1
|
Kumar P, Kumar V, Sharma S, Sharma R, Warghat AR. Fritillaria steroidal alkaloids and their multi-target therapeutic mechanisms: insights from network pharmacology. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024:10.1007/s00210-024-03502-z. [PMID: 39382678 DOI: 10.1007/s00210-024-03502-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 09/30/2024] [Indexed: 10/10/2024]
Abstract
Medicinal Fritillaria herbs, known for their rich content of steroidal alkaloids, have emerged as promising candidates in the treatment of chronic diseases due to their diverse pharmacological properties. Leveraging advancements in network pharmacology and molecular docking, this study explores the multi-target mechanisms through which these alkaloids exert therapeutic effects. The integration of bioinformatics, systems biology, and pharmacology in drug discovery has provided insights into the molecular interactions and pathways influenced by Fritillaria steroidal alkaloids. This review synthesizes comprehensive literature from 1985 to 2024, revealing the potential of these compounds in addressing respiratory diseases, inflammation, and cancer. The integration of traditional Chinese medicine (TCM) with modern pharmacological techniques underscores the relevance of these compounds in next-generation drug discovery. While initial findings are promising, further empirical validation is necessary to fully harness the therapeutic potential of Fritillaria steroidal alkaloids.
Collapse
Affiliation(s)
- Pankaj Kumar
- Department of Biotechnology, Dr Y.S, Parmar University of Horticulture and Forestry, Solan, Himachal Pradesh, India.
| | - Vinay Kumar
- Department of Biotechnology, Dr Y.S, Parmar University of Horticulture and Forestry, Solan, Himachal Pradesh, India
| | - Shagun Sharma
- Department of Biotechnology, Dr Y.S, Parmar University of Horticulture and Forestry, Solan, Himachal Pradesh, India
| | - Rohit Sharma
- Department of Forest Products, Dr Y.S, Parmar University of Horticulture and Forestry, Solan, Himachal Pradesh, India
| | - Ashish R Warghat
- CSIR-Institute of Himalayan Bioresource Technology, Palampur, 176061, Himachal Pradesh, India
- Academy of Scientific and Innovative Research, Ghaziabad, 201002, India
| |
Collapse
|
2
|
Bhat BA, Rashid Mir W, Alkhanani M, Almilaibary A, Mir MA. Network pharmacology and experimental validation for deciphering the action mechanism of Fritillaria cirrhosa D. Don constituents in suppressing breast carcinoma. J Biomol Struct Dyn 2023:1-21. [PMID: 37948293 DOI: 10.1080/07391102.2023.2274966] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 10/18/2023] [Indexed: 11/12/2023]
Abstract
Fritillaria cirrhosa D. Don is a well-known medicinal plant of Kashmir Himalaya. Traditionally, it has been used to treat several diseases, including cancer. However, the molecular mechanism behind anticancer activity remains unclear. Therefore, in the present study, we have performed high performance-liquid chromatography-mass spectrometry (HR-LC/MS), network pharmacology, molecular docking and molecular dynamic (MD) simulation methods were used to explore the underlying molecular mechanism of F. cirrhosa for the treatment of breast cancer (BC). The targets of F. cirrhosa for treating BC were predicted using databases like SwissTargetPrediction, Gene Cards and OMIM. Protein-protein interaction analysis and network construction were performed using the Search Tool for the Retrieval of Interacting Genes/Proteins programme, and analysis of Gene Ontology term enrichment and Kyoto Encyclopedia of Genes and Genomes pathway enrichment was done using the Cytoscape programme. In addition, molecular docking was used to investigate intermolecular interactions between the compounds and the proteins using the Autodock tool. MD simulations studies were also used to explore the stability of the representative AKT1 gene peiminine and Imperialine-3-β-glucoside. In addition, experimental treatment of F. cirrhosa was also verified. HR-LC/MS detected the presence of several secondary metabolites. Afterward, molecular docking was used to verify the effective activity of the active ingredients against the prospective targets. Additionally, Peiminine and Imperialine-3-β-glucoside showed the highest binding energy score against AKT-1 (-12.99 kcal/mol and -12.08 kcal/mol). AKT1 with Peiminine and