublin, Poland; (F.S.); (J.O.); (R.R.)
| | - Bartłomiej Kulesza
- Chair and Department of Neurosurgery and Pediatric Neurosurgery, Medical University of Lublin, 20-954 Lublin, Poland; (F.S.); (J.O.); (R.R.)
| | - Filip Stoma
- Chair and Department of Neurosurgery and Pediatric Neurosurgery, Medical University of Lublin, 20-954 Lublin, Poland; (F.S.); (J.O.); (R.R.)
| | - Jacek Osuchowski
- Chair and Department of Neurosurgery and Pediatric Neurosurgery, Medical University of Lublin, 20-954 Lublin, Poland; (F.S.); (J.O.); (R.R.)
| | - Sławomir Mańdziuk
- Department of Clinical Oncology and Chemotherapy, Medical University of Lublin, 20-954 Lublin, Poland;
| | - Radosław Rola
- Chair and Department of Neurosurgery and Pediatric Neurosurgery, Medical University of Lublin, 20-954 Lublin, Poland; (F.S.); (J.O.); (R.R.)
| |
Collapse
|
17
|
Fluorescent Guided Surgery in the Surgical Management of Glioma: The Dawn of a New Era. Brain Sci 2020; 10:brainsci10040237. [PMID: 32316309 PMCID: PMC7226232 DOI: 10.3390/brainsci10040237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 04/14/2020] [Indexed: 11/17/2022] Open
Abstract
A growing body of evidence supports the importance of marginal or even supramarginal resection in cases of high- but also of low-grade gliomas [...].
Collapse
|
18
|
Moiyadi A, Shetty P, Sridhar E, Gota V, Gurjar M, Saicharan G, Singh V, Srivastava S. Objective assessment of intraoperative tumor fluorescence reveals biological heterogeneity within glioblastomas: a biometric study. J Neurooncol 2020; 146:477-488. [PMID: 32020478 DOI: 10.1007/s11060-019-03338-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 11/09/2019] [Indexed: 11/30/2022]
Abstract
PURPOSE Heterogeneity within GBMs and variability of visualized fluorescence combine to confer practical limitations to the technique of optical imaging. A biometric analysis was planned to objectively ascertain and analyse this phenomenon METHODS: 25 adult glioblastoma subjects undergoing resection were prospectively accrued. Biopsies were taken from various parts of the tumor and safe peritumoral zones. White light (WL) and visualized fluorescence was subjectively recorded. Corresponding histopathology [coalescent (C) or infiltrating (I) tumor] and protoporphyrin-IX (PPIX) levels were assayed. RESULTS WL was very sensitive for detecting tumor. SF was more specific and had high positive predictive value for detecting tumor. WF on the other hand had a poor discriminatory efficacy. Mean PPIX levels were 3.0, 2.01 and 0.16 for SF, WF, and NF respectively. WF had a wide variable range of PPIX levels. Within the coalescent tumor areas, there was a variable distribution of fluorescence (both subjective as well as objective PPIX levels) with only 54% samples showing SF and high PPIX. In seven cases this discordance was noted within the same tumor (biological heterogeneity). CONCLUSIONS Fluorescence may miss important tumor areas even if objective assessment is used. Histologically similar tumor areas may exhibit contrasting fluorescence properties, a phenomenon which needs further investigation and elucidation of underlying mechanisms which could potentially be manipulated to optimize the utility of fluorescence guidance.
Collapse
Affiliation(s)
- Aliasgar Moiyadi
- Division of Neurosurgery, Department of Surgical Oncology, Tata Memorial Centre, Homi Bhabha National University, 1221, Homi Bhabha Block, Mumbai, India.
| | - Prakash Shetty
- Division of Neurosurgery, Department of Surgical Oncology, Tata Memorial Centre, Homi Bhabha National University, 1221, Homi Bhabha Block, Mumbai, India
| | - Epari Sridhar
- Department of Surgical Pathology, Tata Memorial Centre, Homi Bhabha National University, Mumbai, India
| | - Vikram Gota
- Department of Clinical Pharmacology, ACTREC, Tata Memorial Centre, Homi Bhabha National University, Mumbai, India
| | - Murari Gurjar
- Department of Clinical Pharmacology, ACTREC, Tata Memorial Centre, Homi Bhabha National University, Mumbai, India
| | - Ghantasala Saicharan
- Department of Bioscience and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Vikas Singh
- Division of Neurosurgery, Department of Surgical Oncology, Tata Memorial Centre, Homi Bhabha National University, 1221, Homi Bhabha Block, Mumbai, India
| | - Sanjeeva Srivastava
- Department of Bioscience and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| |
Collapse
|
19
|
Stummer W, Koch R, Valle RD, Roberts DW, Sanai N, Kalkanis S, Hadjipanayis CG, Suero Molina E. Intraoperative fluorescence diagnosis in the brain: a systematic review and suggestions for future standards on reporting diagnostic accuracy and clinical utility. Acta Neurochir (Wien) 2019; 161:2083-2098. [PMID: 31363920 PMCID: PMC6739423 DOI: 10.1007/s00701-019-04007-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Accepted: 07/05/2019] [Indexed: 12/24/2022]
Abstract
Background Surgery for gliomas is often confounded by difficulties in distinguishing tumor from surrounding normal brain. For better discrimination, intraoperative optical imaging methods using fluorescent dyes are currently being explored. Understandably, such methods require the demonstration of a high degree of diagnostic accuracy and clinical benefit. Currently, clinical utility is determined by tissue biopsies which are correlated to optical signals, and quantified using measures such as sensitivity, specificity, positive predictive values, and negative predictive values. In addition, surgical outcomes, such as extent of resection rates and/or survival (progression-free survival (PFS) and overall survival (OS)) have been measured. These assessments, however, potentially involve multiple biases and confounders, which have to be minimized to ensure reproducibility, generalizability and comparability of test results. Test should aim at having a high internal and external validity. The objective of this article is to analyze how diagnostic accuracy and outcomes are utilized in available studies describing intraoperative imaging and furthermore, to derive recommendations for reliable and reproducible evaluations. Methods A review of the literature was performed for assessing the use of measures of diagnostic accuracy and outcomes of intraoperative optical imaging methods. From these data, we derive recommendations for designing and reporting future studies. Results Available literature indicates that potential confounders and biases for reporting the diagnostic accuracy and usefulness of intraoperative optical imaging methods are seldom accounted for. Furthermore, methods for bias reduction are rarely used nor reported. Conclusions Detailed, transparent, and uniform reporting on diagnostic accuracy of intraoperative imaging methods is necessary. In the absence of such reporting, studies will not be comparable or reproducible. Future studies should consider some of the recommendations given here. Electronic supplementary material The online version of this article (10.1007/s00701-019-04007-y) contains supplementary material, which is available to authorized users.
