1
|
Flores J, Flank J, Polito S, Dhillon P, Pang I, Ho L, Yee KW. Evaluation of voriconazole therapeutic drug monitoring in malignant hematology patients. J Oncol Pharm Pract 2024:10781552241284528. [PMID: 39295509 DOI: 10.1177/10781552241284528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2024]
Abstract
INTRODUCTION Malignant hematology (MH) patients are susceptible to invasive fungal infections due to prolonged neutropenia and immunosuppressive therapies, which may require voriconazole therapy. Although voriconazole therapeutic drug monitoring (TDM) is common, evidence describing this practice is limited. The primary objective of this study was to describe the current practice of voriconazole TDM in MH patients at the Princess Margaret Cancer Centre (PM). METHODS A retrospective chart review was conducted for MH inpatients initiated on voriconazole at PM between November 1st, 2019 and November 13th, 2020. Data regarding voriconazole doses, levels, dose changes, and adverse effects were collected. The primary endpoint was the proportion of patients with initial voriconazole levels within therapeutic range (1-5 mg/L). RESULTS Fifty-six patients were included in the study. The most common reason for starting voriconazole was possible invasive fungal infection (44 patients, 78.6%). Fifty-one patients (91.1%) received a loading dose of voriconazole, averaging 386.5 ± 78.5 mg. The average maintenance dose was 242.1 ± 45.7 mg. An average of 2.6 ± 2.9 levels were drawn per patient with an average level of 3.2 ± 2.4 mg/L. Forty-one patients (73.2%) had an initial voriconazole level within therapeutic range and 90 out of 145 total levels (62.1%) were within therapeutic range. There were 52 dose modifications made; 31 (60.8%) doses adjusted, 12 (23.5%) doses held, and 9 (17.6%) doses discontinued. For the 31 dose adjustments, 26 (83.9%) had a level redrawn and 17 (65.4%) of those levels were within therapeutic range. Twenty-three (41.1%) patients developed adverse effects, 8 (34.8%) of which were associated with supratherapeutic levels. Of these 23 patients, 19 (33.9%) experienced transaminitis, 3 (5.4%) experienced both transaminitis and neurotoxicity, and 1 (1.8%) experienced photopsia. CONCLUSION Overall, 41 (73.2%) patients achieved an initial voriconazole level within therapeutic range. Of these 41 patients, 30 (73.2%) remained within therapeutic range for the duration of their inpatient voriconazole therapy. These findings suggest that the current practice of voriconazole TDM at our institution is yielding largely positive results, but still has room for improvement.
Collapse
Affiliation(s)
- Jerome Flores
- University Health Network, Toronto, Canada
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Canada
| | | | | | | | - Ian Pang
- University Health Network, Toronto, Canada
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Canada
| | - Lina Ho
- University Health Network, Toronto, Canada
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Canada
| | | |
Collapse
|
2
|
Li X, Hu Q, Xu T. Associated factors with voriconazole plasma concentration: a systematic review and meta-analysis. Front Pharmacol 2024; 15:1368274. [PMID: 39246651 PMCID: PMC11377273 DOI: 10.3389/fphar.2024.1368274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 08/12/2024] [Indexed: 09/10/2024] Open
Abstract
Background: Voriconazole plasma concentration exhibits significant variability and maintaining it within the therapeutic range is the key to enhancing its efficacy. We conducted a systematic review and meta-analysis to estimate the prevalence of patients achieving the therapeutic range of plasma voriconazole concentration and identify associated factors. Methods: Eligible studies were identified through the PubMed, Embase, Cochrane Library, and Web of Science databases from their inception until 18 November 2023. We conducted a meta-analysis using a random-effects model to determine the prevalence of patients who reached the therapeutic plasma voriconazole concentration range. Factors associated with plasma voriconazole concentration were summarized from the included studies. Results: Of the 60 eligible studies, 52 reported the prevalence of patients reaching the therapeutic range, while 20 performed multiple linear regression analyses. The pooled prevalence who achieved the therapeutic range was 56% (95% CI: 50%-63%) in studies without dose adjustment patients. The pooled prevalence of adult patients was 61% (95% CI: 56%-65%), and the pooled prevalence of children patients was 55% (95% CI: 50%-60%) The study identified, in the children population, several factors associated with plasma voriconazole concentration, including age (coefficient 0.08, 95% CI: 0.01 to 0.14), albumin (-0.05 95% CI: -0.09 to -0.01), in the adult population, some factors related to voriconazole plasma concentration, including omeprazole (1.37, 95% CI 0.82 to 1.92), pantoprazole (1.11, 95% CI: 0.17-2.04), methylprednisolone (-1.75, 95% CI: -2.21 to -1.30), and dexamethasone (-1.45, 95% CI: -2.07 to -0.83). Conclusion: The analysis revealed that only approximately half of the patients reached the plasma voriconazole concentration therapeutic range without dose adjustments and the pooled prevalence of adult patients reaching the therapeutic range is higher than that of children. Therapeutic drug monitoring is crucial in the administration of voriconazole, especially in the children population. Particular attention may be paid to age, albumin levels in children, and the use of omeprazole, pantoprazole, dexamethasone and methylprednisolone in adults. Systematic Review Registration: https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42023483728.
Collapse
Affiliation(s)
- Xiaoqi Li
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Qiaozhi Hu
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ting Xu
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
3
|
Barros N, Wheat LJ. Histoplasmosis in Solid Organ Transplantation. J Fungi (Basel) 2024; 10:124. [PMID: 38392796 PMCID: PMC10890191 DOI: 10.3390/jof10020124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/24/2024] [Accepted: 01/26/2024] [Indexed: 02/24/2024] Open
Abstract
Histoplasma capsulatum, the etiological agent for histoplasmosis, is a dimorphic fungus that grows as a mold in the environment and as a yeast in human tissues. It has a broad global distribution with shifting epidemiology during recent decades. While in immunocompetent individuals infection is usually self-resolving, solid organ transplant recipients are at increased risk of symptomatic disease with dissemination to extrapulmonary tissue. Diagnosis of histoplasmosis relies on direct observation of the pathogen (histopathology, cytopathology, and culture) or detection of antigens, antibodies, or nucleic acids. All transplant recipients with histoplasmosis warrant therapy, though the agent of choice and duration of therapy depends on the severity of disease. In the present article, we describe the pathogenesis, epidemiology, clinical manifestations and management of histoplasmosis in solid organ transplant recipients.
Collapse
Affiliation(s)
- Nicolas Barros
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Division of Infectious Diseases, Indiana University Health, Indianapolis, IN 46202, USA
- Miravista Diagnostics, Indianapolis, IN 46241, USA;
| | | |
Collapse
|
4
|
Yu M, Yang J, Xiong L, Zhan S, Cheng L, Chen Y, Liu F. Comparison of ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) and enzyme-multiplied immunoassay technique (EMIT) for quantification of voriconazole plasma concentration from Chinese patients. Heliyon 2023; 9:e22015. [PMID: 38045154 PMCID: PMC10692776 DOI: 10.1016/j.heliyon.2023.e22015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/15/2023] [Accepted: 11/01/2023] [Indexed: 12/05/2023] Open
Abstract
Introduction Voriconazole (VRZ) is the recommended standard treatment for life-threatening invasive aspergillosis. The plasma concentration of VRZ should be determined to optimise treatment results and reduce side effects. This study aimed to compare the correlation and concordance of ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) and enzyme-multiplied immunoassay technique (EMIT) to determine VRZ plasma concentration in clinical practice. Methods An isotopically labelled internal standard UPLC-MS/MS method was established, validated, and subsequently applied to determine VRZ concentration. The UPLC-MS/MS method was also compared with a commercial EMIT method regarding results correlation and concordance. Results The calibration curve of UPLC-MS/MS was linear from 0.1 to 10 mg/L, the inter- and intra-day relative standard deviations (RSDs), and the stability of quality control samples were less than 15 %, satisfying the Bioanalytical Method Validation Guidelines. A total of 122 plasma samples were collected and analyzed using both methods. UPLC-MS/MS and EMIT showed a high correlation (r = 0.9534), and Bland-Altman analysis indicated a mean absolute bias of 1.035 mg/L and an average bias of 27.56 % between UPLC-MS/MS and EMIT. The paired Wilcoxon test and Bland-Altman analysis revealed poor consistency between the two methods. Furthermore, we compared the effects of different methods in clinical applications. Two threshold values for treatment efficacy (1.0 mg/L) and safety (5.5 mg/L) were established, and considerable discordance was observed between the original EMIT and UPLC-MS/MS results at both thresholds (p < 0.05). Nevertheless, the adjusted EMIT results were not inconsistent with the UPLC-MS/MS results regarding the efficacy (p = 0.125) and safety (p = 1.0) thresholds. Conclusions The isotopically labelled internal standard UPLC-MS/MS method is established and well applied in the clinical setting. A strong correlation but discordance was found between UPLC-MS/MS and EMIT, indicating that switching from UPLC-MS/MS to EMIT was unsuitable. However, the adjusted EMIT results may serve as a reliable surrogate when UPLC-MS/MS results cannot be obtained when necessary.
