1
|
Omari EA, Zhang Y, Ahunbay E, Paulson E, Amjad A, Chen X, Liang Y, Li XA. Multi parametric magnetic resonance imaging for radiation treatment planning. Med Phys 2022; 49:2836-2845. [PMID: 35170769 DOI: 10.1002/mp.15534] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 10/05/2021] [Accepted: 01/03/2022] [Indexed: 11/09/2022] Open
Abstract
In recent years, multi-parametric magnetic resonance imaging (MpMRI) has played a major role in radiation therapy treatment planning. The superior soft tissue contrast, functional or physiological imaging capabilities and the flexibility of site-specific image sequence development has placed MpMRI at the forefront. In this article, the present status of MpMRI for external beam radiation therapy planning is reviewed. Common MpMRI sequences, preprocessing and QA strategies are briefly discussed, and various image registration techniques and strategies are addressed. Image segmentation methods including automatic segmentation and deep learning techniques for organs at risk and target delineation are reviewed. Due to the advancement in MRI guided online adaptive radiotherapy, treatment planning considerations addressing MRI only planning are also discussed. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Eenas A Omari
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Ying Zhang
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Ergun Ahunbay
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Eric Paulson
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Asma Amjad
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Xinfeng Chen
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Ying Liang
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - X Allen Li
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| |
Collapse
|
2
|
Daradka MH, Bani Ismail ZA, Irsheid MA. Peripheral nerve regeneration: A comparative study of the effects of autologous bone marrow-derived mesenchymal stem cells, platelet-rich plasma, and lateral saphenous vein graft as a conduit in a dog model. Open Vet J 2021; 11:686-694. [PMID: 35070865 PMCID: PMC8770172 DOI: 10.5455/ovj.2021.v11.i4.20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 11/11/2021] [Indexed: 11/03/2022] Open
Abstract
BACKGROUND The quality of healing of peripheral nerve injuries remains a common challenge causing pain and poor quality of life for millions of people and animals annually. AIMS The objectives of this study were to evaluate the healing quality of facial nerve injury in a dog model following local treatment using an autologous injection of platelet-rich plasma (PRP) or bone marrow-derived mesenchymal stem cells (BM-MSCs) at the injury site in combination with the application of an autologous saphenous vein graft as a conduit. METHODS 20 apparently healthy adult Mongrel dogs were randomly divided into 4 equal groups. Dogs in groups 1, 2, and 3 were subjected to facial nerve neurectomy and saphenous vein conduit graft implantation at the site of facial nerve injury. Dogs in groups 2 and 3 received 1 ml of autologous PRP and BM-MSCs, respectively. Injections were administered directly in the vein conduit immediately after nerve injury. Dogs in group 1 (grafted but not treated; control) received only an autologous vein graft, and those in group 4 (normal control) received no graft and no PRP or BM-MSCs treatment. The dogs were monitored daily for 8 weeks after surgery. Clinical evaluation of the facial nerve, including lower eyelid, ear drooping, upper lip, and tongue functions, was carried out once per week using a numerical scoring system of 0-3. At the end of the study period (week 8), the facial nerve injury site was evaluated grossly for the presence of adhesions using a numerical scoring system of 0-3. The facial nerve injury site was histopathologically assessed for the existence of perivascular mononuclear cell infiltration, fibrous tissue deposition, and axonal injury using H&E-stained tissue sections. RESULTS Clinically, BM-MSCs treated dogs experienced significant (p < 0.05) improvement in the lower eyelid, ear, lip, and tongue functions 4 weeks postoperatively compared to other groups. Grossly, the facial nerve graft site in the BM-MSCs treated group showed significantly (p < 0.05) lesser adhesion scores than the other groups. Histopathologically, there was significantly (p < 0.05) less perivascular mononuclear cell infiltration, less collagen deposition, and more normal axons at the facial nerve injury site in the BM-MSCs treated group compared to the other groups. CONCLUSION This study showed clinically significant enhancement of nerve regeneration by applying autologous BM-MSCs and autologous vein grafting at the site of facial nerve injury. However, further clinical trials are warranted before this application can be recommended to treat traumatic nerve injuries in the field.
Collapse
Affiliation(s)
- Mousa H Daradka
- Department of Veterinary Clinical Sciences, Faculty of Veterinary Medicine, Jordan University of Science and Technology, Irbid, Jordan
| | - Zuhair A Bani Ismail
- Department of Veterinary Clinical Sciences, Faculty of Veterinary Medicine, Jordan University of Science and Technology, Irbid, Jordan
| | - Mohammad A Irsheid
- Department of Veterinary Clinical Sciences, Faculty of Veterinary Medicine, Jordan University of Science and Technology, Irbid, Jordan
| |
Collapse
|
3
|
Choi SJ, Park SY, Shin YH, Heo SH, Kim KH, Lee HI, Kim JK. Mesenchymal Stem Cells Derived from Wharton's Jelly Can Differentiate into Schwann Cell-Like Cells and Promote Peripheral Nerve Regeneration in Acellular Nerve Grafts. Tissue Eng Regen Med 2021; 18:467-478. [PMID: 33515168 DOI: 10.1007/s13770-020-00329-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 12/08/2020] [Accepted: 12/18/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Schwann cells (SCs) secrete neurotrophic factors and provide structural support and guidance during axonal regeneration. However, nearby nerves may be damaged to obtain primary SCs, and there is a lack of nervous tissue donors. We investigated the potential of Wharton's Jelly-derived mesenchymal stem cells (WJ-MSCs) in differentiating into Schwann cell-like cells (WJ-SCLCs) as an alternative to SCs. We also examined whether implantation of WJ-SCLCs-laden acellular nerve grafts (ANGs) are effective in inducing functional recovery and nerve regeneration in an animal model of peripheral nerve injury. METHODS The differentiation of WJ-MSCs into WJ-SCLCs was determined by analyzing SC-specific markers. The secretion of neurotrophic factors was assessed by the Neuro Discovery antibody array. Neurite outgrowth and myelination of axons were found in a co-culture system involving motor neuron cell lines. The effects of ANGs on repairing sciatic nerves were evaluated using video gait angle test, isometric tetanic force analysis, and toluidine blue staining. RESULTS Compared with undifferentiated WJ-MSCs, WJ-SCLCs showed higher expression levels of SC-specific markers such as S100β, GFAP, KROX20, and NGFR. WJ-SCLCs also showed higher secreted amounts of brain-derived neurotrophic factor, glial cell-derived neurotrophic factor, and granulocyte-colony stimulating factor than did WJ-MSCs. WJ-SCLCs effectively promoted the outgrowth and myelination of neurites in motor neuron cells, and WJ-SCLCs laden ANGs significantly facilitated peripheral nerve regeneration in an animal model of sciatic nerve injury. CONCLUSION WJ-MSCs were readily differentiated into WJ-SCLCs, which effectively promoted the regeneration of peripheral nerves. Transplantation of WJ-SCLCs with ANGs might be useful for assisting peripheral nerve regeneration.