Collapse
|
20
|
Gandhi S, Tayebi Meybodi A, Belykh E, Cavallo C, Zhao X, Syed MP, Borba Moreira L, Lawton MT, Nakaji P, Preul MC. Survival Outcomes Among Patients With High-Grade Glioma Treated With 5-Aminolevulinic Acid-Guided Surgery: A Systematic Review and Meta-Analysis. Front Oncol 2019; 9:620. [PMID: 31380272 PMCID: PMC6652805 DOI: 10.3389/fonc.2019.00620] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 06/24/2019] [Indexed: 01/08/2023] Open
Abstract
Background: High-grade glioma (HGG) is associated with a dismal prognosis despite significant advances in adjuvant therapies, including chemotherapy, immunotherapy, and radiotherapy. Extent of resection continues to be the most important independent prognosticator of survival. This underlines the significance of increasing gross total resection (GTR) rates by using adjunctive intraoperative modalities to maximize resection with minimal neurological morbidity. 5-aminolevulinic acid (5-ALA) is the only US Food and Drug Administration–approved intraoperative optical agent used for fluorescence-guided surgical resection of gliomas. Despite several studies on the impact of intra-operative 5-ALA use on the extent of HGG resection, a clear picture of how such usage affects patient survival is still unavailable. Methods: A systematic review was conducted of all relevant studies assessing the GTR rate and survival outcomes [overall survival (OS) and progression-free survival (PFS)] in HGG. A meta-analysis of eligible studies was performed to assess the influence of 5-ALA-guided resection on improving GTR, OS, and PFS. GTR was defined as >95% resection. Results: Of 23 eligible studies, 19 reporting GTR rates were included in the meta-analysis. The pooled cohort had 998 patients with HGG, including 796 with newly diagnosed cases. The pooled GTR rate among patients with 5-ALA–guided resection was 76.8% (95% confidence interval, 69.1–82.9%). A comparative subgroup analysis of 5-ALA–guided vs. conventional surgery (controlling for within-study covariates) showed a 26% higher GTR rate in the 5-ALA subgroup (odds ratio, 3.8; P < 0.001). There were 11 studies eligible for survival outcome analysis, 4 of which reported PFS. The pooled mean difference in OS and PFS was 3 and 1 months, respectively, favoring 5-ALA vs. control (P < 0.001). Conclusions: This meta-analysis shows a significant increase in GTR rate with 5-ALA–guided surgical resection, with a higher weighted GTR rate (~76%) than the pivotal phase III study (~65%). Pooled analysis showed a small yet significant increase in survival measures associated with the use of 5-ALA. Despite the statistically significant results, the low level of evidence and heterogeneity across these studies make it difficult to conclusively report an independent association between 5-ALA use and survival outcomes in HGG. Additional randomized control studies are required to delineate the role of 5-ALA in survival outcomes in HGG.
Collapse
Affiliation(s)
- Sirin Gandhi
- Department of Neurosurgery, St. Joseph's Hospital and Medical Center, Barrow Neurological Institute, Phoenix, AZ, United States
| | - Ali Tayebi Meybodi
- Department of Neurosurgery, St. Joseph's Hospital and Medical Center, Barrow Neurological Institute, Phoenix, AZ, United States
| | - Evgenii Belykh
- Department of Neurosurgery, St. Joseph's Hospital and Medical Center, Barrow Neurological Institute, Phoenix, AZ, United States.,Department of Neurosurgery, Irkutsk State Medical University, Irkutsk, Russia
| | - Claudio Cavallo
- Department of Neurosurgery, St. Joseph's Hospital and Medical Center, Barrow Neurological Institute, Phoenix, AZ, United States
| | - Xiaochun Zhao
- Department of Neurosurgery, St. Joseph's Hospital and Medical Center, Barrow Neurological Institute, Phoenix, AZ, United States
| | - Masood Pasha Syed
- Department of Medicine, Saint Vincent Hospital, Worcester, MA, United States
| | - Leandro Borba Moreira
- Department of Neurosurgery, St. Joseph's Hospital and Medical Center, Barrow Neurological Institute, Phoenix, AZ, United States
| | - Michael T Lawton
- Department of Neurosurgery, St. Joseph's Hospital and Medical Center, Barrow Neurological Institute, Phoenix, AZ, United States
| | - Peter Nakaji
- Department of Neurosurgery, St. Joseph's Hospital and Medical Center, Barrow Neurological Institute, Phoenix, AZ, United States
| | - Mark C Preul
- Department of Neurosurgery, St. Joseph's Hospital and Medical Center, Barrow Neurological Institute, Phoenix, AZ, United States
| |
Collapse
|
21
|
Potapov AA, Goryaynov SA, Danilov GV, Chelushkin DM, Okhlopkov VA, Shimanskiy VN, Beshplav ST, Poshataev VK, Shishkina LV, Zakharova NE, Spallone A, Savel'eva TA, Loshchenov VB. [Intraoperative fluorescence diagnostics in surgery of intracranial meningiomas: analysis of 101 cases]. ZHURNAL VOPROSY NEĬROKHIRURGII IMENI N. N. BURDENKO 2019; 82:17-29. [PMID: 29795083 DOI: 10.17116/oftalma201882217-29] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Fluorescence diagnostics has been extensively applied in surgery of malignant brain gliomas. However, the use of this technique in surgery of intracranial meningiomas has remained controversial. OBJECTIVE The study objective was to assess the sensitivity of 5-aminolevulinic acid-based (5-ALA) fluorescence diagnostics in surgery of brain meningiomas and to clarify the clinical and biological factors that may influence the fluorescent effect. MATERIAL AND METHODS The study consistently included 101 patients with intracranial meningiomas of various locations who were operated on using 5-ALA. There were 28 (27.72%) males and 73 (72.27%) females (median age, 54 years). In all patients, surgery was performed using an operating microscope equipped with a fluorescent module; in 24 of these, laser spectroscopy was used. For comparison of chances to observe the fluorescent effect of 5-ALA in patients having meningiomas with different WHO histological grades (Grade I vs Grade II-III), we performed a meta-analysis that included 10 studies (the largest series) on outcomes of surgical treatment of meningiomas using intraoperative fluorescence diagnostics. RESULTS Of 101 patients included in this series, observable fluorescence was detected in 95 (94.1%) patients: weak fluorescence in 12 (11.9%), moderate fluorescence in 23 (22.8%) cases, and strong fluorescence in 60 (59.4%) patients. There was no statistically significant relationship (p>0.05) between the rate and intensity of observable fluorescence and the tumor growth pattern (primary/continued), location, WHO grade of malignancy, and histological subtype. In the absence of intraoperative bleeding, tumor fluorescence was statistically significantly brighter (p=0.02). Of 26 patients with hyperostosis, bone fluorescence was observed in 11 (42.3%) cases. There was no statistically significant relationship between administration of dexamethasone, its dose, administration of anticonvulsants, gastrointestinal tract diseases, as well as diabetes mellitus and the fluorescence intensity. There was also no significant relationship between the extent of tumor resection (Simpson scale) and the presence of fluorescence as well as its intensity. Comparison of the observable fluorescence intensity and the laser spectroscopy indicators revealed a significant correlation (r=0.75; p=0.005). CONCLUSION Meningioma is a well fluorescent tumor, with the technique sensitivity being 94.1%. In some cases, the use of fluorescence diagnostics in surgery of meningiomas improves identification of residual tumor fragments and enables correction of a surgical approach. To assess the effect of fluorescence diagnostics on the recurrence rate and disease-free duration, further research is required.
