1
|
Zaman U, Khan SU, Alem SFM, Rehman KU, Almehizia AA, Naglah AM, Al-Wasidi AS, Refat MS, Saeed S, Zaki MEA. Purification and thermodynamic characterization of acid protease with novel properties from Melilotus indicus leaves. Int J Biol Macromol 2023; 230:123217. [PMID: 36634806 DOI: 10.1016/j.ijbiomac.2023.123217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 01/04/2023] [Accepted: 01/07/2023] [Indexed: 01/11/2023]
Abstract
A thermostable acid protease from M. indicus leaves was purified 10-fold using a 4-step protocol. We were able to isolate a purified protease fraction with a molecular weight of 50 kDa and exhibited maximal protease activity at pH 4.0 and 40 °C. Structural analysis revealed that the protease is monomeric and non-glycosylated. The addition of epoxy monocarboxylic acid, iodoacetic acid, and dimethyl sulfoxide significantly reduced protease activity while dramatically increasing the inhibition of Mn2+, Fe2+, and Cu2+. The activation energy of the hydrolysis reaction (33.33 kJ mol-1) and activation energy (Ed = 105 kJ mol-1), the standard enthalpy variation of reversible protease unfolding (2.58 kJ/mol) were calculated after activity measurements at various temperatures. Thermal inactivation of the pure enzyme followed first-order kinetics. The half-life (t1/2) of the pure enzyme at 50 °C, 60 °C, and 70 °C was 385, 231, and 154 min, respectively. Thermodynamic parameters (entropy and enthalpy) suggested that the protease was highly thermostable. This is the first report on the thermodynamic parameters of proteases produced by M. indicus. The novel protease appears to be particularly thermostable and may be important for industrial applications based on these thermodynamic properties.
Collapse
Affiliation(s)
- Umber Zaman
- Institute of Chemical Sciences, Gomal University, Dera Ismail Khan 29050, Pakistan
| | - Shahid Ullah Khan
- Department of Biochemistry, Women Medical and Dental College, Khyber Medical University KPK, Pakistan; National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, PR China
| | | | - Khalil Ur Rehman
- Institute of Chemical Sciences, Gomal University, Dera Ismail Khan 29050, Pakistan.
| | - Abdulrahman A Almehizia
- Drug Exploration and Development Chair (DEDC), Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ahmed M Naglah
- Drug Exploration and Development Chair (DEDC), Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Asma S Al-Wasidi
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| | - Moamen S Refat
- Department of Chemistry, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Sumbul Saeed
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Magdi E A Zaki
- Department of Chemistry, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia
| |
Collapse
|
2
|
Homaei A, Izadpanah F. Purification and characterization of a robust thermostable protease isolated from
Bacillus subtilis
strain
HR02
as an extremozyme. J Appl Microbiol 2022; 133:2779-2789. [DOI: 10.1111/jam.15725] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 07/18/2022] [Indexed: 11/29/2022]
Affiliation(s)
- Ahmad Homaei
- Department of Marine Biology, Faculty of Marine Science and Technology University of Hormozgan Bandar Abbas Iran
| | - Fatemeh Izadpanah
- Department of Marine Biology, Faculty of Marine Science and Technology University of Hormozgan Bandar Abbas Iran
| |
Collapse
|
3
|