Imperialine-3-β-glucoside was further explored for MD simulations. During the MD simulation study at 100 nanoseconds, a stable complex formation of AKT1 + Peiminine and Imperialine-3-β-glucoside was observed. The binding free energy calculations using MM/GBSA showed significant binding of the ligand with protein (ΔG: -79.83 ± 3.0 kcal/mol) between AKT1 + Peiminine was observed. The principal component analysis exhibited a stable converged structure by achieving global motion. Lastly, F. cirrhosa extracts also exhibited momentous anticancer activity through in vitro studies. Therefore, present study revealed the molecular mechanism of F. cirrhosa constituents for the effective treatment of BC by deactivating various multiple gene targets, multiple pathways particularly the PI3K-Akt signaling pathway. These findings emphasized the momentous anti-BC activity of F. cirrhosa constituents.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Basharat Ahmad Bhat
- Department of Bio-Resources, School of Biological Sciences, University of Kashmir, Srinagar, JK, India
| | - Wajahat Rashid Mir
- Department of Bio-Resources, School of Biological Sciences, University of Kashmir, Srinagar, JK, India
| | - Mustfa Alkhanani
- Department of Biology, College of Science, Hafr Al Batin University of Hafr Al-Batin, KSA
| | - Abdullah Almilaibary
- Department of Family and Community Medicine, Faculty of Medicine, Al Baha University, Albaha, KSA
| | - Manzoor Ahmad Mir
- Department of Bio-Resources, School of Biological Sciences, University of Kashmir, Srinagar, JK, India
| |
Collapse
|
3
|
Bhat BA, Mir WR, Sheikh BA, Alkanani M, Mir MA. Metabolite fingerprinting of phytoconstituents from Fritillaria cirrhosa D. Don and molecular docking analysis of bioactive peonidin with microbial drug target proteins. Sci Rep 2022; 12:7296. [PMID: 35508512 PMCID: PMC9068770 DOI: 10.1038/s41598-022-10796-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 04/07/2022] [Indexed: 12/15/2022] Open
Abstract
Fritillaria cirrhosa D. Don (Liliaceae), a valuable and critically endangered medicinal herb of northwest India, including Jammu and Kashmir, grows in temperate to alpine regions of the Himalaya. It is known as the traditional herb for cardiovascular diseases, respiratory diseases, and metabolic disorders. The plant bulbs are precious and are used to cure many other health complications. The current study analysed the phytoconstituents by liquid chromatography-mass spectrometry (LC-MS) of different crude extracts (methanolic, petroleum ether, and ethyl acetate) of F. cirrhosa. The LC-MS analysis from the bulbs of F. cirrhosa yielded 88 bioactive compounds, with the vast majority having therapeutic applications. Further, determination of minimum inhibitory concentrations (MICs) by broth microdilution method of F. cirrhosa against tested bacterial and fungal pathogens showed remarkable results with MICs ranging between 6.25-200 µg/mL and 50-400 µg/mL, respectively. Subsequently, these 88 identified phytocompounds were tested for their bioactivity through ADMET prediction by SwissADME and in silico molecular docking studies. Results revealed that Peonidin might have maximum antibacterial and antifungal activity against various microbial protein drug targets among the phytochemical compounds identified. Furthermore, the highest binding affinity complex was subjected to molecular dynamic simulation (MDS) analysis using Desmond Schrodinger v3.8. The root-mean-square deviation (RMSD) graphs obtained through the molecular dynamic simulations indicated the true bonding interactions, further validated using the root-mean-square fluctuation (RMSF) graphs which provided a better understanding of the amino acids present in the proteins responsible for the molecular motions and fluctuations. To our best knowledge, this is the first description of the phytochemical constituents of the bulbs of F.cirrhosa analyzed through LC-MS, which show pharmacological significance. The in silico molecular docking and molecular dynamics study of peonidin was also performed to confirm its broad-spectrum activities based on the binding interactions with the antibacterial and antifungal target proteins. The present study results will create a way for the invention of herbal medicines for several ailments by using F. cirrhosa plants, which may lead to the development of novel drugs.