Collapse
Affiliation(s)
| | | | - Lirong Xiong
- Pharmacy Department, Southwest Hospital of Army Medical University, Chongqing, 400038, People's Republic of China
| | - Shipeng Zhan
- Pharmacy Department, Southwest Hospital of Army Medical University, Chongqing, 400038, People's Republic of China
| | - Lin Cheng
- Pharmacy Department, Southwest Hospital of Army Medical University, Chongqing, 400038, People's Republic of China
| | - Yongchuan Chen
- Pharmacy Department, Southwest Hospital of Army Medical University, Chongqing, 400038, People's Republic of China
| | - Fang Liu
- Pharmacy Department, Southwest Hospital of Army Medical University, Chongqing, 400038, People's Republic of China
| |
Collapse
|
5
|
Barros N, Rosenblatt RE, Phipps MM, Fomin V, Mansour MK. Invasive fungal infections in liver diseases. Hepatol Commun 2023; 7:e0216. [PMID: 37639701 PMCID: PMC10462082 DOI: 10.1097/hc9.0000000000000216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 06/07/2023] [Indexed: 08/31/2023] Open
Abstract
Patients with liver diseases, including decompensated cirrhosis, alcohol-associated hepatitis, and liver transplant recipients are at increased risk of acquiring invasive fungal infections (IFIs). These infections carry high morbidity and mortality. Multiple factors, including host immune dysfunction, barrier failures, malnutrition, and microbiome alterations, increase the risk of developing IFI. Candida remains the most common fungal pathogen causing IFI. However, other pathogens, including Aspergillus, Cryptococcus, Pneumocystis, and endemic mycoses, are being increasingly recognized. The diagnosis of IFIs can be ascertained by the direct observation or isolation of the pathogen (culture, histopathology, and cytopathology) or by detecting antigens, antibodies, or nucleic acid. Here, we provide an update on the epidemiology, pathogenesis, diagnosis, and management of IFI in patients with liver disease and liver transplantation.
Collapse
Affiliation(s)
- Nicolas Barros
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Division of Infectious Diseases, Department of Medicine, Indiana University Health, Indianapolis, Indiana, USA
| | - Russell E. Rosenblatt
- Department of Gastroenterology and Hepatology, Weill Cornell Medicine, New York, New York, USA
| | - Meaghan M. Phipps
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, New York, USA
| | - Vladislav Fomin
- Department of Gastroenterology and Hepatology, Weill Cornell Medicine, New York, New York, USA
| | - Michael K. Mansour
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
- Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| |
Collapse
|
6
|
Yi ZM, Li X, Wang Z, Qin J, Jiang D, Tian P, Yang P, Zhao R. Status and Quality of Guidelines for Therapeutic Drug Monitoring Based on AGREE II Instrument. Clin Pharmacokinet 2023; 62:1201-1217. [PMID: 37490190 DOI: 10.1007/s40262-023-01283-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/26/2023] [Indexed: 07/26/2023]
Abstract
BACKGROUND With the progress of therapeutic drug monitoring (TDM) technology and the development of evidence-based medicine, many guidelines were developed and implemented in recent decades. OBJECTIVE The aim was to evaluate the current status of TDM guidelines and provide suggestions for their development and updates based on Appraisal of Guidelines for Research and Evaluation (AGREE) II. METHODS The TDM guidelines were systematically searched for among databases including PubMed, Embase, China National Knowledge Infrastructure, Wanfang Data, and the Chinese biomedical literature service system and the official websites of TDM-related associations. The search period was from inception to 6 April 2023. Four researchers independently screened the literature and extracted data. Any disagreement was discussed and reconciled by another researcher. The quality of guidelines was assessed using the AGREE II instrument. RESULTS A total of 92 guidelines were included, including 57 technical guidelines, three management guidelines, and 32 comprehensive guidelines. The number of TDM guidelines has gradually increased since 1979. The United States published the most guidelines (20 guidelines), followed by China (15 guidelines) and the United Kingdom (ten guidelines), and 23 guidelines were developed by international organizations. Most guidelines are aimed at adult patients only, while 28 guidelines include special populations. With respect to formulation methods, there are 23 evidence-based guidelines. As for quality evaluation results based on AGREE II, comprehensive guidelines scored higher (58.16%) than technical guidelines (51.36%) and administrative guidelines (50.00%). CONCLUSION The number of TDM guidelines, especially technical and comprehensive ones, has significantly increased in recent years. Most guidelines are confronted with the problems of unclear methodology and low quality of evidence according to AGREE II. More evidence-based research on TDM and high-quality guideline development is recommended to promote individualized therapy.
Collapse
Affiliation(s)
- Zhan-Miao Yi
- Department of Pharmacy, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing, 100191, China
- Institute for Drug Evaluation, Peking University Health Science Center, Beijing, China
- Therapeutic Drug Monitoring and Clinical Toxicology Center, Peking University, Beijing, China
| | - Xinya Li
- Department of Pharmacy, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing, 100191, China
- Institute for Drug Evaluation, Peking University Health Science Center, Beijing, China
- Therapeutic Drug Monitoring and Clinical Toxicology Center, Peking University, Beijing, China
- Department of Pharmacy Administration and Clinical Pharmacy, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Zhitong Wang
- Department of Pharmacy, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing, 100191, China
- Institute for Drug Evaluation, Peking University Health Science Center, Beijing, China
- Therapeutic Drug Monitoring and Clinical Toxicology Center, Peking University, Beijing, China
| | - Jiguang Qin
- Department of Pharmacy, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing, 100191, China
- Institute for Drug Evaluation, Peking University Health Science Center, Beijing, China
- Therapeutic Drug Monitoring and Clinical Toxicology Center, Peking University, Beijing, China
- Department of Pharmacy Administration and Clinical Pharmacy, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Dan Jiang
- Department of Pharmacy, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing, 100191, China
- Institute for Drug Evaluation, Peking University Health Science Center, Beijing, China
- Therapeutic Drug Monitoring and Clinical Toxicology Center, Peking University, Beijing, China
- Department of Pharmacy Administration and Clinical Pharmacy, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Panhui Tian
- Department of Pharmacy, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing, 100191, China
- Institute for Drug Evaluation, Peking University Health Science Center, Beijing, China
- Therapeutic Drug Monitoring and Clinical Toxicology Center, Peking University, Beijing, China
- Department of Pharmacy Administration and Clinical Pharmacy, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Ping Yang
- Department of Pharmacy, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing, 100191, China
- Institute for Drug Evaluation, Peking University Health Science Center, Beijing, China
- Therapeutic Drug Monitoring and Clinical Toxicology Center, Peking University, Beijing, China
| | - Rongsheng Zhao
- Department of Pharmacy, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing, 100191, China.
- Institute for Drug Evaluation, Peking University Health Science Center, Beijing, China.
- Therapeutic Drug Monitoring and Clinical Toxicology Center, Peking University, Beijing, China.
| |
Collapse
|
7
|
Yoshii T, Nakano K, Okuda T, Citterio D, Hiruta Y. Evaluation of separation performance for eggshell-based reversed-phase HPLC columns by controlling particle size and application in quantitative therapeutic drug monitoring. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:1790-1796. [PMID: 36938787 DOI: 10.1039/d3ay00219e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Eggshell-based reversed-phase packing materials were applied to an analytical column for high-performance liquid chromatography. Commercially available eggshell powder was classified by a cyclone system to obtain three types of particles with different diameters (arithmetic mean ± standard deviation: 4.3 ± 3.8, 5.6 ± 3.3, and 9.5 ± 5.5 μm). Sedimentation separation removed tiny particles from each sample, resulting in particles with arithmetic means of 6.6 ± 5.5, 7.3 ± 4.5, and 10.2 ± 5.0 μm, respectively. The unclassified particles and three particle types treated with sedimentation separation were subsequently packed into analytical columns (150 mm × 4.6 mm I.D.), and their separation efficiencies were evaluated by comparing their height equivalent to a theoretical plate (HETP). The column without sedimentation separation exhibited the highest HETP, whereas the columns with sedimentation separation showed better separation efficiency and lower back pressure. The column with the best separation efficiency was applied for the separation of 10 alkylbenzenes and 5 steroids, and all peaks were observed with complete separation (peak resolution: RS > 1.5). Finally, the column was used for quantitative analysis of voriconazole, an azole antifungal agent, and imatinib, a first-generation molecularly targeted drug for cancer treatment, in spiked whole blood. Excellent accuracy (99.1-102.8%) and precision (0.6-1.9%) were observed for the spiked drugs and long-term stability (>3000 column volumes of mobile phase flow) indicated good applicability of the developed eggshell-based column as an analytical column for routine analyses of therapeutic drugs in blood.
Collapse
Affiliation(s)
- Tomoka Yoshii
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan.
| | - Kohei Nakano
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan.
| | - Tomoaki Okuda
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan.
| | - Daniel Citterio
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan.
| | - Yuki Hiruta
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan.
| |
Collapse
|
8
|
Telles JP, Morales R, Yamada CH, Marins TA, D'Amaro Juodinis V, Sztajnbok J, Silva M, Bassetti BR, Albiero J, Tuon FF. Optimization of Antimicrobial Stewardship Programs Using Therapeutic Drug Monitoring and Pharmacokinetics-Pharmacodynamics Protocols: A Cost-Benefit Review. Ther Drug Monit 2023; 45:200-208. [PMID: 36622029 DOI: 10.1097/ftd.0000000000001067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 10/08/2022] [Indexed: 01/10/2023]
Abstract
PURPOSE Antimicrobial stewardship programs are important for reducing antimicrobial resistance because they can readjust antibiotic prescriptions to local guidelines, switch intravenous to oral administration, and reduce hospitalization times. Pharmacokinetics-pharmacodynamics (PK-PD) empirically based prescriptions and therapeutic drug monitoring (TDM) programs are essential for antimicrobial stewardship, but there is a need to fit protocols according to cost benefits. The cost benefits can be demonstrated by reducing toxicity and hospital stay, decreasing the amount of drug used per day, and preventing relapses in infection. Our aim was to review the data available on whether PK-PD empirically based prescriptions and TDM could improve the cost benefits of an antimicrobial stewardship program to decrease global hospital expenditures. METHODS A narrative review based on PubMed search with the relevant studies of vancomycin, aminoglycosides, beta-lactams, and voriconazole. RESULTS TDM protocols demonstrated important cost benefit for patients treated with vancomycin, aminoglycosides, and voriconazole mainly due to reduce toxicities and decreasing the hospital length of stay. In addition, PK-PD strategies that used infusion modifications to meropenem, piperacillin-tazobactam, ceftazidime, and cefepime, such as extended or continuous infusion, demonstrated important cost benefits, mainly due to reducing daily drug needs and lengths of hospital stays. CONCLUSIONS TDM protocols and PK-PD empirically based prescriptions improve the cost-benefits and decrease the global hospital expenditures.