Mahmood MS, Asghar H, Riaz S, Shaukat I, Zeeshan N, Gul R, Ashraf NM, Saleem M. Expression and immobilization of trypsin‐like domain of serine protease from
Pseudomonas aeruginosa
for improved stability and catalytic activity. Proteins 2022; 90:1425-1433. [DOI: 10.1002/prot.26323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 02/05/2022] [Accepted: 02/11/2022] [Indexed: 11/07/2022]
Affiliation(s)
| | - Hunza Asghar
- School of Biochemistry and Biotechnology University of the Punjab Lahore Pakistan
| | - Sheeba Riaz
- School of Biochemistry and Biotechnology University of the Punjab Lahore Pakistan
| | - Iqra Shaukat
- School of Biochemistry and Biotechnology University of the Punjab Lahore Pakistan
| | - Nadia Zeeshan
- Department of Biochemistry and Biotechnology University of Gujrat Gujrat Punjab Pakistan
| | - Roquyya Gul
- Faculty of Life Sciences Gulab Devi Educational Complex Lahore Pakistan
| | - Naeem Mahmood Ashraf
- Department of Biochemistry and Biotechnology University of Gujrat Gujrat Punjab Pakistan
| | - Mahjabeen Saleem
- School of Biochemistry and Biotechnology University of the Punjab Lahore Pakistan
| |
Collapse
|
4
|
Alves AN, Nascimento PA, Fontan RDCI, Sousa Júnior EC, Bonomo P, Veloso CM, Bonomo RCF. Extraction of protease from ora‐pro‐nobis (
Pereskia aculeata
Miller) and partial purification in polyethylene glycol + sodium phosphate aqueous two‐phase system. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Annie Nolasco Alves
- Process Engineering Laboratory State University of Southwest Bahia Itapetinga Brazil
| | | | | | | | - Paulo Bonomo
- Process Engineering Laboratory State University of Southwest Bahia Itapetinga Brazil
| | | | | |
Collapse
|
5
|
Sharma S, Kumar S, Kaur R, Kaur R. Multipotential Alkaline Protease From a Novel Pyxidicoccus sp. 252: Ecofriendly Replacement to Various Chemical Processes. Front Microbiol 2021; 12:722719. [PMID: 34707581 PMCID: PMC8542989 DOI: 10.3389/fmicb.2021.722719] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 08/26/2021] [Indexed: 11/27/2022] Open
Abstract
A newly isolated alkaline protease-producing myxobacterium was isolated from soil. The strain was identified as Pyxidicoccus sp. S252 on the basis of 16S rRNA sequence analysis. The extracellular alkaline proteases produced by isolate S252 (PyCP) was optimally active in the pH range of 11.0–12.0 and temperature range of 40–50°C The zymogram of PyCP showed six caseinolytic protease bands. The proteases were stable in the pH range of 8.0–10.0 and temperature range of 40–50°C. The activity of PyCP was enhanced in the presence of Na+, Mg2+, Cu2+, Tween-20, and hydrogen peroxide (H2O2) (hydrogen peroxide), whereas in Triton X-100, glycerol, ethylenediaminetetraacetic acid (EDTA), and Co2+, it was stable. PyCP showed a potential in various applications. The addition of PyCP in the commercial detergent enhanced the wash performance of the detergent by efficiently removing the stains of tomato ketchup and coffee. PyCP efficiently hydrolyzed the gelatin layer on X-ray film to release the embedded silver. PyCP also showed potent dehairing of goat skin and also efficiently deproteinized sea shell waste indicating its application in chitin extraction. Thus, the results of the present study indicate that Pyxidicoccus sp. S252 proteases have the potential to be used as an ecofriendly replacement of chemicals in several industrial processes.