Collapse
Affiliation(s)
- Basharat Ahmad Bhat
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Srinagar, 190006, India
| | - Wajahat Rashid Mir
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Srinagar, 190006, India
| | - Bashir Ahmad Sheikh
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Srinagar, 190006, India
| | - Mustafa Alkanani
- College of Applied Medical Sciences, Almaarefa University, Riyadh, 11597, Kingdom of Saudi Arabia
| | - Manzoor Ahmad Mir
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Srinagar, 190006, India.
| |
Collapse
|
4
|
Quan Y, Li L, Yin Z, Chen S, Yi J, Lang J, Zhang L, Yue Q, Zhao J. Bulbus Fritillariae Cirrhosae as a Respiratory Medicine: Is There a Potential Drug in the Treatment of COVID-19? Front Pharmacol 2022; 12:784335. [PMID: 35126123 PMCID: PMC8811224 DOI: 10.3389/fphar.2021.784335] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 12/03/2021] [Indexed: 01/08/2023] Open
Abstract
Bulbus fritillariae cirrhosae (BFC) is one of the most used Chinese medicines for lung disease, and exerts antitussive, expectorant, anti-inflammatory, anti-asthmatic, and antioxidant effects, which is an ideal therapeutic drug for respiratory diseases such as ARDS, COPD, asthma, lung cancer, and pulmonary tuberculosis. Through this review, it is found that the therapeutic mechanism of BFC on respiratory diseases exhibits the characteristics of multi-components, multi-targets, and multi-signaling pathways. In particular, the therapeutic potential of BFC in terms of intervention of “cytokine storm”, STAT, NF-κB, and MAPK signaling pathways, as well as the renin-angiotensin system (RAS) that ACE is involved in. In the “cytokine storm” of SARS-CoV-2 infection there is an intense inflammatory response. ACE2 regulates the RAS by degradation of Ang II produced by ACE, which is associated with SARS-CoV-2. For COVID-19, may it be a potential drug? This review summarized the research progress of BFC in the respiratory diseases, discussed the development potentiality of BFC for the treatment of COVID-19, explained the chemical diversity and biological significance of the alkaloids in BFC, and clarified the material basis, molecular targets, and signaling pathways of BFC for the respiratory diseases. We hope this review can provide insights on the drug discovery of anti-COVID-19.
Collapse
Affiliation(s)
- Yunyun Quan
- Translational Chinese Medicine Key Laboratory of Sichuan Province, Sichuan Academy of Chinese Medicine Sciences, Sichuan Institute for Translational Chinese Medicine, Chengdu, China
- Department of Pharmacognosy, West China School of Pharmacy Sichuan University, Chengdu, China
| | - Li Li
- Translational Chinese Medicine Key Laboratory of Sichuan Province, Sichuan Academy of Chinese Medicine Sciences, Sichuan Institute for Translational Chinese Medicine, Chengdu, China
| | - Zhujun Yin
- Translational Chinese Medicine Key Laboratory of Sichuan Province, Sichuan Academy of Chinese Medicine Sciences, Sichuan Institute for Translational Chinese Medicine, Chengdu, China
| | - Shilong Chen
- Translational Chinese Medicine Key Laboratory of Sichuan Province, Sichuan Academy of Chinese Medicine Sciences, Sichuan Institute for Translational Chinese Medicine, Chengdu, China
| | - Jing Yi
- Translational Chinese Medicine Key Laboratory of Sichuan Province, Sichuan Academy of Chinese Medicine Sciences, Sichuan Institute for Translational Chinese Medicine, Chengdu, China
| | - Jirui Lang
- Translational Chinese Medicine Key Laboratory of Sichuan Province, Sichuan Academy of Chinese Medicine Sciences, Sichuan Institute for Translational Chinese Medicine, Chengdu, China
| | - Lu Zhang
- Translational Chinese Medicine Key Laboratory of Sichuan Province, Sichuan Academy of Chinese Medicine Sciences, Sichuan Institute for Translational Chinese Medicine, Chengdu, China
| | - Qianhua Yue
- Translational Chinese Medicine Key Laboratory of Sichuan Province, Sichuan Academy of Chinese Medicine Sciences, Sichuan Institute for Translational Chinese Medicine, Chengdu, China
| | - Junning Zhao
- Translational Chinese Medicine Key Laboratory of Sichuan Province, Sichuan Academy of Chinese Medicine Sciences, Sichuan Institute for Translational Chinese Medicine, Chengdu, China
- Department of Pharmacognosy, West China School of Pharmacy Sichuan University, Chengdu, China
- *Correspondence: Junning Zhao,
| |
Collapse
|
5
|
Chen T, Zhong F, Yao C, Chen J, Xiang Y, Dong J, Yan Z, Ma Y. A Systematic Review on Traditional Uses, Sources, Phytochemistry, Pharmacology, Pharmacokinetics, and Toxicity of Fritillariae Cirrhosae Bulbus. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2020; 2020:1536534. [PMID: 33273948 PMCID: PMC7676930 DOI: 10.1155/2020/1536534] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 10/05/2020] [Accepted: 10/14/2020] [Indexed: 12/31/2022]