Collapse
Affiliation(s)
- Soon Jin Choi
- Asan Peripheral Nerve Regeneration Lab Institute for Life Sciences, Seoul, South Korea
| | - Suk Young Park
- Asan Peripheral Nerve Regeneration Lab Institute for Life Sciences, Seoul, South Korea
| | - Young Ho Shin
- Department of Orthopedic Surgery, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic Road 43-gil, Songpa-gu, Seoul, 05505, South Korea
| | - Seung-Ho Heo
- Convergence Medicine Research Center, Asan Medical Center, Seoul, South Korea
| | - Kang-Hyun Kim
- Convergence Medicine Research Center, Asan Medical Center, Seoul, South Korea
| | - Hyo In Lee
- Convergence Medicine Research Center, Asan Medical Center, Seoul, South Korea
| | - Jae Kwang Kim
- Asan Peripheral Nerve Regeneration Lab Institute for Life Sciences, Seoul, South Korea. .,Department of Orthopedic Surgery, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic Road 43-gil, Songpa-gu, Seoul, 05505, South Korea.
| |
Collapse
|
4
|
Combined Use of Chitosan and Olfactory Mucosa Mesenchymal Stem/Stromal Cells to Promote Peripheral Nerve Regeneration In Vivo. Stem Cells Int 2021; 2021:6613029. [PMID: 33488738 PMCID: PMC7801080 DOI: 10.1155/2021/6613029] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 11/27/2020] [Accepted: 12/10/2020] [Indexed: 12/20/2022] Open
Abstract
Peripheral nerve injury remains a clinical challenge with severe physiological and functional consequences. Despite the existence of multiple possible therapeutic approaches, until now, there is no consensus regarding the advantages of each option or the best methodology in promoting nerve regeneration. Regenerative medicine is a promise to overcome this medical limitation, and in this work, chitosan nerve guide conduits and olfactory mucosa mesenchymal stem/stromal cells were applied in different therapeutic combinations to promote regeneration in sciatic nerves after neurotmesis injury. Over 20 weeks, the intervened animals were subjected to a regular functional assessment (determination of motor performance, nociception, and sciatic indexes), and after this period, they were evaluated kinematically and the sciatic nerves and cranial tibial muscles were evaluated stereologically and histomorphometrically, respectively. The results obtained allowed confirming the beneficial effects of using these therapeutic approaches. The use of chitosan NGCs and cells resulted in better motor performance, better sciatic indexes, and lower gait dysfunction after 20 weeks. The use of only NGGs demonstrated better nociceptive recoveries. The stereological evaluation of the sciatic nerve revealed identical values in the different parameters for all therapeutic groups. In the muscle histomorphometric evaluation, the groups treated with NGCs and cells showed results close to those of the group that received traditional sutures, the one with the best final values. The therapeutic combinations studied show promising outcomes and should be the target of new future works to overcome some irregularities found in the results and establish the combination of nerve guidance conduits and olfactory mucosa mesenchymal stem/stromal cells as viable options in the treatment of peripheral nerves after injury.
Collapse
|
5
|
Bojanic C, To K, Zhang B, Mak C, Khan WS. Human umbilical cord derived mesenchymal stem cells in peripheral nerve regeneration. World J Stem Cells 2020; 12:288-302. [PMID: 32399137 PMCID: PMC7202926 DOI: 10.4252/wjsc.v12.i4.288] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 03/15/2020] [Accepted: 03/24/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Peripheral nerve injury can occur as a result of trauma or disease and carries significant morbidity including sensory and motor loss. The body has limited ability for nerve regeneration and functional recovery. Left untreated, nerve lesions can cause lifelong disability. Traditional treatment options such as neurorrhaphy and neurolysis have high failure rates. Surgical reconstruction with autograft carries donor site morbidity and often provide suboptimal results. Mesenchymal stem cells (MSCs) are known to have promising regenerative potential and have gained attention as a treatment option for nerve lesions. It is however, unclear whether it can be effectively used for nerve regeneration.
AIM To evaluate the evidence for the use of human umbilical cord derived MSCs (UCMSCs) in peripheral nerve regeneration.
METHODS We carried out a systematic literature review in accordance with the PRISMA protocol. A literature search was performed from conception to September 2019 using PubMed, EMBASE and Web of Science. The results of eligible studies were appraised. A risk of bias analysis was carried out using Cochrane’s RoB 2.0 tool.
RESULTS Fourteen studies were included in this review. A total of 279 subjects, including both human and animal were treated with UCMSCs. Four studies obtained UCMSCs from a third-party source and the remainder were harvested by the investigators. Out of the 14 studies, thirteen conducted xenogenic transplantation into nerve injury models. All studies reported significant improvement in nerve regeneration in the UCMSC treated groups compared with the various different controls and untreated groups.
CONCLUSION The evidence summarised in this PRISMA systematic review of in vivo studies supports the notion that human UCMSC transplantation is an effective treatment option for peripheral nerve injury.