Collapse
Affiliation(s)
- A A Potapov
- Burdenko Neurosurgical Institute, 4-ya Tverskaya-Yamskaya Str., 16, Moscow, Russia, 125047
| | - S A Goryaynov
- Burdenko Neurosurgical Institute, 4-ya Tverskaya-Yamskaya Str., 16, Moscow, Russia, 125047
| | - G V Danilov
- Burdenko Neurosurgical Institute, 4-ya Tverskaya-Yamskaya Str., 16, Moscow, Russia, 125047
| | - D M Chelushkin
- Burdenko Neurosurgical Institute, 4-ya Tverskaya-Yamskaya Str., 16, Moscow, Russia, 125047
| | - V A Okhlopkov
- Burdenko Neurosurgical Institute, 4-ya Tverskaya-Yamskaya Str., 16, Moscow, Russia, 125047
| | - V N Shimanskiy
- Burdenko Neurosurgical Institute, 4-ya Tverskaya-Yamskaya Str., 16, Moscow, Russia, 125047
| | - Sh T Beshplav
- Burdenko Neurosurgical Institute, 4-ya Tverskaya-Yamskaya Str., 16, Moscow, Russia, 125047
| | - V K Poshataev
- Burdenko Neurosurgical Institute, 4-ya Tverskaya-Yamskaya Str., 16, Moscow, Russia, 125047
| | - L V Shishkina
- Burdenko Neurosurgical Institute, 4-ya Tverskaya-Yamskaya Str., 16, Moscow, Russia, 125047
| | - N E Zakharova
- Burdenko Neurosurgical Institute, 4-ya Tverskaya-Yamskaya Str., 16, Moscow, Russia, 125047
| | - A Spallone
- Department of Biomedicine, University of Rome Tor Vergata and NCL-Institute of Neurological Sciences, Rome, Italy; Neurological Center of Latium, Via Patrica 15, Rome, 00178, Italy
| | - T A Savel'eva
- Prokhorov General Physics Institute. Vavilova Str., 38, Moscow, Russia, 119991; National Research Nuclear University MEPhI, Kashirskoe Shosse, 31, Moscow, Russia, 115409
| | - V B Loshchenov
- Prokhorov General Physics Institute. Vavilova Str., 38, Moscow, Russia, 119991; National Research Nuclear University MEPhI, Kashirskoe Shosse, 31, Moscow, Russia, 115409
| |
Collapse
|
22
|
Díez Valle R, Hadjipanayis CG, Stummer W. Established and emerging uses of 5-ALA in the brain: an overview. J Neurooncol 2019; 141:487-494. [PMID: 30607705 DOI: 10.1007/s11060-018-03087-7] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 12/27/2018] [Indexed: 01/08/2023]
Abstract
INTRODUCTION 5-aminolevulinic acid (5-ALA) was approved by the FDA in June 2017 as an intra-operative optical imaging agent for patients with gliomas (suspected World Health Organization Grades III or IV on preoperative imaging) as an adjunct for the visualization of malignant tissue during surgery. 5-ALA fluorescence-guided surgery (FGS) has been in widespread use in Europe and other continents since 2007. METHODS We reviewed the data available and summarize the most important known uses of 5-ALA FGS and its potential future applications. RESULTS/CONCLUSIONS The technique has been extensively studied, and more than 300 papers have been published on this topic. Visualization of high-grade glioma tissue is robust and reproducible, and can impact the extent of tumor resection and patient outcomes. 5-ALA FGS for other kind of tumors needs further development.
Collapse
Affiliation(s)
| | | | - Walter Stummer
- Department of Neurosurgery, Universitätsklinikum Münster, Münster, Germany
| |
Collapse
|
23
|
The impact of 5-aminolevulinic acid on extent of resection in newly diagnosed high grade gliomas: a systematic review and single institutional experience. J Neurooncol 2018; 141:507-515. [DOI: 10.1007/s11060-018-03061-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Accepted: 11/24/2018] [Indexed: 12/12/2022]
|
24
|
Optical Characterization of Neurosurgical Operating Microscopes: Quantitative Fluorescence and Assessment of PpIX Photobleaching. Sci Rep 2018; 8:12543. [PMID: 30135440 PMCID: PMC6105612 DOI: 10.1038/s41598-018-30247-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Accepted: 07/25/2018] [Indexed: 01/01/2023] Open
Abstract
Protoporphyrin IX (PpIX) induced by 5-aminolevulinic acid (5-ALA) is increasingly used as a fluorescent marker for fluorescence-guided resection of malignant gliomas. Understanding how the properties of the excitation light source and PpIX fluorescence interact with the surgical microscope is critical for effective use of the fluorescence-guided tumor resection technique. In this study, we performed a detailed assessment of the intensity of the emitted blue light and white light and the light beam profile of clinical grade operating microscopes used for PpIX visualization. These measurements revealed both recognized fluorescence photobleaching limitations and unrecognized limitations that may alter quantitative observations of PpIX fluorescence obtained with the operating microscope with potential impact on research and clinical uses. We also evaluated the optical properties of a photostable fluorescent standard with an excitation-emission profile similar to PpIX. In addition, we measured the time-dependent dynamics of 5-ALA-induced PpIX fluorescence in an animal glioma model. Finally, we developed a ratiometric method for quantification of the PpIX fluorescence that uses the photostable fluorescent standard to normalize PpIX fluorescence intensity. This method increases accuracy and allows reproducible and direct comparability of the measurements from multiple samples.
Collapse
|
25
|
Chohan MO, Berger MS. 5-Aminolevulinic acid fluorescence guided surgery for recurrent high-grade gliomas. J Neurooncol 2018; 141:517-522. [PMID: 30097823 DOI: 10.1007/s11060-018-2956-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Accepted: 07/16/2018] [Indexed: 02/02/2023]
Abstract
INTRODUCTION Fluorescence guided surgery (FGS) with five-aminolevulinic acid (5-ALA) is expected to revolutionize neurosurgical care of patients with high-grade gliomas (HGG). After the recent landmark FDA approval, this optical agent is now available to neurosurgeons in the United States. METHODS This review is designed to highlight the evidence for the use of 5-ALA in recurrent HGG surgery for the neurosurgical community. The manuscript was prepared in accordance with the PRISMA guidelines. RESULTS Intra-operatively, a strong fluorescent signal is highly correlated with the presence of cellular tumor in recurrent HGG, giving it a high positive predictive value (PPV). Similar to what is observed in primary HGG surgery, false-negative results can occur if tumor cells do not emit fluorescence. In addition, false-positive fluorescence signals in tissues devoid of tumor cells can be observed more frequently in recurrent HGG compared to the primary setting. However, these areas overwhelmingly contain reactive/regressive tissue, resection of which is unlikely to cause functional deficits. The safety profile of 5-ALA is similarly favorable in primary and recurrent HGG. CONCLUSIONS 5-ALA FGS is a powerful adjunct in the resection of recurrent HGG with a high PPV and favorable safety profile. It is therefore the authors' opinion to routinely employ this fluorescent agent as a standard of care.
Collapse
Affiliation(s)
- Muhammad Omar Chohan
- Department of Neurological Surgery, University of New Mexico, 2211 Lomas Blvd. NE, Albuquerque, NM, 87111, USA.
| | - Mitchel S Berger
- Department of Neurological Surgery, University of California, San Francisco, 505 Parnassus Ave. Rm. M779, San Francisco, CA, 94143-0112, USA
| |
Collapse
|
26
|
Persaud-Sharma D, Burns J, Govea M, Kashan S. Cerebral gliomas: Treatment, prognosis and palliative alternatives. PROGRESS IN PALLIATIVE CARE 2018. [DOI: 10.1080/09699260.2017.1417805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Dharam Persaud-Sharma
- Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA
| | - Joseph Burns
- Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA
| | - Marien Govea
- The Honors College, Florida International University Honors College Bioethics, Miami, FL 33199, USA
| | - Sanaz Kashan
- Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA
- Palliative Care Fellowship Director, Internal Medicine Teaching Faculty, Aventura Hospital & Medical Center, Aventura, FL 33180, USA
| |
Collapse
|
27
|
Kamp MA, Krause Molle Z, Munoz-Bendix C, Rapp M, Sabel M, Steiger HJ, Cornelius JF. Various shades of red-a systematic analysis of qualitative estimation of ALA-derived fluorescence in neurosurgery. Neurosurg Rev 2018; 41:3-18. [PMID: 27225452 DOI: 10.1007/s10143-016-0745-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Revised: 03/08/2016] [Accepted: 03/13/2016] [Indexed: 01/11/2023]
Abstract
5-Aminolevulinic acid (5-ALA)-fluorescence-guided resection is well established in many neuro-oncologic centers. Different classifications of 5-ALA-induced fluorescence have been reported. The aim of the systematic analysis was to evaluate the frequency of graduations, definitions, and designations of 5-ALA-induced fluorescence qualities. A systematic database search of PubMed was performed to identify studies reporting (1) on 5-ALA fluorescence-guided either spinal or cranial surgery, (2) on qualitative estimation and/or categorization of 5-ALA-induced fluorescence, (3) in English, and (4) were published as peer-reviewed original studies. Totally, 93 studies were identified. Different classification systems of 5-ALA-induced fluorescence were found. Over 60 % of the included studies used a dichotomized categorization of 5-ALA-induced fluorescence and 27.5 % of studies distinguished two different intensities of 5-ALA fluorescent tissue in addition to non-fluorescing tissue. More than 50 % of studies explicitly defined criteria for categorization of 5-ALA-induced fluorescence. The major limitation of the present analysis might be that it mainly comprises data from retrospective, uncontrolled, non-randomized trials. However, a precise definition of each 5-ALA-induced fluorescence quality is essential. Although dichotomized classification is the most common and simple graduation system, it may not be suitable for every clinical or scientific task. A three-level 5-ALA-induced fluorescence classification with precise definition of each fluorescence quality and their correlation with histological features would be more useful and reproducible in these cases.