Collapse
Affiliation(s)
- Sonia Sharma
- Department of Biotechnology, Guru Nanak Dev University, Amritsar, India
| | - Shiv Kumar
- Department of Biotechnology, Guru Nanak Dev University, Amritsar, India
| | - Rajinder Kaur
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, India
| | - Ramandeep Kaur
- Department Cum National Centre for Human Genome Studies and Research, Panjab University, Chandigarh, India
| |
Collapse
|
6
|
Tarrahimofrad H, Meimandipour A, Arjmand S, Beigi Nassiri M, Jahangirian E, Tavana H, Zamani J, Rahimnahal S, Aminzadeh S. Structural and biochemical characterization of a novel thermophilic Coh01147 protease. PLoS One 2020; 15:e0234958. [PMID: 32574185 PMCID: PMC7310833 DOI: 10.1371/journal.pone.0234958] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Accepted: 06/03/2020] [Indexed: 01/28/2023] Open
Abstract
Proteases play an essential role in living organisms and represent one of the largest groups of industrial enzymes. The aim of this work was recombinant production and characterization of a newly identified thermostable protease 1147 from thermophilum indigenous Cohnella sp. A01. Phylogenetic tree analysis showed that protease 1147 is closely related to the cysteine proteases from DJ-1/ThiJ/PfpI superfamily, with the conserved catalytic tetrad. Structural prediction using MODELLER 9v7 indicated that protease 1147 has an overall α/β sandwich tertiary structure. The gene of protease 1147 was cloned and expressed in Escherichia coli (E. coli) BL21. The recombinant protease 1147 appeared as a homogenous band of 18 kDa in SDS-PAGE, which was verified by western blot and zymography. The recombinant protein was purified with a yield of approximately 88% in a single step using Ni-NTA affinity chromatography. Furthermore, a rapid one-step thermal shock procedure was successfully implemented to purify the protein with a yield of 73%. Using casein as the substrate, Km, and kcat, kcat/Km values of 13.72 mM, 3.143 × 10−3 (s-1), and 0.381 (M-1 S-1) were obtained, respectively. The maximum protease activity was detected at pH = 7 and 60°C with the inactivation rate constant (kin) of 2.10 × 10–3 (m-1), and half-life (t1/2) of 330.07 min. Protease 1147 exhibited excellent stability to organic solvent, metal ions, and 1% SDS. The protease activity was significantly enhanced by Tween 20 and Tween 80 and suppressed by cysteine protease specific inhibitors. Docking results and molecular dynamics (MD) simulation revealed that Tween 20 interacted with protease 1147 via hydrogen bonds and made the structure more stable. CD and fluorescence spectra indicated structural changes taking place at 100°C, very basic and acidic pH, and in the presence of Tween 20. These properties make this newly characterized protease a potential candidate for various biotechnological applications.
Collapse
Affiliation(s)
- Hossein Tarrahimofrad
- Bioprocess Engineering Group, Institute of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
- Department of Animal Science and Food Technology, Agriculture Science and Natural Resources University Khouzestan, Ahwaz, Iran
| | - Amir Meimandipour
- Bioprocess Engineering Group, Institute of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Sareh Arjmand
- Protein Research Center, Shahid Beheshti University, G. C., Tehran, Iran
| | - Mohammadtaghi Beigi Nassiri
- Department of Animal Science and Food Technology, Agriculture Science and Natural Resources University Khouzestan, Ahwaz, Iran
| | - Ehsan Jahangirian
- Bioprocess Engineering Group, Institute of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Hossein Tavana
- Department of Biomedical Engineering, The University of Akron, Akron, OH, United States of America
| | - Javad Zamani
- Bioprocess Engineering Group, Institute of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Somayyeh Rahimnahal
- Bioprocess Engineering Group, Institute of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
- Department of Animal Science and Food Technology, Agriculture Science and Natural Resources University Khouzestan, Ahwaz, Iran
| | - Saeed Aminzadeh
- Bioprocess Engineering Group, Institute of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
- * E-mail:
| |
Collapse
|
7
|
Ahmad MN, Hilmi NHN, Normaya E, Yarmo MA, Bulat KHK. Optimization of a protease extraction using a statistical approach for the production of an alternative meat tenderizer from Manihot esculenta roots. Journal of Food Science and Technology 2020; 57:2852-2862. [PMID: 32612298 DOI: 10.1007/s13197-020-04317-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 12/13/2019] [Accepted: 02/25/2020] [Indexed: 12/11/2022]
Abstract