Collapse
Affiliation(s)
- Christine Bojanic
- Department of Plastic and Reconstructive Surgery, Cambridge University Hospitals NHS Trust, Cambridge CB2 0QQ, United Kingdom
| | - Kendrick To
- Division of Trauma and Orthopaedic Surgery, Addenbrooke's Hospital, University of Cambridge, Cambridge CB2 0QQ, United Kingdom
| | - Bridget Zhang
- School of Clinical Medicine, University of Cambridge, Cambridge CB2 0QQ, United Kingdom
| | - Christopher Mak
- School of Clinical Medicine, University of Cambridge, Cambridge CB2 0QQ, United Kingdom
| | - Wasim S Khan
- Division of Trauma and Orthopaedic Surgery, Addenbrooke's Hospital, University of Cambridge, Cambridge CB2 0QQ, United Kingdom
| |
Collapse
|
6
|
Alvites RD, Branquinho MV, Caseiro AR, Amorim I, Santos Pedrosa S, Rêma A, Faria F, Porto B, Oliveira C, Teixeira P, Magalhães R, Geuna S, Varejão ASP, Maurício AC. Rat Olfactory Mucosa Mesenchymal Stem/Stromal Cells (OM-MSCs): A Characterization Study. Int J Cell Biol 2020; 2020:2938258. [PMID: 32411249 PMCID: PMC7212324 DOI: 10.1155/2020/2938258] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 09/28/2019] [Indexed: 02/07/2023] Open
Abstract
Stem/stromal cell-based therapies are a branch of regenerative medicine and stand as an attractive option to promote the repair of damaged or dysfunctional tissues and organs. Olfactory mucosa mesenchymal stem/stromal cells have been regarded as a promising tool in regenerative therapies because of their several favorable properties such as multipotency, high proliferation rate, helpful location, and few associated ethical issues. These cells are easily accessible in the nasal cavity of most mammals, including the rat, can be easily applied in autologous treatments, and do not cope with most of the obstacles associated with the use of other stem cells. Despite this, its application in preclinical trials and in both human and animal patients is still limited because of the small number of studies performed so far and to the nonexistence of a standard and unambiguous protocol for collection, isolation, and therapeutic application. In the present work a validation of a protocol for isolation, culture, expansion, freezing, and thawing of olfactory mucosa mesenchymal stem/stromal cells was performed, applied to the rat model, as well as a biological characterization of these cells. To investigate the therapeutic potential of OM-MSCs and their eventual safe application in preclinical trials, the main characteristics of OMSC stemness were addressed.
Collapse
Affiliation(s)
- Rui D. Alvites
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, nº 228, 4050-313 Porto, Portugal
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
| | - Mariana V. Branquinho
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, nº 228, 4050-313 Porto, Portugal
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
| | - Ana R. Caseiro
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, nº 228, 4050-313 Porto, Portugal
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
- REQUIMTE/LAQV – U. Porto – Porto/Portugal, Departamento de Engenharia Metalúrgica e Materiais, Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal
- Escola Universitária Vasco da Gama (EUVG), Avenida José R. Sousa Fernandes, nº 197 Lordemão, 3020-210 Coimbra, Portugal
| | - Irina Amorim
- Departamento de Patologia e Imunologia Molecular, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, nº 228, 4050-313 Porto, Portugal
- i3S – Instituto de Investigação e Inovação em Saúde, Universidade do Porto, R. Alfredo Allen, 4200-135 Porto, Portugal
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), 4200-465 Porto, Portugal
| | - Sílvia Santos Pedrosa
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, nº 228, 4050-313 Porto, Portugal
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
| | - Alexandra Rêma
- Departamento de Patologia e Imunologia Molecular, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, nº 228, 4050-313 Porto, Portugal
| | - Fátima Faria
- Departamento de Patologia e Imunologia Molecular, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, nº 228, 4050-313 Porto, Portugal
| | - Beatriz Porto
- Laboratório de Citogenética, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, nº 228, 4050-313 Porto, Portugal
| | - Cláudia Oliveira
- Laboratório de Citogenética, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, nº 228, 4050-313 Porto, Portugal
| | - Paula Teixeira
- Universidade Católica Portuguesa, CBQF – Centro de Biotecnologia e Química Fina – Laboratório Associado, Escola Superior de Biotecnologia, Rua Arquiteto Lobão Vital 172, 4200-374 Porto, Portugal
| | - Rui Magalhães
- Universidade Católica Portuguesa, CBQF – Centro de Biotecnologia e Química Fina – Laboratório Associado, Escola Superior de Biotecnologia, Rua Arquiteto Lobão Vital 172, 4200-374 Porto, Portugal
| | - Stefano Geuna
- Department of Clinical and Biological Sciences, and Cavalieri Ottolenghi Neuroscience Institute, University of Turin, Ospedale San Luigi, 10043 Orbassano, Turin, Italy
| | - Artur S. P. Varejão
- Departamento de Ciências Veterinárias, Universidade de Trás-os-Montes e Alto Douro (UTAD), Quinta de Prados, 5001-801 Vila Real, Portugal
- CECAV, Centro de Ciência Animal e Veterinária, Universidade de Trás-os-Montes e Alto Douro (UTAD), Quinta de Prados, 5001-801 Vila Real, Portugal
| | - Ana C. Maurício
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, nº 228, 4050-313 Porto, Portugal
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal
| |
Collapse
|
7
|
Yousefi F, Lavi Arab F, Nikkhah K, Amiri H, Mahmoudi M. Novel approaches using mesenchymal stem cells for curing peripheral nerve injuries. Life Sci 2019; 221:99-108. [PMID: 30735735 DOI: 10.1016/j.lfs.2019.01.052] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 01/15/2019] [Accepted: 01/29/2019] [Indexed: 12/23/2022]
Abstract
Peripheral nerve injury (PNI) is a common life-changing disability of peripheral nervous system with significant socioeconomic consequences. Conventional therapeutic approaches for PNI have several drawbacks such as need to autologous nerve scarifying, surplus surgery, and difficult accessibility to donor nerve; therefore, other therapeutic strategies such as mesenchymal stem cells (MSCs) therapy are getting more interesting. MSCs have been proved to be safe and efficient in numerous degenerative diseases of central and peripheral nervous systems. In this paper, we review novel biotechnological advancements in treating PNI using MSCs.
Collapse
Affiliation(s)
- Forouzan Yousefi
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fahimeh Lavi Arab
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Karim Nikkhah
- Department of Neurology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Houshang Amiri
- Neurology Research Center, Kerman University of Medical Sciences, Kerman, Iran; Department of Radiology and Nuclear Medicine, VU University Medical Center, Amsterdam, the Netherlands
| | - Mahmoud Mahmoudi
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Immunology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
8
|
Campos JM, Sousa AC, Caseiro AR, Pedrosa SS, Pinto PO, Branquinho MV, Amorim I, Santos JD, Pereira T, Mendonça CM, Afonso A, Atayde LM, Maurício AC. Dental pulp stem cells and Bonelike ® for bone regeneration in ovine model. Regen Biomater 2018; 6:49-59. [PMID: 30740242 PMCID: PMC6362823 DOI: 10.1093/rb/rby025] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 10/01/2018] [Accepted: 10/23/2018] [Indexed: 12/22/2022] Open
Abstract
Development of synthetic bone substitutes has arisen as a major research interest in the need to find an alternative to autologous bone grafts. Using an ovine model, the present pre-clinical study presents a synthetic bone graft (Bonelike®) in combination with a cellular system as an alternative for the regeneration of non-critical defects. The association of biomaterials and cell-based therapies is a promising strategy for bone tissue engineering. Mesenchymal stem cells (MSCs) from human dental pulp have demonstrated both in vitro and in vivo to interact with diverse biomaterial systems and promote mineral deposition, aiming at the reconstruction of osseous defects. Moreover, these cells can be found and isolated from many species. Non-critical bone defects were treated with Bonelike® with or without MSCs obtained from the human dental pulp. Results showed that Bonelike® and MSCs treated defects showed improved bone regeneration compared with the defects treated with Bonelike® alone. Also, it was observed that the biomaterial matrix was reabsorbed and gradually replaced by new bone during the healing process. We therefore propose this combination as an efficient binomial strategy that promotes bone growth and vascularization in non-critical bone defects.