Collapse
Affiliation(s)
- Marcel A Kamp
- Department of Neurosurgery, Medical Faculty, Heinrich Heine University Düsseldorf, Moorenstraße 5, 40225, Düsseldorf, Germany.
| | - Zarela Krause Molle
- Department of Neurosurgery, Medical Faculty, Heinrich Heine University Düsseldorf, Moorenstraße 5, 40225, Düsseldorf, Germany
| | - Christopher Munoz-Bendix
- Department of Neurosurgery, Medical Faculty, Heinrich Heine University Düsseldorf, Moorenstraße 5, 40225, Düsseldorf, Germany
| | - Marion Rapp
- Department of Neurosurgery, Medical Faculty, Heinrich Heine University Düsseldorf, Moorenstraße 5, 40225, Düsseldorf, Germany
| | - Michael Sabel
- Department of Neurosurgery, Medical Faculty, Heinrich Heine University Düsseldorf, Moorenstraße 5, 40225, Düsseldorf, Germany
| | - Hans-Jakob Steiger
- Department of Neurosurgery, Medical Faculty, Heinrich Heine University Düsseldorf, Moorenstraße 5, 40225, Düsseldorf, Germany
| | - Jan F Cornelius
- Department of Neurosurgery, Medical Faculty, Heinrich Heine University Düsseldorf, Moorenstraße 5, 40225, Düsseldorf, Germany.
| |
Collapse
|
28
|
Xie Y, Thom M, Ebner M, Wykes V, Desjardins A, Miserocchi A, Ourselin S, McEvoy AW, Vercauteren T. Wide-field spectrally resolved quantitative fluorescence imaging system: toward neurosurgical guidance in glioma resection. JOURNAL OF BIOMEDICAL OPTICS 2017; 22:1-14. [PMID: 29139243 PMCID: PMC6742512 DOI: 10.1117/1.jbo.22.11.116006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 10/26/2017] [Indexed: 05/03/2023]
Abstract
In high-grade glioma surgery, tumor resection is often guided by intraoperative fluorescence imaging. 5-aminolevulinic acid-induced protoporphyrin IX (PpIX) provides fluorescent contrast between normal brain tissue and glioma tissue, thus achieving improved tumor delineation and prolonged patient survival compared with conventional white-light-guided resection. However, commercially available fluorescence imaging systems rely solely on visual assessment of fluorescence patterns by the surgeon, which makes the resection more subjective than necessary. We developed a wide-field spectrally resolved fluorescence imaging system utilizing a Generation II scientific CMOS camera and an improved computational model for the precise reconstruction of the PpIX concentration map. In our model, the tissue's optical properties and illumination geometry, which distort the fluorescent emission spectra, are considered. We demonstrate that the CMOS-based system can detect low PpIX concentration at short camera exposure times, while providing high-pixel resolution wide-field images. We show that total variation regularization improves the contrast-to-noise ratio of the reconstructed quantitative concentration map by approximately twofold. Quantitative comparison between the estimated PpIX concentration and tumor histopathology was also investigated to further evaluate the system.
Collapse
Affiliation(s)
- Yijing Xie
- University College London, Wellcome/EPSRC Centre for Interventional and Surgical Sciences, London, United Kingdom
- Address all correspondence to: Yijing Xie,
| | - Maria Thom
- University College London, Institute of Neurology, Department of Neuropathology, London, United Kingdom
| | - Michael Ebner
- University College London, Wellcome/EPSRC Centre for Interventional and Surgical Sciences, London, United Kingdom
| | - Victoria Wykes
- University College London, Institute of Neurology, National Hospital for Neurology and Neurosurgery, London, United Kingdom
| | - Adrien Desjardins
- University College London, Wellcome/EPSRC Centre for Interventional and Surgical Sciences, London, United Kingdom
| | - Anna Miserocchi
- University College London, Institute of Neurology, National Hospital for Neurology and Neurosurgery, London, United Kingdom
| | - Sebastien Ourselin
- University College London, Wellcome/EPSRC Centre for Interventional and Surgical Sciences, London, United Kingdom
| | - Andrew W. McEvoy
- University College London, Wellcome/EPSRC Centre for Interventional and Surgical Sciences, London, United Kingdom
- University College London, Institute of Neurology, National Hospital for Neurology and Neurosurgery, London, United Kingdom
| | - Tom Vercauteren
- University College London, Wellcome/EPSRC Centre for Interventional and Surgical Sciences, London, United Kingdom
| |
Collapse
|
29
|
de Souza ALR, Marra K, Gunn J, Samkoe KS, Hoopes PJ, Feldwisch J, Paulsen KD, Pogue BW. Fluorescent Affibody Molecule Administered In Vivo at a Microdose Level Labels EGFR Expressing Glioma Tumor Regions. Mol Imaging Biol 2017; 19:41-48. [PMID: 27379987 PMCID: PMC5209393 DOI: 10.1007/s11307-016-0980-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Purpose Fluorescence guidance in surgical oncology provides the potential to realize enhanced molecular tumor contrast with dedicated targeted tracers, potentially with a microdose injection level. For most glioma tumors, the blood brain barrier is compromised allowing some exogenous drug/molecule delivery and accumulation for imaging. The aberrant overexpression and/or activation of epidermal growth factor receptor (EGFR) is associated with many types of cancers, including glioblastoma, and so the use of a near-infrared (NIR) fluorescent molecule targeted to the EGFR receptor provides the potential for improving tumor contrast during surgery. Fluorescently labeled affibody molecule (ABY-029) has high EGFR affinity and high potential specificity with reasonably fast plasma clearance. In this study, ABY-29 was evaluated in glioma versus normal brain uptake from intravenous injection at a range of doses, down to a microdose injection level. Procedure Nude rats were inoculated with the U251 human glioma cell line in the brain. Tumors were allowed to grow for 3–4 weeks. ABY-029 fluorescence ex vivo imaging of brain slices was acquired at different time points (1–48 h) and varying injection doses from 25 to 122 μg/kg (from human protein microdose equivalent to five times microdose levels). Results The tumor was most clearly visualized at 1-h post-injection with 8- to 16-fold average contrast relative to normal brain. However, the tumor still could be identified after 48 h. In all cases, the ABY-029 fluorescence appeared to localize preferentially in EGFR-positive regions. Increasing the injected dose from a microdose level to five times, a microdose level increased the signal by 10-fold, and the contrast was from 8 to 16, showing that there was value in doses slightly higher than the microdose restriction. Normal tissue uptake was found to be affected by the tumor size, indicating that edema was a likely factor affecting the expected tumor to normal tissue contrast. Conclusion These results suggest that the NIR-labeled affibody molecules provide an excellent potential to increase surgical visualization of EGFR-positive tumor regions.