Collapse
Affiliation(s)
- João Paulo Telles
- - AC Camargo Cancer Center, Infectious Diseases Department, São Paulo
- - Laboratory of Emerging Infectious Diseases, Pontifical Catholic University of Paraná, Curitiba
| | - Ronaldo Morales
- - Clinical Pharmacokinetics Center, School of Pharmaceutical Sciences, University of São Paulo
- - Pediatric Intensive Care Unit, Department of Pediatrics, Hospital Sírio-Libanês. São Paulo
| | - Carolina Hikari Yamada
- - Laboratory of Emerging Infectious Diseases, Pontifical Catholic University of Paraná, Curitiba
- - Hospital Universitário Evangélico Mackenzie, Department of Infectious Diseases, Curitiba
| | - Tatiana A Marins
- - Hospital Israelita Albert Einstein, Department of Clinical Pharmacy, São Paulo
| | | | - Jaques Sztajnbok
- - Instituto de Infectologia Emílio Ribas, São Paulo
- - Instituto da Criança do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (ICr/HC-FMUSP)
| | - Moacyr Silva
- - Hospital Israelita Albert Einstein, Department of Infection Prevention and Control, São Paulo
| | - Bil Randerson Bassetti
- - Hospital Santa Rita de Cássia, Department of Infectious Disease and Infection Control, Vitória ; and
| | - James Albiero
- - Universidade Estadual de Maringá, Pharmacy Department, Programa de Pós-Graduação em Assistência Farmacêutica, Maringá, Brazil
| | - Felipe Francisco Tuon
- - Laboratory of Emerging Infectious Diseases, Pontifical Catholic University of Paraná, Curitiba
| |
Collapse
|
9
|
Pulmonary Histoplasmosis: A Clinical Update. J Fungi (Basel) 2023; 9:jof9020236. [PMID: 36836350 PMCID: PMC9964986 DOI: 10.3390/jof9020236] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 02/01/2023] [Accepted: 02/06/2023] [Indexed: 02/12/2023] Open
Abstract
Histoplasma capsulatum, the etiological agent for histoplasmosis, is a dimorphic fungus that grows as a mold in the environment and as a yeast in human tissues. The areas of highest endemicity lie within the Mississippi and Ohio River Valleys of North America and parts of Central and South America. The most common clinical presentations include pulmonary histoplasmosis, which can resemble community-acquired pneumonia, tuberculosis, sarcoidosis, or malignancy; however, certain patients can develop mediastinal involvement or progression to disseminated disease. Understanding the epidemiology, pathology, clinical presentation, and diagnostic testing performance is pivotal for a successful diagnosis. While most immunocompetent patients with mild acute or subacute pulmonary histoplasmosis should receive therapy, all immunocompromised patients and those with chronic pulmonary disease or progressive disseminated disease should also receive therapy. Liposomal amphotericin B is the agent of choice for severe or disseminated disease, and itraconazole is recommended in milder cases or as "step-down" therapy after initial improvement with amphotericin B. In this review, we discuss the current epidemiology, pathology, diagnosis, clinical presentations, and management of pulmonary histoplasmosis.
Collapse
|
10
|
Gomha SM, Riyadh SM, Farghaly TA, Haggam RA. Synthetic Utility of Bis-Aminomercapto[1,2,4] Triazoles in the Preparation of Bis- Fused Triazoles and Macrocycles. Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2022.2077773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Sobhi M. Gomha
- Department of Chemistry, Faculty of Science, Cairo University, Giza, Egypt
- Department of Chemistry, Faculty of Science, Islamic University of Madinah, Madinah, Saudi Arabia
| | - Sayed M. Riyadh
- Department of Chemistry, Faculty of Science, Cairo University, Giza, Egypt
| | - Thoraya A. Farghaly
- Department of Chemistry, Faculty of Science, Cairo University, Giza, Egypt
- Department of Chemistry, Faculty of Science, Zagazig University, Zagazig, Egypt
| | - Reda A. Haggam
- Department of Chemistry, Faculty of Science, Islamic University of Madinah, Madinah, Saudi Arabia
- Department of Chemistry, Faculty of Science, Zagazig University, Zagazig, Egypt
| |
Collapse
|
11
|
Riyadh SM, Abolibda TZ, Sayed AR, Gomha SM. Synthetic Utility of Aminomercapto[1,2,4]triazoles in the Preparation of Fused Triazoles. CURR ORG CHEM 2022. [DOI: 10.2174/1385272826666220417131159] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Triazoles and their fused derivatives are regarded as one of the most pharmacologically significant pillars due to their potent, broad and numerous activities. This current review presents recent progress in the synthetic utility of 3-substituted-4-amino-5-mercapto[1,2,4]triazoles as building blocks for a diverse range of fused [1,2,4]triazoles with pharmacological interest eg. pyrazolo-triazoles, triazolo-thiadiazoles, triazolo-triazoles, triazolo-thiadiazines, triazolo-triazines, triazolo-tetrazines, triazolo-thiadiazepines, and others. The biological activity of some triazoles and their fused derivatives are also presented. This suggests that triazoles can be particularly promising synthons in synthesis of functionalized heterocyclic compounds used in the design of novel highly effective pharmaceuticals with a broad spectrum of bioresponses. All of these topics are drawn in this review during the period from 2000 to 2020.
Collapse
Affiliation(s)
- Sayed M. Riyadh
- Department of Chemistry, Faculty of Science, Cairo University, Giza, 12613, Egypt
- Department of Chemistry, Faculty of Science, Taibah University, Al-Madinah Al-Munawarah, 30002, Saudi Arabia
| | - Tariq Z. Abolibda
- Department of Chemistry, Faculty of Science, Islamic University of Madinah, Madinah, 42351 Saudi Arabia
| | - Abdelwahed R. Sayed
- Department of Chemistry, Faculty of Science, KFU, Hofuf, Saudi Arabia
- Department of Chemistry, Faculty of Science, Beni-Suef University, Beni-suef, Egypt
| | - Sobhi M. Gomha
- Department of Chemistry, Faculty of Science, Cairo University, Giza, 12613, Egypt
- Department of Chemistry, Faculty of Science, Islamic University of Madinah, Madinah, 42351 Saudi Arabia
| |
Collapse
|
12
|
Nwankwo L, Gilmartin D, Matharu S, Nuh A, Donovan J, Armstrong-James D, Shah A. Experience of Isavuconazole as a Salvage Therapy in Chronic Pulmonary Fungal Disease. J Fungi (Basel) 2022; 8:362. [PMID: 35448593 PMCID: PMC9029347 DOI: 10.3390/jof8040362] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/20/2022] [Accepted: 03/27/2022] [Indexed: 01/27/2023] Open
Abstract
Background: Instances of resistant fungal infection are rising in pulmonary disease, with limited therapeutic options. Therapeutic drug monitoring of azole antifungals has been necessary to ensure safety and efficacy but is considered unnecessary for the newest triazole isavuconazole. Aims: To characterise the prevalence of isavuconazole resistance and use in a tertiary respiratory centre. Methods: A retrospective observational analysis (2016−2021) of adult respiratory patients analysing fungal culture, therapeutic drug monitoring, and outcome post-isavuconazole therapy. Results: During the study period, isavuconazole susceptibility testing was performed on 26 Aspergillus spp. isolates. A total of 80.8% of A. fumigatus isolates had isavuconazole (MIC > 1 mg/L, and 73.0% > 2 mg/L) with a good correlation to voriconazole MIC (r = 0.7, p = 0.0002). A total of 54 patients underwent isavuconazole therapy during the study period (median duration 234 days (IQR: 24−499)). A total of 67% of patients tolerated isavuconazole, despite prior azole toxicity in 61.8%, with increased age (rpb = 0.31; p = 0.021) and male sex (φc = 0.30; p = 0.027) being associated with toxicity. A total of 132 isavuconazole levels were performed with 94.8% > 1 mg/L and 72% > 2 mg/L. Dose change from manufacturer’s recommendation was, however, required in 9.3% to achieve a concentration of >2 mg/L. Conclusion: We describe the use of isavuconazole as a salvage therapy in a chronic pulmonary fungal disease setting with a high prevalence of azole resistance. Therapeutic concentrations at standard dosing were high; however, results reinforce antifungal stewardship for optimization.
Collapse
Affiliation(s)
- Lisa Nwankwo
- Pharmacy Department, Royal Brompton Hospital, Guy’s and St. Thomas’ NHS Foundation Trust, London SW3 6NP, UK
| | - Desmond Gilmartin
- Clinical Informatics, Royal Brompton and Harefield Hospital Foundation NHS Trust, Fulham, London SW3 6HP, UK; (D.G.); (S.M.)
| | - Sheila Matharu
- Clinical Informatics, Royal Brompton and Harefield Hospital Foundation NHS Trust, Fulham, London SW3 6HP, UK; (D.G.); (S.M.)
| | - Ali Nuh
- Microbiology Department, Royal Brompton Hospital, Guy’s and St. Thomas’ NHS Foundation Trust, London SW3 6NP, UK; (A.N.); (D.A.-J.)
| | - Jackie Donovan
- Department of Pathology, Royal Brompton and Harefield NHS Foundation Trust, London SW3 6NP, UK;
| | - Darius Armstrong-James
- Microbiology Department, Royal Brompton Hospital, Guy’s and St. Thomas’ NHS Foundation Trust, London SW3 6NP, UK; (A.N.); (D.A.-J.)