Collapse
Affiliation(s)
- J M Campos
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, no 228, Porto, Portugal.,Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, Porto, Portugal.,Escola Universitária Vasco da Gama (EUVG), Hospital Veterinário Universitário de Coimbra (HVUC), Campo Universitário - Bloco B, Lordemão, Coimbra, Portugal
| | - A C Sousa
- REQUIMTE/LAQV - U. Porto - Porto/Portugal, Departamento de Engenharia Metalúrgica e Materiais, Faculdade de Engenharia, Universidade do Porto, Rua, Dr. Roberto Frias, s/n, Porto, Portugal.,Faculdade de Engenharia da Universidade do Porto (FEUP), Rua Dr. Roberto Frias, Porto, Portugal
| | - A R Caseiro
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, no 228, Porto, Portugal.,Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, Porto, Portugal.,REQUIMTE/LAQV - U. Porto - Porto/Portugal, Departamento de Engenharia Metalúrgica e Materiais, Faculdade de Engenharia, Universidade do Porto, Rua, Dr. Roberto Frias, s/n, Porto, Portugal
| | - S S Pedrosa
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, no 228, Porto, Portugal.,Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, Porto, Portugal
| | - P O Pinto
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, no 228, Porto, Portugal.,Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, Porto, Portugal.,Escola Universitária Vasco da Gama (EUVG), Hospital Veterinário Universitário de Coimbra (HVUC), Campo Universitário - Bloco B, Lordemão, Coimbra, Portugal
| | - M V Branquinho
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, no 228, Porto, Portugal.,Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, Porto, Portugal
| | - I Amorim
- Department of Pathology and Molecular Immunology of the Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal.,Institute for Research and Innovation in Health, (i3S), University of Porto, Porto, Portugal.,Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal
| | - J D Santos
- REQUIMTE/LAQV - U. Porto - Porto/Portugal, Departamento de Engenharia Metalúrgica e Materiais, Faculdade de Engenharia, Universidade do Porto, Rua, Dr. Roberto Frias, s/n, Porto, Portugal.,Faculdade de Engenharia da Universidade do Porto (FEUP), Rua Dr. Roberto Frias, Porto, Portugal
| | - T Pereira
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, no 228, Porto, Portugal.,Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, Porto, Portugal
| | - C M Mendonça
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, no 228, Porto, Portugal.,Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, Porto, Portugal
| | - A Afonso
- Faculdade de Medicina Dentária da Universidade do Porto (FMDUP), Porto, Portugal
| | - L M Atayde
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, no 228, Porto, Portugal.,Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, Porto, Portugal
| | - A C Maurício
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, no 228, Porto, Portugal.,Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, Porto, Portugal
| |
Collapse
|
9
|
Caseiro AR, Ivanova G, Pedrosa SS, Branquinho MV, Georgieva P, Barbosa PP, Santos JD, Magalhães R, Teixeira P, Pereira T, Maurício AC. Human umbilical cord blood plasma as an alternative to animal sera for mesenchymal stromal cells in vitro expansion - A multicomponent metabolomic analysis. PLoS One 2018; 13:e0203936. [PMID: 30304014 PMCID: PMC6179201 DOI: 10.1371/journal.pone.0203936] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 08/30/2018] [Indexed: 12/26/2022] Open
Abstract
Mesenchymal Stromal cells (MSCs) have a potential role in cell-based therapies. Foetal bovine serum (FBS) is used to supplement the basal cell culture medium but presents several disadvantages and risks. Other alternatives have been studied, including human umbilical cord blood plasma (hUCBP), aiming at the development of xeno-free culturing protocols. A comparative characterization of multicomponent metabolic composition of hUCBP and commercial FBS based on Nuclear Magnetic Resonance (NMR) spectroscopy and multivariate statistical analysis was performed. The analysis of 1H-NMR spectra revealed both similarities and differences between the two proposed supplements. Similar metabolites (amino acids, glucose, lipids and nucleotides) were found in the hUCBP and FBS NMR spectra. The results show that the major difference between the metabolic profiles of the two proposed supplements are due to the significantly higher levels of glucose and lower levels of lactate, glutamate, alanine and branched chain amino acids in hUCBP. Similar or slightly different levels of important proteinogenic amino acids, as well as of nucleotides, lipids were found in the hUCBP and FBS. In order to validate it’s suitability for cell culture, umbilical cord-MSCs (UC-MSCs) and dental pulp stem cells (DPSCs) were expanded using hUCBP. In both hMSCs, in vitro culture with hUCBP supplementation presented similar to improved metabolic performances when compared to FBS. The two cell types tested expressed different optimum hUCBP percentage content. For DPSCs, the optimum hUCBP content was 6% and for UC-MSCs, 4%. Cultured hMSCs displayed no changes in senescence indicators, as well as maintained characteristic surface marker’s expression. FBS substitution was associated with an increase in early apoptosis events, in a dose dependent manner, as well as to slight up- and down-regulation of targeted gene’s expression. Tri-lineage differentiation capacity was also influenced by the substitution of FBS by hUCBP.