Collapse
Affiliation(s)
- Ana Luiza Ribeiro de Souza
- Thayer School of Engineering, Dartmouth College, 14 Engineering Drive, Hanover, NH, 03755, USA.,CAPES Foundation, Ministry of Education of Brazil, Brasilia, DF, 70040-020, Brazil
| | - Kayla Marra
- Thayer School of Engineering, Dartmouth College, 14 Engineering Drive, Hanover, NH, 03755, USA
| | - Jason Gunn
- Thayer School of Engineering, Dartmouth College, 14 Engineering Drive, Hanover, NH, 03755, USA
| | - Kimberley S Samkoe
- Thayer School of Engineering, Dartmouth College, 14 Engineering Drive, Hanover, NH, 03755, USA.,Department of Surgery, Geisel School of Medicine, Dartmouth College, Lebanon, NH, 03756, USA
| | - P Jack Hoopes
- Thayer School of Engineering, Dartmouth College, 14 Engineering Drive, Hanover, NH, 03755, USA.,Department of Surgery, Geisel School of Medicine, Dartmouth College, Lebanon, NH, 03756, USA
| | | | - Keith D Paulsen
- Thayer School of Engineering, Dartmouth College, 14 Engineering Drive, Hanover, NH, 03755, USA.,Department of Surgery, Geisel School of Medicine, Dartmouth College, Lebanon, NH, 03756, USA
| | - Brian W Pogue
- Thayer School of Engineering, Dartmouth College, 14 Engineering Drive, Hanover, NH, 03755, USA. .,Department of Surgery, Geisel School of Medicine, Dartmouth College, Lebanon, NH, 03756, USA.
| |
Collapse
|
30
|
He J, Yang L, Yi W, Fan W, Wen Y, Miao X, Xiong L. Combination of Fluorescence-Guided Surgery With Photodynamic Therapy for the Treatment of Cancer. Mol Imaging 2017; 16:1536012117722911. [PMID: 28849712 PMCID: PMC5580848 DOI: 10.1177/1536012117722911] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 03/07/2017] [Accepted: 06/28/2017] [Indexed: 12/12/2022] Open
Abstract
Specific visualization of body parts is needed during surgery. Fluorescence-guided surgery (FGS) uses a fluorescence contrast agent for in vivo tumor imaging to detect and identify both malignant and normal tissues. There are several advantages and clinical benefits of FGS over other conventional medical imaging modalities, such as its safety, effectiveness, and suitability for real-time imaging in the operating room. Recent advancements in contrast agents and intraoperative fluorescence imaging devices have led to a greater potential for intraoperative fluorescence imaging in clinical applications. Photodynamic therapy (PDT) is an alternative modality to treat tumors, which uses a light-sensitive drug (photosensitizers) and special light to destroy the targeted tissues. In this review, we discuss the fluorescent contrast agents, some newly developed imaging devices, and the successful clinical application of FGS. Additionally, we present the combined strategy of FGS with PDT to further improve the therapeutic effect for patients with cancer. Taken together, this review provides a unique perspective and summarization of FGS.
Collapse
Affiliation(s)
- Jun He
- General Surgery Department, Second Xiangya Hospital, Central South University, Changsha, China
| | - Leping Yang
- General Surgery Department, Second Xiangya Hospital, Central South University, Changsha, China
| | - Wenjun Yi
- General Surgery Department, Second Xiangya Hospital, Central South University, Changsha, China
| | - Wentao Fan
- General Surgery Department, Second Xiangya Hospital, Central South University, Changsha, China
| | - Yu Wen
- General Surgery Department, Second Xiangya Hospital, Central South University, Changsha, China
| | - Xiongying Miao
- General Surgery Department, Second Xiangya Hospital, Central South University, Changsha, China
| | - Li Xiong
- General Surgery Department, Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
31
|
Della Puppa A, Lombardi G, Rossetto M, Rustemi O, Berti F, Cecchin D, Gardiman MP, Rolma G, Persano L, Zagonel V, Scienza R. Outcome of patients affected by newly diagnosed glioblastoma undergoing surgery assisted by 5-aminolevulinic acid guided resection followed by BCNU wafers implantation: a 3-year follow-up. J Neurooncol 2016; 131:331-340. [PMID: 27757721 DOI: 10.1007/s11060-016-2301-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2016] [Accepted: 10/09/2016] [Indexed: 12/17/2022]
Abstract
The purpose of the study was to evaluate the clinical outcome of the association of BCNU wafers implantation and 5-aminolevulinic acid (5-ALA) fluorescence in the treatment of patients with newly diagnosed glioblastoma (ndGBM). Clinical and surgical data from patients who underwent 5-ALA surgery followed by BCNU wafers implantation were retrospectively evaluated (20 patients, Group I) and compared with data of patients undergoing surgery with BCNU wafers alone (42 patients, Group II) and 5-ALA alone (59 patients, Group III). Patients undergoing 5-ALA assisted resection followed by BCNU wafers implantation (Group I) resulted long survivors (>3 years) in 15 % of cases and showed a median PFS and MS of 11 and 22 months, respectively. Patients treated with BCNU wafers presented a significantly higher survival when tumor was removed with the assistance of 5-ALA (22 months with vs 18 months without 5-ALA, p < 0.0001); these data could be partially explained by the significantly higher CRET achieved in patients operated with 5-ALA assistance (80 % with vs 47 %% without 5-ALA). Moreover, patients of Group I showed a significant increased survival compared with Group III (5-ALA without BCNU) (22 months with vs 21 months without BCNU wafers, p = 0.0025) even with a comparable CRET (80 % vs 76 %, respectively). The occurrence of adverse events related to wafers did not significantly increase with 5-ALA (20 % with and 19 % without 5-ALA) and did not impact in survival outcome. In conclusion, our experience shows that on selected ndGBM patients 5-ALA technology and BCNU wafers implantation show a synergic action on patients' outcome without increasing adverse events occurrence.
Collapse
Affiliation(s)
- Alessandro Della Puppa
- Department of Neurosurgery, Padova University Hospital, Via Giustiniani 2, Azienda Ospedaliera di Padova, 35128, Padova, Italy.