Abstract Meat tenderness is the most important criterion in food quality because it strongly influences the consumer's satisfaction. Tenderness generally depends on connective tissue and sarcomere length of muscle. One of the effective methods for meat tenderizing is protease treatment. In this study, Manihot esculenta root was chosen as a protease source due to its skin blistering effect, suggesting the presence of strong proteolytic activity. The extraction of the crude protease was optimized by using response surface methodology (RSM) with four independent variables, which were pH (X1), CaCl2 (X2), Triton X-100 (X3) and 2-mercaptoethanol (X4). Based on the RSM model, all the independent variables were significant and the optimum extraction conditions were pH 9, 3.24 mM CaCl2, 4.12% Triton X-100 and 6.32 mM 2-mercaptoethanol. Tukey's test results showed that the difference between the expected and experimental protease activity value was 0.05%. A reduction of meat firmness was observed when samples treated with enzyme were compared with a control by using a texture analyser. Electrophoretic patterns also showed extensive proteolysis and a reduction of intensity and number of the protein bands in the treated sample. SEM clearly revealed the degradation of muscle fibres and connective tissue of meat treated with crude protease. Graphic abstract
Collapse
Affiliation(s)
- Mohammad Norazmi Ahmad
- Experimental and Theoretical Research Lab, Department of Chemistry, Kulliyah of Science, International Islamic University Malaysia, Jalan Sultan Ahmad Shah, Bandar Indera Mahkota, 25200 Kuantan, Pahang Malaysia
| | - Nik Husna Nik Hilmi
- Experimental and Theoretical Research Lab, Department of Chemistry, Kulliyah of Science, International Islamic University Malaysia, Jalan Sultan Ahmad Shah, Bandar Indera Mahkota, 25200 Kuantan, Pahang Malaysia
| | - Erna Normaya
- Experimental and Theoretical Research Lab, Department of Chemistry, Kulliyah of Science, International Islamic University Malaysia, Jalan Sultan Ahmad Shah, Bandar Indera Mahkota, 25200 Kuantan, Pahang Malaysia
| | - Mohd Ambar Yarmo
- School of Chemical Sciences and Food Technology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor Malaysia
| | - Ku Halim Ku Bulat
- Department of Chemistry, Faculty of Science, University Malaysia Terengganu, Mengabang Telipot, 21030 Kuala Terengganu, Terengganu Darul Iman Malaysia
| |
Collapse
|
8
|
Mechri S, Bouacem K, Amziane M, Dab A, Nateche F, Jaouadi B. Identification of a New Serine Alkaline Peptidase from the Moderately Halophilic Virgibacillus natechei sp. nov., Strain FarD T and its Application as Bioadditive for Peptide Synthesis and Laundry Detergent Formulations. BIOMED RESEARCH INTERNATIONAL 2019; 2019:6470897. [PMID: 31886235 PMCID: PMC6914889 DOI: 10.1155/2019/6470897] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 09/18/2019] [Accepted: 10/31/2019] [Indexed: 12/18/2022]
Abstract
A new peptidase designated as SAPV produced from a moderately halophilic Virgibacillus natechei sp. nov., strain FarDT was investigated by purification to homogeneity followed by biochemical and molecular characterization purposes. Through optimization, it was determined that the optimum peptidase activity was 16,000 U/mL. It was achieved after 36 h incubation at 35°C in the optimized enzyme liquid medium (ELM) at pH 7.4 that contains only white shrimp shell by-product (60 g/L) as sole energy and carbon sources. The SAPV enzyme is a monomer protein with a molecular mass of 31 kDa as estimated by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and high-performance liquid chromatography (HPLC) gel filtration chromatography. The sequence of its NH2-terminal amino-acid residues showed homology with those of Bacillus peptidases S8/S53 superfamily. The SAPV showed optimal activity at pH 9 and 60°C. Irreversible inhibition of enzyme activity by diiodopropyl fluorophosphates (DFP) and phenylmethanesulfonyl fluoride (PMSF) confirmed its belonging to the serine peptidases. Considering its interesting biochemical characterization, the sapV gene was cloned, sequenced, and heterologously overexpressed in the extracellular fraction of E. coli BL21(DE3)pLysS. The biochemical properties of the recombinant peptidase (rSAPV) were similar to those of the native one. The highest sequence identity value (97.66%) of SAPV was obtained with peptidase S8 from Virgibacillus massiliensis DSM 28587, with 9 amino-acid residues of difference. Interestingly, rSAPV showed an outstanding and high resistance to several organic solvents than SPVP from Aeribacillus pallidus VP3 and Thermolysin type X. Furthermore, rSAPV exhibited an excellent detergent stability and compatibility than Alcalase 2.4 L FG and Bioprotease N100L. Considering all these remarkable properties, rSAPV has attracted the interest of industrialists.