- MRC Centre for Molecular Bacteriology and Infection, Department of Infectious Diseases, Imperial College London, London SW7 2AZ, UK
- Department of Respiratory Medicine, Royal Brompton Hospital, Guy’s and St. Thomas’ NHS Foundation Trust, London SW3 6NP, UK
| | - Anand Shah
- Department of Respiratory Medicine, Royal Brompton Hospital, Guy’s and St. Thomas’ NHS Foundation Trust, London SW3 6NP, UK
- MRC Centre of Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, School of Public Health, Imperial College, London W2 1PG, UK
| |
Collapse
|
13
|
Ashok A, Mangalore RP, Morrissey CO. Azole Therapeutic Drug Monitoring and its Use in the Management of Invasive Fungal Disease. CURRENT FUNGAL INFECTION REPORTS 2022. [DOI: 10.1007/s12281-022-00430-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
14
|
Chau MM, Daveson K, Alffenaar JWC, Gwee A, Ho SA, Marriott DJE, Trubiano JA, Zhao J, Roberts JA. Consensus guidelines for optimising antifungal drug delivery and monitoring to avoid toxicity and improve outcomes in patients with haematological malignancy and haemopoietic stem cell transplant recipients, 2021. Intern Med J 2021; 51 Suppl 7:37-66. [PMID: 34937141 DOI: 10.1111/imj.15587] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Antifungal agents can have complex dosing and the potential for drug interaction, both of which can lead to subtherapeutic antifungal drug concentrations and poorer clinical outcomes for patients with haematological malignancy and haemopoietic stem cell transplant recipients. Antifungal agents can also be associated with significant toxicities when drug concentrations are too high. Suboptimal dosing can be minimised by clinical assessment, laboratory monitoring, avoidance of interacting drugs, and dose modification. Therapeutic drug monitoring (TDM) plays an increasingly important role in antifungal therapy, particularly for antifungal agents that have an established exposure-response relationship with either a narrow therapeutic window, large dose-exposure variability, cytochrome P450 gene polymorphism affecting drug metabolism, the presence of antifungal drug interactions or unexpected toxicity, and/or concerns for non-compliance or inadequate absorption of oral antifungals. These guidelines provide recommendations on antifungal drug monitoring and TDM-guided dosing adjustment for selected antifungal agents, and include suggested resources for identifying and analysing antifungal drug interactions. Recommended competencies for optimal interpretation of antifungal TDM and dose recommendations are also provided.
Collapse
Affiliation(s)
- Maggie M Chau
- Pharmacy Department, The Royal Melbourne Hospital, Parkville, Victoria, Australia
| | - Kathryn Daveson
- Department of Infectious Diseases and Microbiology, The Canberra Hospital, Garran, Australian Capital Territory, Australia
| | - Jan-Willem C Alffenaar
- Faculty of Medicine and Health, School of Pharmacy, University of Sydney, Camperdown, New South Wales, Australia.,Pharmacy Department, Westmead Hospital, Westmead, New South Wales, Australia.,Marie Bashir Institute of Infectious Diseases and Biosecurity, University of Sydney, Camperdown, New South Wales, Australia
| | - Amanda Gwee
- Infectious Diseases Unit, The Royal Children's Hospital, Parkville, Victoria, Australia.,Department of Paediatrics, The University of Melbourne, Parkville, Victoria, Australia.,Infectious Diseases Group, Murdoch Children's Research Institute, Parkville, Victoria, Australia
| | - Su Ann Ho
- Department of Infectious Diseases, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Deborah J E Marriott
- Department of Clinical Microbiology and Infectious Diseases, St Vincent's Hospital, Darlinghurst, New South Wales, Australia.,Faculty of Science, University of Technology, Ultimo, New South Wales, Australia.,Faculty of Medicine, The University of New South Wales, Kensington, New South Wales, Australia
| | - Jason A Trubiano
- Department of Infectious Diseases, Austin Health, Heidelberg, Victoria, Australia.,Department of Medicine, The University of Melbourne, Parkville, Victoria, Australia
| | - Jessie Zhao
- Department of Haematology, The Alfred Hospital, Melbourne, Victoria, Australia
| | - Jason A Roberts
- The University of Queensland Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia.,Department of Pharmacy and Intensive Care Medicine, Royal Brisbane and Women's Hospital, Herston, Queensland, Australia.,Division of Anaesthesiology Critical Care Emergency and Pain Medicine, Nîmes University Hospital, University of Montpellier, Nîmes, France
| | | |
Collapse
|
15
|
Verdecia J, Kunz Coyne AJ, Patel S, Oye M, Ravi M, Sands M. Miliary Histoplasmosis in a Renal Transplant Patient. Cureus 2021; 13:e19338. [PMID: 34909299 PMCID: PMC8653925 DOI: 10.7759/cureus.19338] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/07/2021] [Indexed: 01/12/2023] Open
Abstract
Solid organ transplant (SOT) recipients are at increased risk of opportunistic infections due to significant T-cell immune dysfunction. The incidence of clinical disseminated histoplasmosis is rare, and its variable clinical presentation and response to therapy make it challenging to treat with resultant high mortality. A high index of clinical suspicion is necessary, especially in non-endemic areas. We report our clinical experience treating a 63-year-old renal transplant patient on immunosuppressive therapy with late-onset acute miliary histoplasmosis initiated on liposomal amphotericin B (L-AmB).
Collapse
Affiliation(s)
- Jorge Verdecia
- Infectious Disease, University of Florida College of Medicine - Jacksonville, Jacksonville, USA
| | - Ashlan J Kunz Coyne
- Pharmacology, University of Florida College of Medicine - Jacksonville, Jacksonville, USA
| | - Shaorinkumar Patel
- Internal Medicine, University of Florida College of Medicine - Jacksonville, Jacksonville, USA
| | - Melissa Oye
- Internal Medicine, University of Florida College of Medicine - Jacksonville, Jacksonville, USA
| | - Malleswari Ravi
- Infectious Disease, University of Florida College of Medicine - Jacksonville, Jacksonville, USA
| | - Michael Sands
- Infectious Diseases, University of Florida College of Medicine - Jacksonville, Jacksonville, USA
| |
Collapse
|
16
|
Liao J, Liao G, Gao Y, Chai X, Wu Q, Zhao Q. Synthesis and Biological Activities of Diosgenin-Triazole Conjugates with a 1,3-Dipolar Cycloaddition Reaction. Chem Nat Compd 2021. [DOI: 10.1007/s10600-021-03552-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
17
|
Kammoun AK, Khedr A, Hegazy MA, Almalki AJ, Hosny KM, Abualsunun WA, Murshid SSA, Bakhaidar RB. Formulation, optimization, and nephrotoxicity evaluation of an antifungal in situ nasal gel loaded with voriconazole‒clove oil transferosomal nanoparticles. Drug Deliv 2021; 28:2229-2240. [PMID: 34668818 PMCID: PMC8530484 DOI: 10.1080/10717544.2021.1992040] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Fungal infections of the paranasal cavity are among the most widely spread illnesses nowadays. The aim of the current study was to estimate the effectiveness of an in situ gel loaded with voriconazole‒clove oil nano-transferosomes (VRC-CO-NT) in enhancing the activity of voriconazole against Aspergillus flavus, which causes rhinosinusitis. The nephrotoxic side effects of voriconazole may be reduced through the incorporation of the clove oil, which has antioxidant activity that protects tissue. The Box‒Behnken design was applied to formulate the VRC-CO-NT. The particle size, entrapment efficiency, antifungal inhibition zone, and serum creatinine concentration were considered dependent variables, and the soybean lecithin, VRC, and CO concentrations were considered independent ones. The final optimized formulation was loaded into a deacetylated gellan gum base and evaluated for its gelation, rheological properties, drug release profile, permeation capabilities, and in vivo nephrotoxicity. The optimum formulation was determined to be composed of 50 mg/mL lecithin, 18 mg/mL VRC, and 75 mg/mL CO, with a minimum particle size of 102.96 nm, an entrapment efficiency of 71.70%, an inhibition zone of 21.76 mm, and a serum creatinine level of 0.119 mmol/L. The optimized loaded in situ gel released 82.5% VRC after 12 hours and resulted in a 5.4-fold increase in drug permeation. The in vivo results obtained using rabbits resulted in a nonsignificant differentiation among the renal function parameters compared with the negative control group. In conclusion, nasal in situ gel loaded with VRC-CO-NT is considered an efficient novel carrier with enhanced antifungal properties with no signs of nephrotoxicity.
Collapse
Affiliation(s)
- Ahmed K Kammoun
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Alaa Khedr
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Maha A Hegazy
- Analytical Chemistry Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Ahmed J Almalki
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Khaled M Hosny
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of pharmaceutics and industrial pharmacy, Beni Suef University, Ben-Suef, Egypt
| | - Walaa A Abualsunun
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Samar S A Murshid
- Department of Natural products and Alternative Medicine, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Rana B Bakhaidar
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
18
|
Duehlmeyer S, Klockau C, Yu D, Rouch J. Characterization of Therapeutic Drug Monitoring Practices of Voriconazole and Posaconazole at a Pediatric Hospital. J Pediatr Pharmacol Ther 2021; 26:26-32. [PMID: 33424497 DOI: 10.5863/1551-6776-26.1.26] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 12/31/2019] [Indexed: 11/11/2022]
Abstract
OBJECTIVES To characterize the voriconazole and posaconazole serum trough ordering practices in patients receiving prophylactic and treatment antifungal therapy. METHODS A retrospective chart review over a 6-year period of pediatric patients who received voriconazole and/or posaconazole for >24 hours. RESULTS A total of 113 patients were included in this study and of these patients, 105 received voriconazole and 16 received posaconazole during the study period. Additionally, 167 trough levels were assessed in this study. Only 50% and 54% of levels were considered within goal recommendations for voriconazole and posaconazole, respectively. The median dose required to achieve goal trough concentration was dependent on drug, indication, and dosage form. Lastly, the most common adverse drug reactions (ADRs) were hepatoxicity, QTc prolongation, and CNS changes, which were in concordance with ADRs documented in the clinical trials for voriconazole and posaconazole. Approximately 20% of patients receiving either voriconazole or posaconazole died during the study period and the median trough in both groups was subtherapeutic. CONCLUSIONS Increased monitoring of trough concentrations may be warranted to prevent death or breakthrough invasive fungal infections. Further studies are warranted for assessing the relationship between trough concentrations and treatment outcomes as well as relationship between dosing and achieving goal trough concentrations.