Abstract
Fritillariae Cirrhosae Bulbus (known as chuanbeimu in Chinese, FCB) is a famous folk medicine which has been widely used to relieve cough and eliminate phlegm for thousands of years in China. The medicine originates from dried bulbs of six species of Fritillaria which are distributed in the temperate zone of the Northern Hemisphere. Increasing attention has been paid to FCB because of its excellent medicinal value such as being antitussive, expectorant, analgesic, anticancer, anti-inflammatory, and antioxidative. During the past years, a large number of research studies have been conducted to investigate the phytochemistry, pharmacology, and pharmacokinetics of FCB. A range of compounds have been isolated and identified from FCB, including alkaloids, saponins, nucleosides, organic acids, terpenoids, and sterols. Among them, alkaloids as the main active ingredient have been illustrated to exert significant therapeutic effects on many diseases such as cancer, acute lung injury, chronic obstructive pulmonary disease, asthma, Parkinson's disease, and diabetes. Due to the excellent medical value and low toxicity, FCB has a huge market all over the world and triggers a growing enthusiasm among researchers. However, there is still a lack of systematic review. Hence, in this work, we reviewed the FCB-based articles published in Sci Finder, Web of Science, PubMed, Google Scholar, CNKI, and other databases in the recent years. The traditional uses, sources, phytochemistry, pharmacology, pharmacokinetics, and toxicity of FCB were discussed in the review, which aims to provide a reference for further development and utilization of FCB.
Collapse
Affiliation(s)
- Ting Chen
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan, China
| | - Furong Zhong
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan, China
| | - Cheng Yao
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan, China
| | - Jia Chen
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan, China
| | - Yiqing Xiang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan, China
| | - Jijing Dong
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan, China
| | - Zhuyun Yan
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan, China
| | - Yuntong Ma
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan, China
| |
Collapse
|
6
|
Wang D, Chen X, Atanasov AG, Yi X, Wang S. Plant Resource Availability of Medicinal Fritillaria Species in Traditional Producing Regions in Qinghai-Tibet Plateau. Front Pharmacol 2017; 8:502. [PMID: 28824427 PMCID: PMC5545572 DOI: 10.3389/fphar.2017.00502] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 07/14/2017] [Indexed: 12/26/2022] Open
Abstract
The genus Fritillaria (Liliaceae) comprises of ~140 species of bulbous perennials, which are distributed in the temperate zone of the Northern Hemisphere. Fritillaria species have attracted much attention because of their commercial value, partly as ornamental plants but principally as a source of material for use in traditional medicine. The use of Fritillaria extracts is well established in some countries in Eastern Europe (e.g., Turkey), and Asia (e.g., China, Japan). In traditional Chinese medicine, the medicinal Fritillaria species is called Bulbus Fritillariae Cirrhosae (BFC), which has been used as a traditional medicine for thousands of years. However, to the best of our knowledge, there are no reports on resource investigation of plants of BFC in the last ten years. In this study, we chose 32 traditional producing regions in Qinghai-Tibet Plateau to perform an investigation on resource availability of BFC. In five sites we did not find any plants of BFC. Results show that the average number of the plants of BFC per quadrat in 26 sites was less than 7, and the average resource density was <22 mg/m2. Habitat types and plant morphology of BFC plants were recorded. Our investigation shows that the area for artificial cultivation of BFC is larger than 400 hm2 and productivity was higher than 180 t. In addition, the total alkaloid contents of samples from cultivated bases and plantations are higher than that from wild fields. This study suggests that the wild populations of BFC are still at the risk of depletion. Artificial cultivation of BFC might be an important way to resolve the current contradiction between resource protection and resource utilization. In addition, identifying the closest European relatives of the Fritillaria species used in traditional medicine may resolve this contradiction.