| | - Giuseppe Lombardi
- Department of Clinical and Experimental Oncology, Medical Oncology I Unit, Veneto Institute of Oncology-IRCCS, Padova, Italy
| | - Marta Rossetto
- Department of Neurosurgery, Padova University Hospital, Via Giustiniani 2, Azienda Ospedaliera di Padova, 35128, Padova, Italy
| | - Oriela Rustemi
- Department of Neurosurgery, Padova University Hospital, Via Giustiniani 2, Azienda Ospedaliera di Padova, 35128, Padova, Italy
| | - Franco Berti
- Department of Radiotherapy, IRCCS, Padova, Italy
| | - Diego Cecchin
- Department of Medicine (DIMED), Nuclear Medicine Unit, University of Padua, Padua, Italy
| | - Marina Paola Gardiman
- Department of Medicine (DIMED), Surgical Pathology and Cytopathology Unit, University Hospital of Padua, Padua, Italy
| | - Giuseppe Rolma
- Department of Neuro-Radiology, Padova University Hospital, Padova, Italy
| | - Luca Persano
- Oncohematology Laboratory, IRP-Istituto di Ricerca Pediatrica Città della Speranza, Department of Woman and Child Health, University of Padova, Padua, Italy
| | - Vittorina Zagonel
- Department of Clinical and Experimental Oncology, Medical Oncology I Unit, Veneto Institute of Oncology-IRCCS, Padova, Italy
| | - Renato Scienza
- Department of Neurosurgery, Padova University Hospital, Via Giustiniani 2, Azienda Ospedaliera di Padova, 35128, Padova, Italy
| |
Collapse
|
32
|
Belykh E, Martirosyan NL, Yagmurlu K, Miller EJ, Eschbacher JM, Izadyyazdanabadi M, Bardonova LA, Byvaltsev VA, Nakaji P, Preul MC. Intraoperative Fluorescence Imaging for Personalized Brain Tumor Resection: Current State and Future Directions. Front Surg 2016; 3:55. [PMID: 27800481 PMCID: PMC5066076 DOI: 10.3389/fsurg.2016.00055] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 09/12/2016] [Indexed: 12/29/2022] Open
Abstract
INTRODUCTION Fluorescence-guided surgery is one of the rapidly emerging methods of surgical "theranostics." In this review, we summarize current fluorescence techniques used in neurosurgical practice for brain tumor patients as well as future applications of recent laboratory and translational studies. METHODS Review of the literature. RESULTS A wide spectrum of fluorophores that have been tested for brain surgery is reviewed. Beginning with a fluorescein sodium application in 1948 by Moore, fluorescence-guided brain tumor surgery is either routinely applied in some centers or is under active study in clinical trials. Besides the trinity of commonly used drugs (fluorescein sodium, 5-aminolevulinic acid, and indocyanine green), less studied fluorescent stains, such as tetracyclines, cancer-selective alkylphosphocholine analogs, cresyl violet, acridine orange, and acriflavine, can be used for rapid tumor detection and pathological tissue examination. Other emerging agents, such as activity-based probes and targeted molecular probes that can provide biomolecular specificity for surgical visualization and treatment, are reviewed. Furthermore, we review available engineering and optical solutions for fluorescent surgical visualization. Instruments for fluorescent-guided surgery are divided into wide-field imaging systems and hand-held probes. Recent advancements in quantitative fluorescence-guided surgery are discussed. CONCLUSION We are standing on the threshold of the era of marker-assisted tumor management. Innovations in the fields of surgical optics, computer image analysis, and molecular bioengineering are advancing fluorescence-guided tumor resection paradigms, leading to cell-level approaches to visualization and resection of brain tumors.
Collapse
Affiliation(s)
- Evgenii Belykh
- Department of Neurosurgery, St. Joseph’s Hospital and Medical Center, Barrow Neurological Institute, Phoenix, AZ, USA
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
- Laboratory of Neurosurgery, Irkutsk Scientific Center of Surgery and Traumatology, Irkutsk, Russia
- Irkutsk State Medical University, Irkutsk, Russia
| | - Nikolay L. Martirosyan
- Department of Neurosurgery, St. Joseph’s Hospital and Medical Center, Barrow Neurological Institute, Phoenix, AZ, USA
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Kaan Yagmurlu
- Department of Neurosurgery, St. Joseph’s Hospital and Medical Center, Barrow Neurological Institute, Phoenix, AZ, USA
| | - Eric J. Miller
- University of Arizona College of Medicine – Phoenix, Phoenix, AZ, USA
| | - Jennifer M. Eschbacher
- Department of Neurosurgery, St. Joseph’s Hospital and Medical Center, Barrow Neurological Institute, Phoenix, AZ, USA
| | - Mohammadhassan Izadyyazdanabadi
- Department of Neurosurgery, St. Joseph’s Hospital and Medical Center, Barrow Neurological Institute, Phoenix, AZ, USA
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Liudmila A. Bardonova
- Department of Neurosurgery, St. Joseph’s Hospital and Medical Center, Barrow Neurological Institute, Phoenix, AZ, USA
- Laboratory of Neurosurgery, Irkutsk Scientific Center of Surgery and Traumatology, Irkutsk, Russia
- Irkutsk State Medical University, Irkutsk, Russia
| | - Vadim A. Byvaltsev
- Laboratory of Neurosurgery, Irkutsk Scientific Center of Surgery and Traumatology, Irkutsk, Russia
- Irkutsk State Medical University, Irkutsk, Russia
| | - Peter Nakaji
- Department of Neurosurgery, St. Joseph’s Hospital and Medical Center, Barrow Neurological Institute, Phoenix, AZ, USA
| | - Mark C. Preul
- Department of Neurosurgery, St. Joseph’s Hospital and Medical Center, Barrow Neurological Institute, Phoenix, AZ, USA
| |
Collapse
|
33
|
Barnett GH, Voigt JD, Alhuwalia MS. A Systematic Review and Meta-Analysis of Studies Examining the Use of Brain Laser Interstitial Thermal Therapy versus Craniotomy for the Treatment of High-Grade Tumors in or near Areas of Eloquence: An Examination of the Extent of Resection and Major Complication Rates Associated with Each Type of Surgery. Stereotact Funct Neurosurg 2016; 94:164-73. [PMID: 27322392 DOI: 10.1159/000446247] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 04/18/2016] [Indexed: 11/19/2022]
Abstract
BACKGROUND The extent of resection (EOR) of high-grade gliomas (WHO grade III or IV) in or near areas of eloquence is associated with overall patient survival, but with higher major neurocognitive complications. METHODS A systematic review and meta-analysis was undertaken of the peer-reviewed literature in order to identify studies which examined EOR or extent of ablation (EOA) and major complications (defined as neurocognitive or functional complications which last >3 months duration after surgery) associated with either brain laser interstitial thermal therapy (LITT) or open craniotomy in high-grade tumors in or near areas of eloquence. RESULTS Eight studies on brain LITT (n = 79 patients) and 12 craniotomy studies (n = 1,036 patients) were identified which examined either/both EOR/EOA and complications. Meta-analysis demonstrated an EOA/EOR of 85.4 ± 10.6% with brain LITT versus 77.0 ± 40% with craniotomy (mean difference: 8%; 95% CI: 2-15; p = 0.01; inverse variance, random effects model). Meta-analysis of proportions of major complications for each individual therapy demonstrated major complications of 5.7% (95% CI: 1.8-11.6) and 13.8% (95% CI: 10.3-17.9) for LITT and craniotomy, respectively. CONCLUSION In patients presenting with high-grade gliomas in or near areas of eloquence, early results demonstrate that brain LITT may be a viable surgical alternative.
Collapse
Affiliation(s)
- Gene H Barnett
- Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Ridgewood, N.J., USA
| | | | | |
Collapse
|
34
|
Craig SEL, Wright J, Sloan AE, Brady-Kalnay SM. Fluorescent-Guided Surgical Resection of Glioma with Targeted Molecular Imaging Agents: A Literature Review. World Neurosurg 2016; 90:154-163. [PMID: 26915698 PMCID: PMC4915969 DOI: 10.1016/j.wneu.2016.02.060] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 02/11/2016] [Accepted: 02/12/2016] [Indexed: 12/11/2022]
Abstract
The median life expectancy after a diagnosis of glioblastoma is 15 months. Although chemotherapeutics may someday cure glioblastoma by killing the highly dispersive malignant cells, the most important contribution that clinicians can currently offer to improve survival is by maximizing the extent of resection and providing concurrent chemo-radiation, which has become standard. Strides have been made in this area with the advent and implementation of methods of improved intraoperative tumor visualization. One of these techniques, optical fluorescent imaging with targeted molecular imaging agents, allows the surgeon to view fluorescently labeled tumor tissue during surgery with the use of special microscopy, thereby highlighting where to resect and indicating when tumor-free margins have been obtained. This advantage is especially important at the difficult-to-observe margins where tumor cells infiltrate normal tissue. Targeted fluorescent agents also may be valuable for identifying tumor versus nontumor tissue. In this review, we briefly summarize nontargeted fluorescent tumor imaging agents before discussing several novel targeted fluorescent agents being developed for glioma imaging in the context of fluorescent-guided surgery or live molecular navigation. Many of these agents are currently undergoing preclinical testing. As the agents become available, however, it is necessary to understand the strengths and weaknesses of each.