Collapse
Affiliation(s)
- A. R. Caseiro
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, n° 228, Porto, Portugal
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, Porto, Portugal
- REQUIMTE/LAQV–U. Porto–Porto/Portugal, Departamento de Engenharia Metalúrgica e Materiais, Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias, s/n, Porto, Portugal
| | - G. Ivanova
- REQUIMTE- LAQV, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, Porto, Portugal
| | - S. S. Pedrosa
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, n° 228, Porto, Portugal
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, Porto, Portugal
| | - M. V. Branquinho
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, n° 228, Porto, Portugal
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, Porto, Portugal
| | - P. Georgieva
- Department of Electronics Telecommunications and Informatics, IEETA, University of Aveiro, Campus Universitário de Santiago, Aveiro, Portugal
| | - P. P. Barbosa
- Biosckin, Molecular and Cell Therapies S.A., Laboratório Criovida, TecMaia, Rua Engenheiro Frederico Ulrich 2650, Moreira da Maia, Portugal
| | - J. D. Santos
- REQUIMTE/LAQV–U. Porto–Porto/Portugal, Departamento de Engenharia Metalúrgica e Materiais, Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias, s/n, Porto, Portugal
| | - R. Magalhães
- Universidade Católica Portuguesa, CBQF—Centro de Biotecnologia e Química Fina–Laboratório Associado, Escola Superior de Biotecnologia, Rua Arquiteto Lobão Vital 172, Porto, Portugal
| | - P. Teixeira
- Universidade Católica Portuguesa, CBQF—Centro de Biotecnologia e Química Fina–Laboratório Associado, Escola Superior de Biotecnologia, Rua Arquiteto Lobão Vital 172, Porto, Portugal
| | - T. Pereira
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, n° 228, Porto, Portugal
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, Porto, Portugal
| | - A. C. Maurício
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, n° 228, Porto, Portugal
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, Porto, Portugal
- * E-mail: ,
| |
Collapse
|
10
|
Feng W, Lu H, Xu Z, Chen L, Yang X, Qi Z. [Effect of cells in the epimysium conduit on the regeneration of peripheral nerve]. ZHONGGUO XIU FU CHONG JIAN WAI KE ZA ZHI = ZHONGGUO XIUFU CHONGJIAN WAIKE ZAZHI = CHINESE JOURNAL OF REPARATIVE AND RECONSTRUCTIVE SURGERY 2018; 32:617-624. [PMID: 29806353 PMCID: PMC8430018 DOI: 10.7507/1002-1892.201712092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 03/22/2018] [Indexed: 11/03/2022]
Abstract
Objective To investigate the effect of cells in the epimysium conduit (EMC) on the regeneration of sciatic nerve of mice. Methods The epimysium of the 8-week-old male C57BL/6J enhanced green fluorescent protein (EGFP) mouse was trimmed to a size of 5 mm×3 mm, and prepared in a tubular shape (ie, EMC). Some epimysia were treated with different irradiation doses (0, 15, 20, 25, 30, 35 Gy) to inhibit cells migration. Then the number of migrating cells were counted, and the epimysia with the least migrating cells were selected to prepare EMC. Some epimysia were subjected to decellularization treatment and prepared EMC. HE and Masson staining were used to identify the decellularization effect. Twenty-four C57BL/6J wild-type mice were used to prepare a 3-mm-long sciatic nerve defect of right hind limb model and randomly divided into 3 groups ( n=8). EMC (group A), EMC after cell migration inhibition treatment (group B), and decellularized EMC (group C) were used to repair defects. At 16 weeks after operation, the midline of the regenerating nerve was taken for gross, toluidine blue staining, immunofluorescence staining, and transmission electron microscopy. Results At 15 days, the number of migrating cells gradually decreased with the increase of irradiation dose. There was no significant difference between 30 Gy group and 35 Gy group ( P>0.05); there were significant differences between the other groups ( P<0.05). The epimysium after treatment with 35 Gy irradiation dose was selected for the in vivo experiment. After the decellularization of the epimysium, no nucleus was found in the epimysium and the epimysium could be sutured to prepare EMC. At 16 weeks after operation, the nerves in all groups were recanalized. The sciatic nerve was the thickest in group A, followed by group B, and the finest in group C. Immunofluorescence staining showed that the EGFP cells in group A were surrounded by regenerated axons. Toluidine blue staining and transmission electron microscopy observation showed that the number of regenerated axons and the thickness of regenerated myelin sheath in group A were significantly better than those in groups B and C ( P<0.05). There was no significant difference between groups B and C ( P>0.05). Conclusion The cellular components of the epimysium participate in and promote the regeneration of the sciatic nerve in mice.
Collapse
Affiliation(s)
- Weifeng Feng
- Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100144, P.R.China
| | - Haibin Lu
- Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100144, P.R.China
| | - Zhuqiu Xu
- Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100144, P.R.China
| | - Lulu Chen
- Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100144, P.R.China
| | - Xiaonan Yang
- Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100144,
| | - Zuoliang Qi
- Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100144,
| |
Collapse
|
11
|
Potential Roles of Dental Pulp Stem Cells in Neural Regeneration and Repair. Stem Cells Int 2018; 2018:1731289. [PMID: 29853908 PMCID: PMC5964589 DOI: 10.1155/2018/1731289] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 03/22/2018] [Indexed: 12/22/2022] Open
Abstract
This review summarizes current advances in dental pulp stem cells (DPSCs) and their potential applications in the nervous diseases. Injured adult mammalian nervous system has a limited regenerative capacity due to an insufficient pool of precursor cells in both central and peripheral nervous systems. Nerve growth is also constrained by inhibitory factors (associated with central myelin) and barrier tissues (glial scarring). Stem cells, possessing the capacity of self-renewal and multicellular differentiation, promise new therapeutic strategies for overcoming these impediments to neural regeneration. Dental pulp stem cells (DPSCs) derive from a cranial neural crest lineage, retain a remarkable potential for neuronal differentiation, and additionally express multiple factors that are suitable for neuronal and axonal regeneration. DPSCs can also express immunomodulatory factors that stimulate formation of blood vessels and enhance regeneration and repair of injured nerve. These unique properties together with their ready accessibility make DPSCs an attractive cell source for tissue engineering in injured and diseased nervous systems. In this review, we interrogate the neuronal differentiation potential as well as the neuroprotective, neurotrophic, angiogenic, and immunomodulatory properties of DPSCs and its application in the injured nervous system. Taken together, DPSCs are an ideal stem cell resource for therapeutic approaches to neural repair and regeneration in nerve diseases.
Collapse
|
12
|
Sayad Fathi S, Zaminy A. Stem cell therapy for nerve injury. World J Stem Cells 2017; 9:144-151. [PMID: 29026460 PMCID: PMC5620423 DOI: 10.4252/wjsc.v9.i9.144] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2017] [Revised: 06/29/2017] [Accepted: 07/14/2017] [Indexed: 02/06/2023] Open
Abstract
Peripheral nerve injury has remained a substantial clinical complication with no satisfactory treatment options. Despite the great development in the field of microsurgery, some severe types of neural injuries cannot be treated without causing tension to the injured nerve. Thus, current studies have focused on the new approaches for the treatment of peripheral nerve injuries. Stem cells with the ability to differentiate into a variety of cell types have brought a new perspective to this matter. In this review, we will discuss the use of three main sources of mesenchymal stem cells in the treatment of peripheral nerve injuries.