Collapse
Affiliation(s)
- Dongdong Wang
- Department of Molecular Biology, Institute of Genetics and Animal Breeding of the Polish Academy of SciencesJastrzębiec, Poland
- Department of Pharmacognosy, West China College of Pharmacy, Sichuan UniversityChengdu, China
- Department of Pharmacognosy, Faculty of Life Sciences, University of ViennaVienna, Austria
| | - Xiong Chen
- Department of Pharmacognosy, West China College of Pharmacy, Sichuan UniversityChengdu, China
- The Public Health Clinical Center of ChengduChengdu, China
| | - Atanas G. Atanasov
- Department of Molecular Biology, Institute of Genetics and Animal Breeding of the Polish Academy of SciencesJastrzębiec, Poland
- Department of Pharmacognosy, Faculty of Life Sciences, University of ViennaVienna, Austria
- Department of Vascular Biology and Thrombosis Research, Center for Physiology and Pharmacology, Medical University of ViennaVienna, Austria
| | - Xiao Yi
- Luzhou Products Quality Supervision & Inspection InstituteLuzhou, China
| | - Shu Wang
- Department of Pharmacognosy, West China College of Pharmacy, Sichuan UniversityChengdu, China
| |
Collapse
|
7
|
Wang D, Jiang Y, Wu K, Wang S, Wang Y. Evaluation of antitumor property of extracts and steroidal alkaloids from the cultivated Bulbus Fritillariae ussuriensis and preliminary investigation of its mechanism of action. Altern Ther Health Med 2015; 15:29. [PMID: 25880867 PMCID: PMC4337094 DOI: 10.1186/s12906-015-0551-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2014] [Accepted: 02/12/2015] [Indexed: 12/29/2022]
Abstract
BACKGROUND Cancer is well known as a leading cause of death in the world. At present, it is the very active area to search for anticancer drugs from natural products. In this study, we evaluated the antitumor property of chloroform extract (CE), n-hexane extract (HE), water extract (WE) and steroidal alkaloids from the cultivated Bulbus Fritillariae ussuriensis (BFU) and its preliminary mechanism for its action was investigated. METHODS Firstly, cytotoxicity of the different extracts from BFU against Lewis lung carcinoma cell line (LLC), Human ovarian cancer cell line (A2780), human hepatocellular carcinoma cell line (HepG2), human lung carcinoma cell line (A549) was measured by MTT assay. Then, we identified the compounds from the active extract of BFU by bioassay guided isolation, determined their antitumor activity in vitro, and detected cell cycle distribution using flow cytometry. Moreover, the extract of BFU which showed remarked anti-proliferative activity in vitro was further evaluated using S180 and LLC tumor models. Additionally, a preliminary investigation of the mechanism of the action was carried out by using histological and immunohistochemical staining technique. RESULTS The results showed that CE and the purified total alkaloids of BFU (TAFU) exhibited stronger cytotoxic activity than the others (WE and HE). We further isolated the four main steroidal alkaloids from TAFU, and found all alkaloids showed significant cytotoxicity, and peimisine induced G0/G1 phase arrest and increased apoptosis. The results showed that TAFU had significant antitumor activity and low toxicity in vivo. Additionally, the immunohistochemical examinations signified that TAFU remarkably increased caspase-3 expression and reduced microvessel density (MVD) in tumor tissues of transplantable S180 and LLC tumor models. CONCLUSIONS These results achieved suggested that the steroidal alkaloids could hold a good potential for use as an antitumor drug. Notably, our finding is the first report on the antitumor activity of extracts and steroidal alkaloids from the cultivated BFU in vitro and in vivo and its mechanisms.
Collapse
|