Collapse
Affiliation(s)
- Sonya E L Craig
- Department of Molecular Biology and Microbiology, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - James Wright
- Department of Neurosurgery, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Andrew E Sloan
- Case Comprehensive Cancer Center, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA; Department of Neurosurgery, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA; Brain Tumor and Neuro-Oncology Center, University Hospitals Case Medical Center, Cleveland, Ohio, USA
| | - Susann M Brady-Kalnay
- Department of Molecular Biology and Microbiology, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA; Case Comprehensive Cancer Center, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA; Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA.
| |
Collapse
|
35
|
Teixidor P, Arráez MÁ, Villalba G, Garcia R, Tardáguila M, González JJ, Rimbau J, Vidal X, Montané E. Safety and Efficacy of 5-Aminolevulinic Acid for High Grade Glioma in Usual Clinical Practice: A Prospective Cohort Study. PLoS One 2016; 11:e0149244. [PMID: 26885645 PMCID: PMC4757411 DOI: 10.1371/journal.pone.0149244] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 01/28/2016] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND During the last decade, the use of 5-aminolevulinic acid (5-ALA) has been steadily increasing in neurosurgery. The study's main objectives were to prospectively evaluate the effectiveness and safety of 5-ALA when used in clinical practice setting on high-grade gliomas' patients. METHODS National, multicenter and prospective observational study. INCLUSION CRITERIA authorized conditions of use of 5-ALA. EXCLUSION CRITERIA contraindication to 5-ALA, inoperable or partial resected tumors, pregnancy and children. Epidemiological, clinical, laboratory, radiological, and safety data were collected. Effectiveness was assessed using complete resection of the tumor, and progression-free and overall survival probabilities. RESULTS Between May 2010 and September 2014, 85 patients treated with 5-ALA were included, and 77 were suitable for the effectiveness analysis. Complete resection was achieved in 41 patients (54%). Surgeons considered suboptimal the fluorescence of 5-ALA in 40% of the patients assessed. The median duration of follow-up was 12.3 months. The progression-free survival probability at 6 months was 58%. The median duration overall survival was 14.2 months. Progression tumor risk factors were grade of glioma, age and resection degree; and death risk factors were grade of glioma and gender. No severe adverse effects were reported. At one month after surgery, new or increased neurological morbidity was 6.5%. Hepatic enzymes were frequently increased within the first month after surgery; however, they subsequently normalized, and this was found to have no clinical significance. CONCLUSION In clinical practice, the 5-ALA showed a good safety profile, but the benefits related to 5-ALA have not been yet clearly shown. The improved differentiation expected by fluorescence between normal and tumor cerebral tissue was suboptimal in a relevant number of patients; in addition, the expected higher degree of resection was lower than in clinical trials as well as incomplete resection was not identified as a prognostic factor risk for death. Because optimal fluorescence was correlated to higher complete resection rate, further research is needed to identify patients (or tumors) with more surgery benefits when using the 5-ALA.
Collapse
Affiliation(s)
- Pilar Teixidor
- Department of Neurosurgery, Hospital Universitari Germans Trias i Pujol, Badalona, Barcelona, Spain
| | | | - Glòria Villalba
- Department of Neurosurgery, Hospital del Mar, Barcelona, Spain
| | - Roser Garcia
- Department of Neurosurgery, Hospital Universitari Germans Trias i Pujol, Badalona, Barcelona, Spain
| | - Manel Tardáguila
- Department of Neurosurgery, Hospital Universitari Germans Trias i Pujol, Badalona, Barcelona, Spain
| | - Juan José González
- Department of Neurosurgery, Hospital Clínic I Provincial de Barcelona, Barcelona, Spain
| | - Jordi Rimbau
- Department of Neurosurgery, Hospital Universitari Germans Trias i Pujol, Badalona, Barcelona, Spain
| | - Xavier Vidal
- Fundació Institut Català de Farmacologia, Hospital Universitari Vall d’Hebron, Barcelona, Spain
- Department of Pharmacology, Therapeutics and Toxicology, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Eva Montané
- Department of Pharmacology, Therapeutics and Toxicology, Universitat Autònoma de Barcelona, Barcelona, Spain
- Department of Clinical Pharmacology, Hospital Universitari Germans Trias i Pujol, Badalona, Barcelona, Spain
| |
Collapse
|
36
|
Abstract
OPINION STATEMENT Treatment of patients with high-grade glioma (HGG) should begin with thorough evaluation by a specialized multidisciplinary team to determine whether or not the patient is appropriate for surgery, chemotherapy and radiotherapy. Particular attention should be paid to the performance status and neurological function. Surgery is the first step in therapeutic intervention. Patients undergo either biopsy, debulking surgery or maximal resection depending on the anatomical location of the tumour and the patient's clinical condition. Extent of resection has a prognostic value. In patients who are 'fit for surgery', the aim is to remove all contrast-enhancing tumour without causing neurological deficit. If microsurgical resection is not feasible, then a biopsy, either open or stereotactic, should be performed to confirm high-grade glioma diagnosis and to perform molecular genetic analyses (MGMT methylation status, loss of heterozygosity in 1p/19q, IDH1 status) as this has treatment implications. Over the past decade, much glioma research has focussed on novel surgical approaches to improve long-term outcomes. The evidence to support the benefit of maximizing extent of resection is growing. Advances in neurosurgical techniques allow safer, more aggressive surgery to maximize tumour resection whilst minimizing neurological deficit. Surgical adjuncts including advanced neuronavigation, intraoperative magnetic resonance imaging, high-frequency ultrasonography, fluorescence-guided microsurgery using intraoperative fluorescence, functional mapping of motor and language pathways, and locally delivered therapies are extending the armamentarium of the neurosurgeon to provide patients with the best outcome. Operating on elderly patients and those with recurrent disease, although controversial, is becoming more common due to emerging neurosurgical approaches. Here, we discuss the emerging surgical techniques and comment on the future of HGG surgery.
Collapse
Affiliation(s)
- Fahid Tariq Rasul
- Department of Clinical Neurosciences, Brain Repair Centre, University of Cambridge, ED Adrian Building, Forvie Site, Robinson Way, Cambridge, CB2 0PY, UK,
| | | |
Collapse
|
37
|
Díez Valle R, Tejada Solis S. To what extent will 5-aminolevulinic acid change the face of malignant glioma surgery? CNS Oncol 2015; 4:265-72. [PMID: 26118538 DOI: 10.2217/cns.15.10] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Glioma surgery is an essential part of glioma management; however, fully achieving the goal of surgery has been uncommon. The goal of surgery is 'maximal safe resection' with the accepted target for maximal being complete resection of the contrast-enhancing tumor. This ideal result was obtained in less than 30% of cases in centers of excellence until a few years ago. The development of fluorescence-guided surgery using 5-aminolevulinic acid has initiated a radical change. Over the past 5 years, various groups have published rates of complete resection of the enhancing tumor that exceed 80%. In the coming years, as the use of the technology expands, complete resection should become a common, predictable result at many centers. Consequently, adjuvant therapies that benefit from resection could play a bigger role, resection could be incorporated as a variable in randomized trials and distant recurrence might become a more common problem.