Collapse
Affiliation(s)
- Sara Sayad Fathi
- Department of Anatomical Sciences, School of Medicine, Guilan University of Medical Sciences, Rasht 41996-13769, Iran
| | - Arash Zaminy
- Department of Anatomical Sciences, School of Medicine, Guilan University of Medical Sciences, Rasht 41996-13769, Iran
- Neuroscience Research Center, School of Medicine, Guilan University of Medical Sciences, Rasht 41996-13769, Iran.
| |
Collapse
|
13
|
Park S, Choi Y, Kwak G, Hong YB, Jung N, Kim J, Choi BO, Jung SC. Application of differentiated human tonsil-derived stem cells to trembler-J mice. Muscle Nerve 2017; 57:478-486. [PMID: 28796340 DOI: 10.1002/mus.25763] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 08/03/2017] [Accepted: 08/05/2017] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Mesenchymal stem cells (MSCs) can differentiate into various cell types. METHODS In this study we investigated the potential of human tonsil-derived MSCs (T-MSCs) for neuromuscular regeneration in trembler-J (Tr-J) mice, a model for Charcot-Marie-Tooth disease type 1A (CMT1A). RESULTS T-MSCs differentiated toward skeletal myocytes with increased expression of skeletal muscle-related markers (including troponin I type 1, and myogenin), and the formation of myotubes in vitro. In-situ transplantation of T-MSC-derived myocytes (T-MSC myocytes) into the gastrocnemius muscle in Tr-J mice enhanced motor function, with recovery of compound muscle action potential amplitudes. Morphology of the sciatic nerve and skeletal muscle recovered without the formation of teratomas, and the expression levels of nerve growth factor and glial-cell-line-derived neurotrophic factor were increased significantly in T-MSC myocytes compared with T-MSCs in vitro. DISCUSSION Transplantation of T-MSC myocytes could enable neuromuscular regeneration in patients with CMT1A. Muscle Nerve 57: 478-486, 2018.
Collapse
Affiliation(s)
- Saeyoung Park
- Department of Biochemistry, College of Medicine, Ewha Womans University, 1071 Anyangcheon-Ro, Yangcheon-Gu, Seoul, 07985, Republic of Korea
| | - Yoonyoung Choi
- Department of Biochemistry, College of Medicine, Ewha Womans University, 1071 Anyangcheon-Ro, Yangcheon-Gu, Seoul, 07985, Republic of Korea
| | - Geon Kwak
- Department of Health Sciences and Technology, Sungkyunkwan University, Seoul, Republic of Korea
| | - Young Bin Hong
- Stem Cell & Regenerative Medicine Institute, Samsung Medical Center, Seoul, Republic of Korea
| | - Namhee Jung
- Department of Biochemistry, College of Medicine, Ewha Womans University, 1071 Anyangcheon-Ro, Yangcheon-Gu, Seoul, 07985, Republic of Korea
| | - Jieun Kim
- Department of Biochemistry, College of Medicine, Ewha Womans University, 1071 Anyangcheon-Ro, Yangcheon-Gu, Seoul, 07985, Republic of Korea
| | - Byung-Ok Choi
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Sung-Chul Jung
- Department of Biochemistry, College of Medicine, Ewha Womans University, 1071 Anyangcheon-Ro, Yangcheon-Gu, Seoul, 07985, Republic of Korea
| |
Collapse
|
14
|
Combined Wharton’s jelly derived mesenchymal stem cells and nerve guidance conduit: A potential promising therapy for peripheral nerve injuries. Int J Biochem Cell Biol 2017; 86:67-76. [DOI: 10.1016/j.biocel.2017.03.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2016] [Revised: 02/14/2017] [Accepted: 03/02/2017] [Indexed: 12/15/2022]
|
15
|
Ribeiro J, Caseiro AR, Pereira T, Armada-da-Silva PA, Pires I, Prada J, Amorim I, Leal Reis I, Amado S, Santos JD, Bompasso S, Raimondo S, Varejão ASP, Geuna S, Luís AL, Maurício AC. Evaluation of PVA biodegradable electric conductive membranes for nerve regeneration in axonotmesis injuries: the rat sciatic nerve animal model. J Biomed Mater Res A 2017; 105:1267-1280. [PMID: 28078802 DOI: 10.1002/jbm.a.35998] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 07/13/2016] [Accepted: 01/05/2017] [Indexed: 11/06/2022]
Abstract
The therapeutic effect of three polyvinyl alcohol (PVA) membranes loaded with electrically conductive materials - carbon nanotubes (PVA-CNTs) and polypyrrole (PVA-PPy) - were tested in vivo for neuro-muscular regeneration after an axonotmesis injury in the rat sciatic nerve. The membranes electrical conductivity measured was 1.5 ± 0.5 × 10-6 S/m, 579 ± 0.6 × 10-6 S/m, and 1837.5 ± 0.7 × 10-6 S/m, respectively. At week-12, a residual motor and nociceptive deficit were present in all treated groups, but at week-12, a better recovery to normal gait pattern of the PVA-CNTs and PVA-PPy treated groups was observed. Morphometrical analysis demonstrated that PVA-CNTs group presented higher myelin thickness and lower g-ratio. The tibialis anterior muscle, in the PVA-PPy and PVA-CNTs groups showed a 9% and 19% increase of average fiber size area and a 5% and 10% increase of the "minimal Feret's diameter," respectively. No inflammation, degeneration, fibrosis or necrosis were detected in lung, liver, kidneys, spleen, and regional lymph nodes and absence of carbon deposits was confirmed with Von Kossa and Masson-Fontana stains. In conclusion, the membranes of PVA-CNTs and PVA-PPy are biocompatible and have electrical conductivity. The higher electrical conductivity measured in PVA-CNTs membrane might be responsible for the positive results on maturation of myelinated fibers. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 1267-1280, 2017.