Collapse
|
19
|
De Rose DU, Cairoli S, Dionisi M, Santisi A, Massenzi L, Goffredo BM, Dionisi-Vici C, Dotta A, Auriti C. Therapeutic Drug Monitoring Is a Feasible Tool to Personalize Drug Administration in Neonates Using New Techniques: An Overview on the Pharmacokinetics and Pharmacodynamics in Neonatal Age. Int J Mol Sci 2020; 21:E5898. [PMID: 32824472 PMCID: PMC7460644 DOI: 10.3390/ijms21165898] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 08/07/2020] [Accepted: 08/11/2020] [Indexed: 02/07/2023] Open
Abstract
Therapeutic drug monitoring (TDM) should be adopted in all neonatal intensive care units (NICUs), where the most preterm and fragile babies are hospitalized and treated with many drugs, considering that organs and metabolic pathways undergo deep and progressive maturation processes after birth. Different developmental changes are involved in interindividual variability in response to drugs. A crucial point of TDM is the choice of the bioanalytical method and of the sample to use. TDM in neonates is primarily used for antibiotics, antifungals, and antiepileptic drugs in clinical practice. TDM appears to be particularly promising in specific populations: neonates who undergo therapeutic hypothermia or extracorporeal life support, preterm infants, infants who need a tailored dose of anticancer drugs. This review provides an overview of the latest advances in this field, showing options for a personalized therapy in newborns and infants.
Collapse
Affiliation(s)
- Domenico Umberto De Rose
- Neonatal Intensive Care Unit, Department of Medical and Surgical Neonatology, “Bambino Gesù” Children’s Hospital IRCCS, 00165 Rome, Italy; (D.U.D.R.); (A.S.); (A.D.)
| | - Sara Cairoli
- Laboratory of Metabolic Biochemistry Unit, Department of Specialist Pediatrics, “Bambino Gesù” Children’s Hospital IRCCS, 00165 Rome, Italy; (S.C.); (M.D.); (B.M.G.); (C.D.-V.)
| | - Marco Dionisi
- Laboratory of Metabolic Biochemistry Unit, Department of Specialist Pediatrics, “Bambino Gesù” Children’s Hospital IRCCS, 00165 Rome, Italy; (S.C.); (M.D.); (B.M.G.); (C.D.-V.)
| | - Alessandra Santisi
- Neonatal Intensive Care Unit, Department of Medical and Surgical Neonatology, “Bambino Gesù” Children’s Hospital IRCCS, 00165 Rome, Italy; (D.U.D.R.); (A.S.); (A.D.)
| | - Luca Massenzi
- Neonatal Intensive Care Unit and Neonatal Pathology, Fatebenefratelli Hospital, 00186 Rome, Italy;
| | - Bianca Maria Goffredo
- Laboratory of Metabolic Biochemistry Unit, Department of Specialist Pediatrics, “Bambino Gesù” Children’s Hospital IRCCS, 00165 Rome, Italy; (S.C.); (M.D.); (B.M.G.); (C.D.-V.)
| | - Carlo Dionisi-Vici
- Laboratory of Metabolic Biochemistry Unit, Department of Specialist Pediatrics, “Bambino Gesù” Children’s Hospital IRCCS, 00165 Rome, Italy; (S.C.); (M.D.); (B.M.G.); (C.D.-V.)
| | - Andrea Dotta
- Neonatal Intensive Care Unit, Department of Medical and Surgical Neonatology, “Bambino Gesù” Children’s Hospital IRCCS, 00165 Rome, Italy; (D.U.D.R.); (A.S.); (A.D.)
| | - Cinzia Auriti
- Neonatal Intensive Care Unit, Department of Medical and Surgical Neonatology, “Bambino Gesù” Children’s Hospital IRCCS, 00165 Rome, Italy; (D.U.D.R.); (A.S.); (A.D.)
| |
Collapse
|
20
|
Lee J, Ng P, Hamandi B, Husain S, Lefebvre MJ, Battistella M. Effect of Therapeutic Drug Monitoring and Cytochrome P450 2C19 Genotyping on Clinical Outcomes of Voriconazole: A Systematic Review. Ann Pharmacother 2020; 55:509-529. [DOI: 10.1177/1060028020948174] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Objectives To examine current knowledge on the clinical utility of therapeutic drug monitoring (TDM) in voriconazole therapy, the impact of CYP2C19 genotype on voriconazole plasma concentrations, and the role of CYP2C19 genotyping in voriconazole therapy. Data Sources Three literature searches were conducted for original reports on (1) TDM and voriconazole outcomes and (2) voriconazole and CYP2C19 polymorphisms. Searches were conducted through EMBASE, MEDLINE/PubMed, Scopus, and Cochrane Central Register of Controlled Trials from inception to June 2020. Study Selection and Data Extraction Randomized controlled trials, cohort studies, and case series with ≥10 patients were included. Only full-text references in English were eligible. Data Synthesis A total of 63 studies were reviewed. TDM was recommended because of established concentration and efficacy/toxicity relationships. Voriconazole trough concentrations ≥1.0 mg/L were associated with treatment success; supratherapeutic concentrations were associated with increased neurotoxicity; and hepatotoxicity associations were more prevalent in Asian populations. CYP2C19 polymorphisms significantly affect voriconazole metabolism, but no relationship with efficacy/safety were found. Genotype-guided dosing with TDM was reported to increase chances of achieving therapeutic range. Relevance to Patient Care and Clinical Practice Genotype-guided dosing with TDM is a potential solution to optimizing voriconazole efficacy while avoiding treatment failures and common toxicities. Conclusions Voriconazole plasma concentrations and TDM are treatment outcome predictors, but research is needed to form a consensus target therapeutic range and dosage adjustment guidelines based on plasma concentrations. CYP2C19 polymorphisms are a predictor of voriconazole concentrations and metabolism, but clinical implications are not established. Large-scale, high-methodological-quality trials are required to investigate the role for prospective genotyping and establish CYP2C19-guided voriconazole dosing recommendations.
Collapse
Affiliation(s)
| | - Patrick Ng
- University Health Network, Toronto, ON, Canada
| | - Bassem Hamandi
- University of Toronto, ON, Canada
- University Health Network, Toronto, ON, Canada
| | - Shahid Husain
- University of Toronto, ON, Canada
- University Health Network, Toronto, ON, Canada
| | | | - Marisa Battistella
- University of Toronto, ON, Canada
- University Health Network, Toronto, ON, Canada
| |
Collapse
|
21
|
Bashir K, Chen G, Han J, Shu H, Cui X, Wang L, Li W, Fu Q. Preparation of magnetic metal organic framework and development of solid phase extraction method for simultaneous determination of fluconazole and voriconazole in rat plasma samples by HPLC. J Chromatogr B Analyt Technol Biomed Life Sci 2020; 1152:122201. [PMID: 32590216 DOI: 10.1016/j.jchromb.2020.122201] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 05/19/2020] [Accepted: 05/29/2020] [Indexed: 12/27/2022]
Abstract
Fluconazole and voriconazole are the two broad-spectrum triazole antifungals. The present work described the fabrication method for the synthesis of the amino-modified magnetic metal-organic framework. This material was applied as a pre-sample treatment sorbent for the selective extraction of fluconazole and voriconazole in rat plasma samples. The material was fabricated by the chemical bonding approach method and was characterized by different parameters. The factors which affect the extraction efficiency of the sorbent material were also optimized in this study. Due to the optimization of solid-phase extraction conditions, the nonspecific interaction was reduced and the extraction recoveries of target drugs were increased in plasma samples. The extraction method was combined with the HPLC-UV method for the analysis. Excellent linearity (0.1-25 µg/mL), detections (0.02, 0.03 µg/mL) and quantification limits (0.04, 0.05 µg/mL) were resulted for fluconazole and voriconazole respectively. The maximum recoveries from spiked plasma samples of fluconazole and voriconazole were 86.8% and 78.6% and relative standard deviation were 0.9-2.8% and 2.2-3.6% respectively. Moreover, this sorbent material was used multiple times which was an improvement over single-use commercial sorbent materials. This validated method has practical potential for the simultaneous determination of these drugs in therapeutic drug monitoring studies as well as for routine pharmacokinetic evaluations.
Collapse
Affiliation(s)
- Kamran Bashir
- School of Pharmacy, Xi'an Jiaotong University, Xi'an 710061, PR China
| | - Guoning Chen
- School of Pharmacy, Xi'an Jiaotong University, Xi'an 710061, PR China
| | - Jili Han
- School of Pharmacy, Xi'an Jiaotong University, Xi'an 710061, PR China
| | - Hua Shu
- School of Pharmacy, Xi'an Jiaotong University, Xi'an 710061, PR China
| | - Xia Cui
- School of Pharmacy, Xi'an Jiaotong University, Xi'an 710061, PR China
| | - Lu Wang
- School of Pharmacy, Xi'an Jiaotong University, Xi'an 710061, PR China
| | - Wen Li
- School of Pharmacy, Xi'an Jiaotong University, Xi'an 710061, PR China
| | - Qiang Fu
- School of Pharmacy, Xi'an Jiaotong University, Xi'an 710061, PR China.
| |
Collapse
|
22
|
John J, Loo A, Mazur S, Walsh TJ. Therapeutic drug monitoring of systemic antifungal agents: a pragmatic approach for adult and pediatric patients. Expert Opin Drug Metab Toxicol 2019; 15:881-895. [PMID: 31550939 DOI: 10.1080/17425255.2019.1671971] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Introduction: Therapeutic drug monitoring (TDM) has been shown to optimize the management of invasive fungal infections (IFIs), particularly for select antifungal agents with a well-defined exposure-response relationship and an unpredictable pharmacokinetic profile or a narrow therapeutic index. Select triazoles (itraconazole, voriconazole, and posaconazole) and flucytosine fulfill these criteria, while the echinocandins, fluconazole, isavuconazole, and amphotericin B generally do not do so. Given the morbidity and mortality associated with IFIs and the challenges surrounding the use of currently available antifungal agents, TDM plays an important role in therapy.Areas covered: This review seeks to describe the rationale for TDM of antifungal agents, summarize their pharmacokinetic and pharmacodynamic properties, identify treatment goals for efficacy and safety, and provide recommendations for optimal dosing and therapeutic monitoring strategies.Expert opinion: Several new antifungal agents are currently in development, including compounds from existing antifungal classes with enhanced pharmacokinetic or safety profiles as well as agents with novel targets for the treatment of IFIs. Given the predictable pharmacokinetics of these newly developed agents, use of routine TDM is not anticipated. However, expanded knowledge of exposure-response relationships of these compounds may yield a role for TDM to improve outcomes for adult and pediatric patients.