Collapse
Affiliation(s)
- Ricardo Díez Valle
- Department of Neurosurgery, Clínica Universidad de Navarra, Navarre, Spain
| | - Sonia Tejada Solis
- Department of Neurosurgery, Clínica Universidad de Navarra, Navarre, Spain
| |
Collapse
|
38
|
Eljamel S. 5-ALA Fluorescence Image Guided Resection of Glioblastoma Multiforme: A Meta-Analysis of the Literature. Int J Mol Sci 2015; 16:10443-56. [PMID: 25961952 PMCID: PMC4463655 DOI: 10.3390/ijms160510443] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Revised: 04/17/2015] [Accepted: 04/27/2015] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Glioblastoma multiforme (GBM) is one of the most deadly cancers in humans. Despite recent advances in anti-cancer therapies, most patients with GBM die from local disease progression. Fluorescence image guided surgical resection (FIGR) was recently advocated to enhance local control of GBM. This is meta-analyses of 5-aminolevulinic (5-ALA) induced FIGR. MATERIALS Review of the literature produced 503 potential publications; only 20 of these fulfilled the inclusion criteria of this analysis, including a total of 565 patients treated with 5-ALA-FIGR reporting on its outcomes and 800 histological samples reporting 5-ALA-FIGR sensitivity and specificity. RESULTS The mean gross total resection (GTR) rate was 75.4% (95% CI: 67.4-83.5, p<0.001). The mean time to tumor progression (TTP) was 8.1 months (95% CI: 4.7-12, p<0.001). The mean overall survival gain reported was 6.2 months (95% CI: -1-13, p<0.001). The specificity was 88.9% (95% CI: 83.9-93.9, p<0.001) and the sensitivity was 82.6% (95% CI: 73.9-91.9, p<0.001). CONCLUSION 5-ALA-FIGR in GBM is highly sensitive and specific, and imparts significant benefits to patients in terms of improved GTR and TTP.
Collapse
Affiliation(s)
- Samy Eljamel
- Neurological Surgery, High Tech Neuro & Micro Surgery, Edinburgh EH3 8JB, UK.
| |
Collapse
|
39
|
Leroy HA, Vermandel M, Lejeune JP, Mordon S, Reyns N. Fluorescence guided resection and glioblastoma in 2015: A review. Lasers Surg Med 2015; 47:441-51. [DOI: 10.1002/lsm.22359] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/23/2015] [Indexed: 12/31/2022]
Affiliation(s)
- Henri-Arthur Leroy
- INSERM; U1189 ONCO-THAI; Lille France
- CHRU de lille; Department of Neurosurgery; Lille France
- University of Lille; Lille France
| | - Maximilien Vermandel
- INSERM; U1189 ONCO-THAI; Lille France
- CHRU de lille; Department of Neurosurgery; Lille France
- University of Lille; Lille France
| | - Jean-Paul Lejeune
- INSERM; U1189 ONCO-THAI; Lille France
- CHRU de lille; Department of Neurosurgery; Lille France
- University of Lille; Lille France
| | | | - Nicolas Reyns
- INSERM; U1189 ONCO-THAI; Lille France
- CHRU de lille; Department of Neurosurgery; Lille France
- University of Lille; Lille France
| |
Collapse
|
40
|
Meza D, Wang D, Wang Y, Borwege S, Sanai N, Liu JTC. Comparing high-resolution microscopy techniques for potential intraoperative use in guiding low-grade glioma resections. Lasers Surg Med 2015; 47:289-95. [PMID: 25872487 DOI: 10.1002/lsm.22347] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/14/2015] [Indexed: 11/10/2022]
Abstract
BACKGROUND AND OBJECTIVES Fluorescence image-guided surgery (FIGS), with contrast provided by 5-ALA-induced PpIX, has been shown to enable a higher extent of resection of high-grade gliomas. However, conventional FIGS with low-power microscopy lacks the sensitivity to aid in low-grade glioma (LGG) resection because PpIX signal is weak and sparse in such tissues. Intraoperative high-resolution microscopy of PpIX fluorescence has been proposed as a method to guide LGG resection, where sub-cellular resolution allows for the visualization of sparse and punctate mitochondrial PpIX production in tumor cells. Here, we assess the performance of three potentially portable high-resolution microscopy techniques that may be used for the intraoperative imaging of human LGG tissue samples with PpIX contrast: high-resolution fiber-optic microscopy (HRFM), high-resolution wide-field microscopy (WFM), and dual-axis confocal (DAC) microscopy. MATERIALS AND METHODS Thick unsectioned human LGG tissue samples (n = 7) with 5-ALA-induced PpIX contrast were imaged using three imaging techniques (HRFM, WFM, DAC). The average signal-to-background ratio (SBR) was then calculated for each imaging modality (5 images per tissue, per modality). RESULTS HRFM provides the ease of use and portability of a flexible fiber bundle, and is simple and inexpensive to build. However, in most cases (6/7), HRFM is not capable of detecting PpIX signal from LGGs due to high autofluorescence, generated by the fiber bundle under laser illumination at 405 nm, which overwhelms the PpIX signal and impedes its visualization. WFM is a camera-based method possessing high lateral resolution but poor axial resolution, resulting in sub-optimal image contrast. CONCLUSIONS Consistent successful detection of PpIX signal throughout our human LGG tissue samples (n = 7), with an acceptable image contrast (SBR >2), was only achieved using DAC microscopy, which offers superior image resolution and contrast that is comparable to histology, but requires a laser-scanning mechanism to achieve optical sectioning.
Collapse
Affiliation(s)
- Daphne Meza
- Department of Biomedical Engineering, Stony Brook University (SUNY), Stony Brook, New York, 11794
| | | | | | | | | | | |
Collapse
|
41
|
Meza D, Wang D, Wang Y, Borwege S, Sanai N, Liu JTC. Comparing high-resolution microscopy techniques for potential intraoperative use in guiding low-grade glioma resections. Lasers Surg Med 2015; 47:289-295. [PMID: 25872487 DOI: 10.1002/lsm.v47.4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/14/2015] [Indexed: 05/18/2023]
Abstract
BACKGROUND AND OBJECTIVES Fluorescence image-guided surgery (FIGS), with contrast provided by 5-ALA-induced PpIX, has been shown to enable a higher extent of resection of high-grade gliomas. However, conventional FIGS with low-power microscopy lacks the sensitivity to aid in low-grade glioma (LGG) resection because PpIX signal is weak and sparse in such tissues. Intraoperative high-resolution microscopy of PpIX fluorescence has been proposed as a method to guide LGG resection, where sub-cellular resolution allows for the visualization of sparse and punctate mitochondrial PpIX production in tumor cells. Here, we assess the performance of three potentially portable high-resolution microscopy techniques that may be used for the intraoperative imaging of human LGG tissue samples with PpIX contrast: high-resolution fiber-optic microscopy (HRFM), high-resolution wide-field microscopy (WFM), and dual-axis confocal (DAC) microscopy. MATERIALS AND METHODS Thick unsectioned human LGG tissue samples (n = 7) with 5-ALA-induced PpIX contrast were imaged using three imaging techniques (HRFM, WFM, DAC). The average signal-to-background ratio (SBR) was then calculated for each imaging modality (5 images per tissue, per modality). RESULTS HRFM provides the ease of use and portability of a flexible fiber bundle, and is simple and inexpensive to build. However, in most cases (6/7), HRFM is not capable of detecting PpIX signal from LGGs due to high autofluorescence, generated by the fiber bundle under laser illumination at 405 nm, which overwhelms the PpIX signal and impedes its visualization. WFM is a camera-based method possessing high lateral resolution but poor axial resolution, resulting in sub-optimal image contrast. CONCLUSIONS Consistent successful detection of PpIX signal throughout our human LGG tissue samples (n = 7), with an acceptable image contrast (SBR >2), was only achieved using DAC microscopy, which offers superior image resolution and contrast that is comparable to histology, but requires a laser-scanning mechanism to achieve optical sectioning.
Collapse
Affiliation(s)
- Daphne Meza
- Department of Biomedical Engineering, Stony Brook University (SUNY), Stony Brook, New York, 11794
| | | | | | | | | | | |
Collapse
|