Collapse
Affiliation(s)
- Sondes Mechri
- Laboratory of Microbial Biotechnology and Engineering Enzymes (LMBEE), Centre of Biotechnology of Sfax (CBS), University of Sfax, Road of Sidi Mansour Km 6, P.O. Box 1177, Sfax 3018, Tunisia
| | - Khelifa Bouacem
- Laboratory of Microbial Biotechnology and Engineering Enzymes (LMBEE), Centre of Biotechnology of Sfax (CBS), University of Sfax, Road of Sidi Mansour Km 6, P.O. Box 1177, Sfax 3018, Tunisia
- Laboratory of Cellular and Molecular Biology (LCMB), Microbiology Team, Faculty of Biological Sciences, University of Sciences and Technology of Houari Boumediene (USTHB), P.O. Box 32, El Alia, Bab Ezzouar, 16111 Algiers, Algeria
| | - Meriam Amziane
- Laboratory of Cellular and Molecular Biology (LCMB), Microbiology Team, Faculty of Biological Sciences, University of Sciences and Technology of Houari Boumediene (USTHB), P.O. Box 32, El Alia, Bab Ezzouar, 16111 Algiers, Algeria
| | - Ahlem Dab
- Laboratory of Microbial Biotechnology and Engineering Enzymes (LMBEE), Centre of Biotechnology of Sfax (CBS), University of Sfax, Road of Sidi Mansour Km 6, P.O. Box 1177, Sfax 3018, Tunisia
| | - Farida Nateche
- Laboratory of Cellular and Molecular Biology (LCMB), Microbiology Team, Faculty of Biological Sciences, University of Sciences and Technology of Houari Boumediene (USTHB), P.O. Box 32, El Alia, Bab Ezzouar, 16111 Algiers, Algeria
| | - Bassem Jaouadi
- Laboratory of Microbial Biotechnology and Engineering Enzymes (LMBEE), Centre of Biotechnology of Sfax (CBS), University of Sfax, Road of Sidi Mansour Km 6, P.O. Box 1177, Sfax 3018, Tunisia
- Biotech ECOZYM Start-up, Business Incubator, Centre of Biotechnology of Sfax (CBS), University of Sfax, Road of Sidi Mansour Km 6, P.O. Box 1177, Sfax 3018, Tunisia
| |
Collapse
|
9
|
Thermodynamics of a Ca2+ dependent, highly thermostable and detergent compatible purified alkaline serine protease from Nocardiopsis xinjiangensis strain OM-6. Int J Biol Macromol 2018; 113:565-574. [DOI: 10.1016/j.ijbiomac.2018.02.157] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 02/24/2018] [Accepted: 02/27/2018] [Indexed: 11/18/2022]
|
10
|
Muthu S, Gopal VB, Karthik S. N, Sivaji P, Malairaj S, Lakshmikanthan M, Subramani N, Perumal P. Antibacterial cysteine protease from Cissus quadrangularis L. Int J Biol Macromol 2017; 103:878-888. [DOI: 10.1016/j.ijbiomac.2017.05.107] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 05/15/2017] [Accepted: 05/17/2017] [Indexed: 10/19/2022]
|
11
|
A Rapid and Reliable Method for Total Protein Extraction from Succulent Plants for Proteomic Analysis. Protein J 2017; 36:308-321. [PMID: 28497409 DOI: 10.1007/s10930-017-9720-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Crassulacean acid metabolism plants have some morphological features, such as succulent and reduced leaves, thick cuticles, and sunken stomata that help them prevent excessive water loss and irradiation. As molecular constituents of these morphological adaptations to xeric environments, succulent plants produce a set of specific compounds such as complex polysaccharides, pigments, waxes, and terpenoids, to name a few, in addition to uncharacterized proteases. Since all these compounds interfere with the analysis of proteins by electrophoretic techniques, preparation of high quality samples from these sources represents a real challenge. The absence of adequate protocols for protein extraction has restrained the study of this class of plants at the molecular level. Here, we present a rapid and reliable protocol that could be accomplished in 1 h and applied to a broad range of plants with reproducible results. We were able to obtain well-resolved SDS/PAGE protein patterns in extracts from different members of the subfamilies Agavoideae (Agave, Yucca, Manfreda, and Furcraea), Nolinoideae (Dasylirion and Beucarnea), and the Cactaceae family. This method is based on the differential solubility of contaminants and proteins in the presence of acetone and pH-altered solutions. We speculate about the role of saponins and high molecular weight carbohydrates to produce electrophoretic-compatible samples. A modification of the basic protocol allowed the analysis of samples by bidimensional electrophoresis (2DE) for proteomic analysis. Furostanol glycoside 26-O-β-glucosidase (an enzyme involved in steroid saponin synthesis) was successfully identified by mass spectrometry analysis and de novo sequencing of a 2DE spot from an Agave attenuata sample.