Collapse
Affiliation(s)
- Jamie John
- Department of Pharmacy, New York-Presbyterian Hospital, New York, NY, USA
| | - Angela Loo
- Department of Pharmacy, New York-Presbyterian Hospital, New York, NY, USA
| | - Shawn Mazur
- Department of Pharmacy, New York-Presbyterian Hospital, New York, NY, USA
| | - Thomas J Walsh
- Transplantation-Oncology Infectious Diseases Program, New York-Presbyterian Hospital, Weill Cornell Medical Center, New York, NY, USA
| |
Collapse
|
23
|
Xu M, Peng Y, Zhu L, Wang S, Ji J, Rakesh K. Triazole derivatives as inhibitors of Alzheimer's disease: Current developments and structure-activity relationships. Eur J Med Chem 2019; 180:656-672. [DOI: 10.1016/j.ejmech.2019.07.059] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 07/19/2019] [Accepted: 07/20/2019] [Indexed: 01/09/2023]
|
24
|
Yoon SJ, Lee K, Oh J, Woo HI, Lee SY. Experience with therapeutic drug monitoring of three antifungal agents using an LC-MS/MS method in routine clinical practice. Clin Biochem 2019; 70:14-17. [DOI: 10.1016/j.clinbiochem.2019.06.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 05/28/2019] [Accepted: 06/03/2019] [Indexed: 10/26/2022]
|
25
|
Pennington KM, Yost KJ, Escalante P, Razonable RR, Kennedy CC. Antifungal prophylaxis in lung transplant: A survey of United States' transplant centers. Clin Transplant 2019; 33:e13630. [PMID: 31173402 DOI: 10.1111/ctr.13630] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 06/01/2019] [Accepted: 06/03/2019] [Indexed: 01/24/2023]
Abstract
BACKGROUND Antifungal prophylaxis strategies for lung transplant recipients vary without consensus or standard of care. Our current study aims to identify antifungal prophylaxis practices in the United States. METHODS From November 29, 2018, to February 15, 2019, we emailed surveys to medical directors of adult lung transplant centers. An alternate physician representative was approached if continued non-response after three survey attempts. Descriptive statistics were used to report findings. RESULTS Forty-four of 62 (71.0%) eligible centers responded. All Organ Procurement and Transplantation Networks were represented. Only four (9.1%) centers used pre-transplant prophylaxis for prevention of tracheobronchitis (3 of 4) and invasive fungal disease (4 of 4). Thirty-nine of forty (97.5%) centers used post-transplant prophylaxis: 36 (90.0%) universal and 3 (7.5%) pre-emptive/selective prophylaxis. Most centers used nebulized amphotericin with a systemic agent (26 of 36, 72.2%). Thirty-two of thirty-six (88.9%) centers continued universal prophylaxis beyond the hospital setting. Duration of prophylaxis ranged from the post-transplant hospitalization to lifelong with most centers (25 of 36, 69.4%) discontinuing prophylaxis 6 months or less post-transplant. CONCLUSION Most United States' lung transplant centers utilize a universal prophylaxis with nebulized amphotericin and a systemic triazole for 6 months or less post-transplant. Very few centers use pre-transplant antifungal prophylaxis.
Collapse
Affiliation(s)
- Kelly M Pennington
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic, Rochester, Minnesota, USA.,Robert D. and Patricia E. Kern Center for the Science of Healthcare Delivery, Mayo Clinic, Rochester, Minnesota, USA
| | - Kathleen J Yost
- Robert D. and Patricia E. Kern Center for the Science of Healthcare Delivery, Mayo Clinic, Rochester, Minnesota, USA
| | - Patricio Escalante
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Raymund R Razonable
- Division of Infectious Diseases, Department of Medicine, Mayo Clinic, Rochester, Minnesota, USA.,William J. von Liebig Center for Transplantation and Clinical Regeneration, Mayo Clinic, Rochester, Minnesota, USA
| | - Cassie C Kennedy
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic, Rochester, Minnesota, USA.,Robert D. and Patricia E. Kern Center for the Science of Healthcare Delivery, Mayo Clinic, Rochester, Minnesota, USA.,William J. von Liebig Center for Transplantation and Clinical Regeneration, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
26
|
Righi E, Carnelutti A, Baccarani U, Sartor A, Cojutti P, Bassetti M, Pea F. Treatment of Candida infections with fluconazole in adult liver transplant recipients: Is TDM-guided dosing adaptation helpful? Transpl Infect Dis 2019; 21:e13113. [PMID: 31106504 DOI: 10.1111/tid.13113] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 04/24/2019] [Accepted: 05/02/2019] [Indexed: 12/18/2022]
Abstract
BACKGROUND Fluconazole represents a common antifungal option for the treatment of Candida infections in liver transplant recipients. Although adequate antifungal exposure is known to correlate with favorable outcomes in patients with invasive candidiasis, therapeutic drug monitoring (TDM) of fluconazole is currently not recommended. METHODS We conducted a retrospective study including adult liver transplant recipients receiving fluconazole for invasive candidiasis and undergoing TDM. We assessed the correlation between clinical variables, fluconazole trough plasma levels (Cmin ), and outcome. RESULTS Twenty-seven patients (74% males; median age 57 years) were included. Abdominal candidiasis was the most frequent infection (56%). Median duration of fluconazole therapy was 17 days (IQR 9-21). Fluconazole median Cmin was 11.0 mg/L (range 2.4-30.6 mg/L). Five (19%) patients required TDM-guided fluconazole dose increase. All-cause in hospital mortality was 33%. Fluconazole Cmin >11 mg/L significantly correlated with clinical success (OR 8.78, 95% CI 1.13-67.8, P = 0.04). CONCLUSIONS Our study identified decreased fluconazole Cmin as a factor associated with negative outcomes in liver transplant recipients with Candida infection. TDM of fluconazole may be advisable in this patient population.
Collapse
Affiliation(s)
- Elda Righi
- Infectious Diseases Division, Azienda Sanitaria Universitaria Integrata Santa Maria della Misericordia, Udine, Italy.,Infectious Diseases, Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | - Alessia Carnelutti
- Infectious Diseases Division, Azienda Sanitaria Universitaria Integrata Santa Maria della Misericordia, Udine, Italy
| | - Umberto Baccarani
- General Surgery and Transplantation Unit, Azienda Sanitaria Universitaria Integrata Santa Maria della Misericordia, Udine, Italy.,Department of Medicine, University of Udine, Udine, Italy
| | - Assunta Sartor
- Microbiology Unit, Azienda Sanitaria Universitaria Integrata Santa Maria della Misericordia, Udine, Italy
| | - Piergiorgio Cojutti
- Department of Medicine, University of Udine, Udine, Italy.,Institute of Clinical Pharmacology, Azienda Sanitaria Universitaria Integrata Santa Maria della Misericordia, Udine, Italy
| | - Matteo Bassetti
- Infectious Diseases Division, Azienda Sanitaria Universitaria Integrata Santa Maria della Misericordia, Udine, Italy.,Department of Medicine, University of Udine, Udine, Italy
| | - Federico Pea
- Department of Medicine, University of Udine, Udine, Italy.,Institute of Clinical Pharmacology, Azienda Sanitaria Universitaria Integrata Santa Maria della Misericordia, Udine, Italy
| |
Collapse
|
27
|
Zheng YZ, Wang S. Advances in antifungal drug measurement by liquid chromatography-mass spectrometry. Clin Chim Acta 2019; 491:132-145. [PMID: 30685359 DOI: 10.1016/j.cca.2019.01.023] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 01/22/2019] [Accepted: 01/23/2019] [Indexed: 12/27/2022]
Abstract
Fungal infections, especially invasive types, have become a serious healthcare problem as the immunocompromised population increases. There are five main classes of antifungal drugs: polyenes, flucytosine, allylamines, azoles, and echinocandins. Therapeutic drug monitoring (TDM) is justified for flucytosine and triazoles due to their large inter- and intra-individual pharmacokinetic variability and their high tendency for drug-drug interactions. Available methods for measuring these drugs include bioassay, liquid chromatography and liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS). The LC-MS/MS approach is preferred due to its superior analytic sensitivity and specificity. In this review, we highlight TDM methods by LC-MS/MS for these antifungal drugs searchable in PubMed by December 1, 2018. LC-MS/MS methods that were developed for other purposes such as pharmacokinetics or toxicokinetics were also included. We have critically analyzed these methods with an emphasis on sensitivity, specificity, simplicity, throughput and robustness.