Collapse
Affiliation(s)
- Jorge Ribeiro
- Departmento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, nº 228, Porto, 4050-313, Portugal.,Sub-inidade de Cirurgia Experimental e Medicina Regenerativa, Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, Porto, 4051-401, Portugal.,UPVET, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, nº 228, Porto, 4050-313, Portugal
| | - Ana Rita Caseiro
- Departmento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, nº 228, Porto, 4050-313, Portugal.,Sub-inidade de Cirurgia Experimental e Medicina Regenerativa, Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, Porto, 4051-401, Portugal.,CEMUC, Departamento de Engenharia Metalúrgica e Materiais, Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias, Porto, 4200-465, Portugal
| | - Tiago Pereira
- Departmento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, nº 228, Porto, 4050-313, Portugal.,Sub-inidade de Cirurgia Experimental e Medicina Regenerativa, Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, Porto, 4051-401, Portugal
| | - Paulo Alexandre Armada-da-Silva
- Faculdade de Motricidade Humana (FMH), Universidade de Lisboa (ULisboa), Estrada da Costa, 1499-002, Dafundo, Cruz Quebrada, Portugal.,CIPER-FMH: Centro Interdisciplinar de Estudo de Performance Humana, Faculdade de Motricidade Humana (FMH), Universidade de Lisboa (ULisboa), Estrada da Costa, 1499-002, Cruz Quebrada - Dafundo, Portugal
| | - Isabel Pires
- Departamento de Ciências Veterinárias, Universidade de Trás-os-Montes e Alto Douro (UTAD), Quinta de Prados, 5000-801, Vila Real, Portugal.,CECAV, Centro de Ciência Animal e Veterinária, Universidade de Trás-os-Montes e Alto Douro (UTAD), Quinta de Prados, Vila Real, 5000-801, Portugal
| | - Justina Prada
- Departamento de Ciências Veterinárias, Universidade de Trás-os-Montes e Alto Douro (UTAD), Quinta de Prados, 5000-801, Vila Real, Portugal.,CECAV, Centro de Ciência Animal e Veterinária, Universidade de Trás-os-Montes e Alto Douro (UTAD), Quinta de Prados, Vila Real, 5000-801, Portugal
| | - Irina Amorim
- Departmento de Patologia e de Imunologia Molecular, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, nº 228, Porto, 4050-313, Portugal.,Instituto de Patologia e Imunologia Molecular da Universidade do Porto (IPATIMUP), Rua Dr. Roberto Frias s/n, 4200-465, Porto, Portugal.,Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto (UP), Rua Alfredo Allen, Porto, 4200-135, Portugal
| | - Inês Leal Reis
- Departmento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, nº 228, Porto, 4050-313, Portugal.,Sub-inidade de Cirurgia Experimental e Medicina Regenerativa, Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, Porto, 4051-401, Portugal
| | - Sandra Amado
- Instituto Politécnico de Leiria, UIS-IPL: Unidade de Investigação em Saúde da Escola Superior de Saúde de Leiria, Portugal.,CDrsp - Centre for Rapid and Sustainable Product Development, Rua de Portugal 2430-028, Marinha, Grande, Portugal
| | - José Domingos Santos
- CEMUC, Departamento de Engenharia Metalúrgica e Materiais, Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias, Porto, 4200-465, Portugal
| | - Simone Bompasso
- Department of Clinical and Biological Sciences, University of Turin, Turin, 10126, Italy.,Neuroscience Institute of the Cavalieri Ottolenghi Foundation (NICO), Azienda Ospedaliero-Universitaria San Luigi Gonzaga, Regione Gonzole 10, Orbassano, 10043, Turin, Italy
| | - Stefania Raimondo
- Department of Clinical and Biological Sciences, University of Turin, Turin, 10126, Italy.,Neuroscience Institute of the Cavalieri Ottolenghi Foundation (NICO), Azienda Ospedaliero-Universitaria San Luigi Gonzaga, Regione Gonzole 10, Orbassano, 10043, Turin, Italy
| | - Artur Severo Proença Varejão
- Departamento de Ciências Veterinárias, Universidade de Trás-os-Montes e Alto Douro (UTAD), Quinta de Prados, 5000-801, Vila Real, Portugal.,CECAV, Centro de Ciência Animal e Veterinária, Universidade de Trás-os-Montes e Alto Douro (UTAD), Quinta de Prados, Vila Real, 5000-801, Portugal
| | - Stefano Geuna
- Department of Clinical and Biological Sciences, University of Turin, Turin, 10126, Italy.,Neuroscience Institute of the Cavalieri Ottolenghi Foundation (NICO), Azienda Ospedaliero-Universitaria San Luigi Gonzaga, Regione Gonzole 10, Orbassano, 10043, Turin, Italy
| | - Ana Lúcia Luís
- Departmento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, nº 228, Porto, 4050-313, Portugal.,Sub-inidade de Cirurgia Experimental e Medicina Regenerativa, Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, Porto, 4051-401, Portugal.,UPVET, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, nº 228, Porto, 4050-313, Portugal
| | - Ana Colette Maurício
- Departmento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, nº 228, Porto, 4050-313, Portugal.,Sub-inidade de Cirurgia Experimental e Medicina Regenerativa, Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, Porto, 4051-401, Portugal
| |
Collapse
|
16
|
Kano F, Matsubara K, Ueda M, Hibi H, Yamamoto A. Secreted Ectodomain of Sialic Acid-Binding Ig-Like Lectin-9 and Monocyte Chemoattractant Protein-1 Synergistically Regenerate Transected Rat Peripheral Nerves by Altering Macrophage Polarity. Stem Cells 2016; 35:641-653. [PMID: 27862629 DOI: 10.1002/stem.2534] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 09/30/2016] [Accepted: 10/10/2016] [Indexed: 12/24/2022]
Abstract
Peripheral nerves (PNs) exhibit remarkable self-repairing reparative activity after a simple crush or cut injury. However, the neuronal transection involving a nerve gap overwhelms their repairing activity and causes persistent paralysis. Here, we show that an implantation of the serum-free conditioned medium from stem cells from human exfoliated deciduous teeth (SHED-CM) immersed in a collagen sponge into the nerve gap formed by rat facial nerves transection restored the neurological function. In contrast, SHED-CM specifically depleted of a set of anti-inflammatory M2 macrophage inducers, monocyte chemoattractant protein-1 (MCP-1) and the secreted ectodomain of sialic acid-binding Ig-like lectin-9 (sSiglec-9) lost the ability to restore neurological function in this model. Notably, the combination of MCP-1 and sSiglec-9 induced the polarization of M2 macrophages in vitro, resulting in the expression of multiple trophic factors that enhanced proliferation, migration, and differentiation of Schwann cells, blood vessel formation, and nerve fiber extension. Furthermore, the implantation of a collagen graft containing MCP-1/sSiglec-9 into the nerve gap induced anti-inflammatory M2 macrophage polarization, generated a Schwann-cell bridge instead of fibrotic scar, induced axonal regrowth, and restored nerve function. The specific elimination of M2 macrophages by Mannosylated-Clodrosome suppressed the MCP-1/sSiglec-9-mediated neurological recovery. Taken together, our data suggest that MCP-1/sSiglec-9 regenerates PNs by inducing tissue-repairing M2 macrophages and may provide therapeutic benefits for severe peripheral nerve injuries. Stem Cells 2017;35:641-653.