Collapse
|
12
|
Arun C, Sivashanmugam P. Study on optimization of process parameters for enhancing the multi-hydrolytic enzyme activity in garbage enzyme produced from preconsumer organic waste. BIORESOURCE TECHNOLOGY 2017; 226:200-210. [PMID: 28002780 DOI: 10.1016/j.biortech.2016.12.029] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2016] [Revised: 12/05/2016] [Accepted: 12/07/2016] [Indexed: 06/06/2023]
Abstract
The garbage enzymes produced from preconsumer organic waste containing multi hydrolytic enzyme activity which helps to solubilize the waste activated sludge. The continuous production of garbage enzyme and its scaling up process need a globe optimized condition. In present study the effect of fruit peel composition and sonication time on enzyme activity were investigated. Garbage enzyme produced from 6g pineapple peels: 4g citrus peels pre-treated with ultrasound for 20min shows higher hydrolytic enzymes activity. Simultaneously statistical optimization tools were used to model garbage enzyme production with higher activity of amylase, lipase and protease. The maximum activity of amylase, lipase and protease were predicted to be 56.409, 44.039, 74.990U/ml respectively at optimal conditions (pH (6), temperature (37°C), agitation (218 RPM) and fermentation duration (3days)). These optimized conditions can be successfully used for large scale production of garbage enzyme with higher hydrolytic enzyme activity.
Collapse
Affiliation(s)
- C Arun
- Department of Chemical Engineering, National Institute of Technology, Tiruchirappalli, Tamil Nadu 620015, India.
| | - P Sivashanmugam
- Department of Chemical Engineering, National Institute of Technology, Tiruchirappalli, Tamil Nadu 620015, India.
| |
Collapse
|
13
|
Extraction and purification of a highly thermostable alkaline caseinolytic protease from wastes Penaeus vannamei suitable for food and detergent industries. Food Chem 2016; 202:110-5. [DOI: 10.1016/j.foodchem.2016.01.104] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Revised: 01/14/2016] [Accepted: 01/25/2016] [Indexed: 11/21/2022]
|
14
|
Kotlar C, Ponce A, Roura S. Characterization of a novel protease fromBacillus cereusand evaluation of an eco-friendly hydrolysis of a brewery byproduct. JOURNAL OF THE INSTITUTE OF BREWING 2015. [DOI: 10.1002/jib.257] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Catalina Kotlar
- Grupo de Investigación en Ingeniería en Alimentos, Departamento de Ingeniería Química y en Alimentos, Facultad de Ingeniería; Universidad Nacional de Mar del Plata; Juan B. Justo 4302 7600 Mar del Plata Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET); Argentina
| | - Alejandra Ponce
- Grupo de Investigación en Ingeniería en Alimentos, Departamento de Ingeniería Química y en Alimentos, Facultad de Ingeniería; Universidad Nacional de Mar del Plata; Juan B. Justo 4302 7600 Mar del Plata Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET); Argentina
| | - Sara Roura
- Grupo de Investigación en Ingeniería en Alimentos, Departamento de Ingeniería Química y en Alimentos, Facultad de Ingeniería; Universidad Nacional de Mar del Plata; Juan B. Justo 4302 7600 Mar del Plata Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET); Argentina
| |
Collapse
|