Collapse
Affiliation(s)
- Yu Zi Zheng
- Department of Laboratory Medicine, Cleveland Clinic, Cleveland, OH, United States
| | - Sihe Wang
- Department of Laboratory Medicine, Cleveland Clinic, Cleveland, OH, United States; Department of Pathology and Laboratory Medicine, Akron Children's Hospital, Akron, OH, United States.
| |
Collapse
|
28
|
Lewalle P, Pochon C, Michallet M, Turlure P, Brissot E, Paillard C, Puyade M, Roth-Guepin G, Yakoub-Agha I, Chantepie S. [Prophylaxis of infections post-allogeneic transplantation: Guidelines from the Francophone Society of Bone Marrow Transplantation and Cellular Therapy (SFGM-TC)]. Bull Cancer 2019; 106:S23-S34. [PMID: 30616839 DOI: 10.1016/j.bulcan.2018.08.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 07/19/2018] [Accepted: 08/27/2018] [Indexed: 02/07/2023]
Abstract
Allogeneic hematopoietic stem cell transplantation is a curative treatment for many hematological diseases. However, this procedure causes the patient to be susceptible to infection. Prophylactic treatments are administered in clinical practice even thought the level of evidence of their effectiveness is not always high. In addition, changes in the transplantation procedures - use of reduced intensity conditioning, development of alternative graft sources - must lead to a rethinking of attitudes towards prophylaxis. Our working group based its recommendations on a review of referential articles and publications on the subject found in the literature. These recommendations concern the prophylaxis of infections caused by HSV1, HSV2, varicella zoster, and hepatitis B, as well as anti-bacterial and digestive decontamination prophylaxis, prevention of pneumocystis, toxoplasmosis, tuberculosis, as well as prophylaxis of fungal infections. Other infectious agents usually involved in infections post-allotransplant have been the subject of another set of recommendations from the French Society of Bone Marrow Transplantation and Cellular Therapy.
Collapse
Affiliation(s)
- Philippe Lewalle
- Institut Jules-Bordet, université Libre-de-Bruxelles, service d'hématologie, 1, rue Héger-Bordet, 1000 Bruxelles, Belgique
| | - Cécile Pochon
- CHU de Nancy, service d'onco-hématologie pédiatrique, rue du Morvan, 54511 Vandoeuvre-lès-Nancy, France
| | | | - Pascal Turlure
- Centre hospitalier universitaire, service d'hématologie, 87042 Limoges, France
| | - Eolia Brissot
- Assistance publique des hôpitaux de Paris (AP-HP), hôpital Saint-Antoine, département d'hématologie, 75012 Paris, France
| | | | - Mathieu Puyade
- CHU de Poitiers, service de médecine interne, unité d'hospitalisation d'aval, 2, rue de la Milétrie, 86021 Poitiers cedex, France
| | | | - Ibrahim Yakoub-Agha
- CHRU de Lille, service des maladies du sang, 2, avenue Oscar-Lambret, 59037 Lille cedex, France; Université de Lille 2, LIRIC, Inserm U995, 59000 Lille, France
| | - Sylvain Chantepie
- Institut d'hématologie de Basse-Normandie, centre hospitalier universitaire, avenue de la Côte-de-Nacre, 14000 Caen, France.
| |
Collapse
|
29
|
Akın Ş, Demir EA, Colak A, Kolcuoglu Y, Yildirim N, Bekircan O. Synthesis, biological activities and molecular docking studies of some novel 2,4,5-trisubstituted-1,2,4-triazole-3-one derivatives as potent tyrosinase inhibitors. J Mol Struct 2019. [DOI: 10.1016/j.molstruc.2018.07.065] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
30
|
Arango-Franco CA, Moncada-Vélez M, Beltrán CP, Berrío I, Mogollón C, Restrepo A, Trujillo M, Osorio SD, Castro L, Gómez LV, Muñoz AM, Molina V, Del Río Cobaleda DY, Ruiz AC, Garcés C, Alzate JF, Cabarcas F, Orrego JC, Casanova JL, Bustamante J, Puel A, Arias AA, Franco JL. Early-Onset Invasive Infection Due to Corynespora cassiicola Associated with Compound Heterozygous CARD9 Mutations in a Colombian Patient. J Clin Immunol 2018; 38:794-803. [PMID: 30264381 DOI: 10.1007/s10875-018-0549-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 09/11/2018] [Indexed: 12/28/2022]
Abstract
PURPOSE CARD9 deficiency is an inborn error of immunity that predisposes otherwise healthy humans to mucocutaneous and invasive fungal infections, mostly caused by Candida, but also by dermatophytes, Aspergillus, and other fungi. Phaeohyphomycosis are an emerging group of fungal infections caused by dematiaceous fungi (phaeohyphomycetes) and are being increasingly identified in patients with CARD9 deficiency. The Corynespora genus belongs to phaeohyphomycetes and only one adult patient with CARD9 deficiency has been reported to suffer from invasive disease caused by C. cassiicola. We identified a Colombian child with an early-onset, deep, and destructive mucocutaneous infection due to C. cassiicola and we searched for mutations in CARD9. METHODS We reviewed the medical records and immunological findings in the patient. Microbiologic tests and biopsies were performed. Whole-exome sequencing (WES) was made and Sanger sequencing was used to confirm the CARD9 mutations in the patient and her family. Finally, CARD9 protein expression was evaluated in peripheral blood mononuclear cells (PBMC) by western blotting. RESULTS The patient was affected by a large, indurated, foul-smelling, and verrucous ulcerated lesion on the left side of the face with extensive necrosis and crusting, due to a C. cassiicola infectious disease. WES led to the identification of compound heterozygous mutations in the patient consisting of the previously reported p.Q289* nonsense (c.865C > T, exon 6) mutation, and a novel deletion (c.23_29del; p.Asp8Alafs10*) leading to a frameshift and a premature stop codon in exon 2. CARD9 protein expression was absent in peripheral blood mononuclear cells from the patient. CONCLUSION We describe here compound heterozygous loss-of-expression mutations in CARD9 leading to severe deep and destructive mucocutaneous phaeohyphomycosis due to C. cassiicola in a Colombian child.
Collapse
Affiliation(s)
- Carlos A Arango-Franco
- Grupo de Inmunodeficiencias Primarias, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia.,Escuela de Microbiología, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia
| | - Marcela Moncada-Vélez
- Grupo de Inmunodeficiencias Primarias, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia
| | - Claudia Patricia Beltrán
- Departamento de Pediatría, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia
| | - Indira Berrío
- Medical and Experimental Mycology Group, Corporación para Investigaciones Biológicas (CIB), Medellín, Colombia.,Hospital General de Medellín "Luz Castro de Gutiérrez" ESE, Medellín, Colombia
| | - Cristian Mogollón
- Infectología, Hospital Universitario Fernando Troconnis, Santa Marta, Colombia
| | | | | | - Sara Daniela Osorio
- Grupo de Inmunodeficiencias Primarias, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia.,Escuela de Microbiología, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia
| | - Lorena Castro
- Grupo de Inmunodeficiencias Primarias, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia.,Escuela de Microbiología, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia
| | - Lina Vanessa Gómez
- Hospital Pablo Tobón Uribe, Medellín, Colombia.,Servicio de Dermatología, Universidad Pontificia Bolivariana, Medellín, Colombia
| | - Ana María Muñoz
- Servicio de Dermatología, Universidad Pontificia Bolivariana, Medellín, Colombia
| | - Verónica Molina
- Hospital Pablo Tobón Uribe, Medellín, Colombia.,Servicio de Dermatología, Universidad Pontificia Bolivariana, Medellín, Colombia
| | | | | | - Carlos Garcés
- Departamento de Pediatría, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia.,Hospital Pablo Tobón Uribe, Medellín, Colombia
| | - Juan Fernando Alzate
- Centro Nacional de Secuenciación Genómica CNSG, Facultad de Medicina, Universidad de Antioquia UdeA, Calle 70 No 52-21, Medellín, Colombia
| | - Felipe Cabarcas
- Centro Nacional de Secuenciación Genómica CNSG, Facultad de Medicina, Universidad de Antioquia UdeA, Calle 70 No 52-21, Medellín, Colombia.,Grupo SISTEMIC, Facultad de Ingeniería, Universidad de Antioquia UdeA , Calle 70 No 52-21, Medellín, Colombia
| | - Julio Cesar Orrego
- Grupo de Inmunodeficiencias Primarias, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia
| | - Jean-Laurent Casanova
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM-U1163, Paris, EU, France.,Imagine Institute, Paris Descartes University, Paris, EU, France.,St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA.,Pediatric Hematology-Immunology Unit, Necker Hospital for Sick Children, AP-HP, Paris, France.,Howard Hughes Medical Institute, New York, NY, USA
| | - Jacinta Bustamante
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM-U1163, Paris, EU, France.,Imagine Institute, Paris Descartes University, Paris, EU, France.,St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA.,Center for the Study of Primary Immunodeficiencies, Necker Hospital for Sick Children, Paris, EU, France
| | - Anne Puel
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM-U1163, Paris, EU, France.,Imagine Institute, Paris Descartes University, Paris, EU, France.,St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Andrés Augusto Arias
- Grupo de Inmunodeficiencias Primarias, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia. .,Escuela de Microbiología, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia.