Collapse
Affiliation(s)
- Fumiya Kano
- Department of Oral and Maxillofacial Surgery, Nagoya University Graduate School of Medicine, Showa-ku, Nagoya, Japan
| | - Kohki Matsubara
- Department of Oral and Maxillofacial Surgery, Nagoya University Graduate School of Medicine, Showa-ku, Nagoya, Japan
| | - Minoru Ueda
- Department of Oral and Maxillofacial Surgery, Nagoya University Graduate School of Medicine, Showa-ku, Nagoya, Japan
| | - Hideharu Hibi
- Department of Oral and Maxillofacial Surgery, Nagoya University Graduate School of Medicine, Showa-ku, Nagoya, Japan
| | - Akihito Yamamoto
- Department of Oral and Maxillofacial Surgery, Nagoya University Graduate School of Medicine, Showa-ku, Nagoya, Japan
| |
Collapse
|
17
|
Using Stem Cells to Grow Artificial Tissue for Peripheral Nerve Repair. Stem Cells Int 2016; 2016:7502178. [PMID: 27212954 PMCID: PMC4861803 DOI: 10.1155/2016/7502178] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 02/17/2016] [Accepted: 03/02/2016] [Indexed: 12/17/2022] Open
Abstract
Peripheral nerve injury continues to pose a clinical hurdle despite its frequency and advances in treatment. Unlike the central nervous system, neurons of the peripheral nervous system have a greater ability to regenerate. However, due to a number of confounding factors, this is often both incomplete and inadequate. The lack of supportive Schwann cells or their inability to maintain a regenerative phenotype is a major factor. Advances in nervous system tissue engineering technology have led to efforts to build Schwann cell scaffolds to overcome this and enhance the regenerative capacity of neurons following injury. Stem cells that can differentiate along a neural lineage represent an essential resource and starting material for this process. In this review, we discuss the different stem cell types that are showing promise for nervous system tissue engineering in the context of peripheral nerve injury. We also discuss some of the biological, practical, ethical, and commercial considerations in using these different stem cells for future clinical application.
Collapse
|
18
|
Neuromuscular Regeneration: Perspective on the Application of Mesenchymal Stem Cells and Their Secretion Products. Stem Cells Int 2016; 2016:9756973. [PMID: 26880998 PMCID: PMC4736584 DOI: 10.1155/2016/9756973] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 10/12/2015] [Accepted: 11/16/2015] [Indexed: 02/08/2023] Open
Abstract
Mesenchymal stem cells are posing as a promising character in the most recent therapeutic strategies and, since their discovery, extensive knowledge on their features and functions has been gained. In recent years, innovative sources have been disclosed in alternative to the bone marrow, conveying their associated ethical concerns and ease of harvest, such as the umbilical cord tissue and the dental pulp. These are also amenable of cryopreservation and thawing for desired purposes, in benefit of the donor itself or other patients in pressing need. These sources present promising possibilities in becoming useful cell sources for therapeutic applications in the forthcoming years. Effective and potential applications of these cellular-based strategies for the regeneration of peripheral nerve are overviewed, documenting recent advances and identified issues for this research area in the near future. Finally, besides the differentiation capacities attributed to mesenchymal stem cells, advances in the recognition of their effective mode of action in the regenerative theatre have led to a new area of interest: the mesenchymal stem cells' secretome. The paracrine modulatory pathway appears to be a major mechanism by which these are beneficial to nerve regeneration and comprehension on the specific growth factors, cytokine, and extracellular molecules secretion profiles is therefore of great interest.
Collapse
|
19
|
Ariadna GP, Marc R, Teresa P, Joaquim C. Optimization of Poli(ɛ-caprolactone) Scaffolds Suitable for 3D Cancer Cell Culture. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.procir.2015.07.031] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
20
|
Joerger-Messerli MS, Marx C, Oppliger B, Mueller M, Surbek DV, Schoeberlein A. Mesenchymal Stem Cells from Wharton's Jelly and Amniotic Fluid. Best Pract Res Clin Obstet Gynaecol 2015; 31:30-44. [PMID: 26482184 DOI: 10.1016/j.bpobgyn.2015.07.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 07/20/2015] [Indexed: 12/15/2022]
Abstract
The discovery of mesenchymal stem cells (MSCs) in perinatal sources, such as the amniotic fluid (AF) and the umbilical connective tissue, the so-called Wharton's jelly (WJ), has transformed them into promising stem cell grafts for the application in regenerative medicine. The advantages of AF-MSCs and WJ-MSCs over adult MSCs, such as bone marrow-derived mesenchymal stem cells (BM-MSCs), include their minimally invasive isolation procedure, their more primitive cell character without being tumourigenic, their low immunogenicity and their potential autologous application in congenital disorders and when cryopreserved in adulthood. This chapter gives an overview of the biology of AF-MSCs and WJ-MSCs, and their regenerative potential based on the results of recent preclinical and clinical studies. In the end, open questions concerning the use of WJ-MSCs and AF-MSCs in regenerative medicine will be emphasized.
Collapse
Affiliation(s)
- Marianne S Joerger-Messerli
- Department of Obstetrics and Gynecology, University Hospital Bern, Bern, Switzerland; Department of Clinical Research, University of Bern, Bern, Switzerland.
| | - Caterina Marx
- Department of Obstetrics and Gynecology, University Hospital Bern, Bern, Switzerland; Department of Clinical Research, University of Bern, Bern, Switzerland.
| | - Byron Oppliger
- Department of Obstetrics and Gynecology, University Hospital Bern, Bern, Switzerland; Department of Clinical Research, University of Bern, Bern, Switzerland.
| | - Martin Mueller
- Department of Obstetrics and Gynecology, University Hospital Bern, Bern, Switzerland; Department of Clinical Research, University of Bern, Bern, Switzerland; Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, New Haven, CT, USA.
| | - Daniel V Surbek
- Department of Obstetrics and Gynecology, University Hospital Bern, Bern, Switzerland; Department of Clinical Research, University of Bern, Bern, Switzerland.
| | - Andreina Schoeberlein
- Department of Obstetrics and Gynecology, University Hospital Bern, Bern, Switzerland; Department of Clinical Research, University of Bern, Bern, Switzerland.
| |
Collapse
|