| | - José Luis Franco
- Grupo de Inmunodeficiencias Primarias, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia
| |
Collapse
|
31
|
Simultaneous quantification of systemic azoles and their major metabolites in human serum by HPLC/PDA: role of azole metabolic rate. Diagn Microbiol Infect Dis 2018; 92:78-83. [DOI: 10.1016/j.diagmicrobio.2018.04.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 02/07/2018] [Accepted: 04/06/2018] [Indexed: 01/12/2023]
|
32
|
Gultekin E, Kolcuoglu Y, Akdemir A, Sirin Y, Bektas H, Bekircan O. A Study On Synthesis, Biological Activities and Molecular Modelling of Some Novel Trisubstituted 1,2,4-Triazole Derivatives. ChemistrySelect 2018. [DOI: 10.1002/slct.201801578] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Ergun Gultekin
- Department of Chemistry; Faculty of Science; Karadeniz Technical University; 61080 Trabzon Turkey
| | - Yakup Kolcuoglu
- Department of Chemistry; Faculty of Science; Karadeniz Technical University; 61080 Trabzon Turkey
| | - Atilla Akdemir
- Computer-Aided Drug Discovery Laboratory, ; Department of Pharmacology; Faculty of Pharmacy; Bezmialem Vakif University, ; 34093, Fatih, Istanbul Turkey
| | - Yakup Sirin
- Department of Chemistry; Faculty of Science; Karadeniz Technical University; 61080 Trabzon Turkey
| | - Hakan Bektas
- Department of Chemistry; Faculty of Arts and Sciences; Giresun University; 28100 Giresun Turkey
| | - Olcay Bekircan
- Department of Chemistry; Faculty of Science; Karadeniz Technical University; 61080 Trabzon Turkey
| |
Collapse
|
33
|
Sayed S, Elsayed I, Ismail MM. Optimization of β-cyclodextrin consolidated micellar dispersion for promoting the transcorneal permeation of a practically insoluble drug. Int J Pharm 2018; 549:249-260. [PMID: 30077759 DOI: 10.1016/j.ijpharm.2018.08.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 07/30/2018] [Accepted: 08/01/2018] [Indexed: 11/25/2022]
Abstract
Development of efficient ocular drug delivery system for antifungal drugs becomes a must nowadays to face and eradicate the widely spread ophthalmic fungal infections. Itraconazole, a triazole antifungal, is struggling to penetrate the cornea and subsequently, its efficacy is limited. The aim of this study was to enhance itraconazole corneal penetration through utilizing the minimum surfactant amount in presence of β-cyclodextrin which acted as a dissolution and permeation enhancer. β-Cyclodextrin consolidated micellar dispersions (CCMD) were prepared after an initial screening to select the composition of surfactant(s). The preparation was done according to a modified melt dispersion technique. The prepared CCMD were characterized through the analysis of their particle size, zeta potential and solubilization efficiency. The optimum formula was chosen based on a factorial response surface analysis and it was composed of 17:1 w/w surfactant/drug, 30:1 w/w cyclodextrin/drug ratios and 0.02% polyethylene oxide. This formula was subjected to in vitro characterization including release, imaging by transmission electron microscope, mucoadhesion, stability, in addition to the determination of the minimum inhibitory concentration. Moreover, the ex vivo/in vivo permeation, safety and efficacy profiles were determined. The optimized CCMD formula was found to be significantly safe, stable, mucoadhesive and efficient to permeate the drug through rabbits' corneas. Consequently, the optimized CCMD formulation can be a promising, safe and efficient platform for the transcorneal delivery of lipophilic drugs including most antifungals.
Collapse
Affiliation(s)
- Sinar Sayed
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Ibrahim Elsayed
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt; Department of Pharmaceutical Sciences, College of Pharmacy, Gulf Medical University, United Arab Emirates.
| | - Maha M Ismail
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
34
|
Yamada T, Imai S, Koshizuka Y, Tazawa Y, Kagami K, Tomiyama N, Sugawara R, Yamagami A, Shimamura T, Iseki K. Necessity for a Significant Maintenance Dosage Reduction of Voriconazole in Patients with Severe Liver Cirrhosis (Child–Pugh Class C). Biol Pharm Bull 2018; 41:1112-1118. [DOI: 10.1248/bpb.b18-00164] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
| | - Shungo Imai
- Department of Pharmacy, Hokkaido University Hospital
| | - Yasuyuki Koshizuka
- Department of Gastroenterological Surgery I, Hokkaido University Graduate School of Medicine
| | - Yuki Tazawa
- Department of Pharmacy, Hokkaido University Hospital
| | | | | | | | | | | | - Ken Iseki
- Department of Pharmacy, Hokkaido University Hospital
- Division of Pharmasciences, Faculty of Pharmaceutical Sciences, Laboratory of Clinical Pharmaceutics and Therapeutics
| |
Collapse
|
35
|
Jenkins N, Black M, Schneider HG. Simultaneous determination of voriconazole, posaconazole, itraconazole and hydroxy-itraconazole in human plasma using LCMS/MS. Clin Biochem 2018; 53:110-115. [DOI: 10.1016/j.clinbiochem.2018.01.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 01/04/2018] [Accepted: 01/04/2018] [Indexed: 12/22/2022]
|
36
|
Hamandi B, Fegbeutel C, Silveira FP, Verschuuren EA, Younus M, Mo J, Yan J, Ussetti P, Chin-Hong PV, Solé A, Holmes-Liew CL, Billaud EM, Grossi PA, Manuel O, Levine DJ, Barbers RG, Hadjiliadis D, Aram J, Singer LG, Husain S. Voriconazole and squamous cell carcinoma after lung transplantation: A multicenter study. Am J Transplant 2018; 18:113-124. [PMID: 28898527 DOI: 10.1111/ajt.14500] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 08/04/2017] [Accepted: 08/30/2017] [Indexed: 01/25/2023]
Abstract
This study evaluated the independent contribution of voriconazole to the development of squamous cell carcinoma (SCC) in lung transplant recipients, by attempting to account for important confounding factors, particularly immunosuppression. This international, multicenter, retrospective, cohort study included adult patients who underwent lung transplantation during 2005-2008. Cox regression analysis was used to assess the effects of voriconazole and other azoles, analyzed as time-dependent variables, on the risk of developing biopsy-confirmed SCC. Nine hundred lung transplant recipients were included. Median follow-up time from transplantation to end of follow-up was 3.51 years. In a Cox regression model, exposure to voriconazole alone (adjusted hazard ratio 2.39, 95% confidence interval 1.31-4.37) and exposure to voriconazole and other azole(s) (adjusted hazard ratio 3.45, 95% confidence interval 1.07-11.06) were associated with SCC compared with those unexposed after controlling for important confounders including immunosuppressants. Exposure to voriconazole was associated with increased risk of SCC of the skin in lung transplant recipients. Residual confounding could not be ruled out because of the use of proxy variables to control for some confounders. Benefits of voriconazole use when prescribed to lung transplant recipients should be carefully weighed versus the potential risk of SCC. EU PAS registration number: EUPAS5269.
Collapse
Affiliation(s)
- B Hamandi
- Department of Pharmacy, University Health Network, Toronto, ON, Canada
| | - C Fegbeutel
- Department of Cardiothoracic, Transplant, and Vascular Surgery, Hannover Medical School, Hannover, Germany
| | - F P Silveira
- Division of Infectious Diseases, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - E A Verschuuren
- Department of Pulmonary Diseases, University Hospital Groningen, Groningen, the Netherlands
| | | | - J Mo
- Pfizer Inc., New York, NY, USA
| | - J Yan
- Pfizer Inc., New York, NY, USA
| | - P Ussetti
- Respiratory Department, Hospital Puerta de Hierro, Madrid, Spain
| | - P V Chin-Hong
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - A Solé
- Respiratory Department, University and Polytechnic Hospital La Fe, Universidad de Valencia, Valencia, Spain
| | - C L Holmes-Liew
- Lung Research, Hanson Institute, and Department of Thoracic Medicine, Royal Adelaide Hospital, Adelaide, Australia
| | - E M Billaud
- Service de Pharmacologie, AP-HP, Hôpital Européen G Pompidou, Paris, France
| | - P A Grossi
- Infectious Diseases Department, University of Insubria, Varese, Italy
| | - O Manuel
- Infectious Diseases Service and Transplantation Center, University Hospital of Lausanne, Lausanne, Switzerland
| | - D J Levine
- Division of Pulmonary and Critical Care Medicine, University of Texas Health Science Center San Antonio, San Antonio, TX, USA
| | - R G Barbers
- Division of Pulmonary and Critical Care, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - D Hadjiliadis
- Department of Medicine, University of Pennsylvania, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - J Aram
- Pfizer Inc., New York, NY, USA
| | - L G Singer
- Toronto Lung Transplant Program, University Health Network, Toronto, ON, Canada
| | - S Husain
- Multi-Organ Transplant Program, University Health Network, Toronto, ON, Canada
| |
Collapse
|
37
|
Mellinghoff SC, Panse J, Alakel N, Behre G, Buchheidt D, Christopeit M, Hasenkamp J, Kiehl M, Koldehoff M, Krause SW, Lehners N, von Lilienfeld-Toal M, Löhnert AY, Maschmeyer G, Teschner D, Ullmann AJ, Penack O, Ruhnke M, Mayer K, Ostermann H, Wolf HH, Cornely OA. Primary prophylaxis of invasive fungal infections in patients with haematological malignancies: 2017 update of the recommendations of the Infectious Diseases Working Party (AGIHO) of the German Society for Haematology and Medical Oncology (DGHO). Ann Hematol 2017; 97:197-207. [PMID: 29218389 PMCID: PMC5754425 DOI: 10.1007/s00277-017-3196-2] [Citation(s) in RCA: 146] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2017] [Accepted: 11/22/2017] [Indexed: 12/20/2022]
Abstract
Immunocompromised patients are at high risk of invasive fungal infections (IFI), in particular those with haematological malignancies undergoing remission-induction chemotherapy for acute myeloid leukaemia (AML) or myelodysplastic syndrome (MDS) and recipients of allogeneic haematopoietic stem cell transplants (HSCT). Despite the development of new treatment options in the past decades, IFI remains a concern due to substantial morbidity and mortality in these patient populations. In addition, the increasing use of new immune modulating drugs in cancer therapy has opened an entirely new spectrum of at risk periods. Since the last edition of antifungal prophylaxis recommendations of the German Society for Haematology and Medical Oncology in 2014, seven clinical trials regarding antifungal prophylaxis in patients with haematological malignancies have been published, comprising 1227 patients. This update assesses the impact of this additional evidence and effective revisions. Our key recommendations are the following: prophylaxis should be performed with posaconazole delayed release tablets during remission induction chemotherapy for AML and MDS (AI). Posaconazole iv can be used when the oral route is contraindicated or not feasible. Intravenous liposomal amphotericin B did not significantly decrease IFI rates in acute lymphoblastic leukaemia (ALL) patients during induction chemotherapy, and there is poor evidence to recommend it for prophylaxis in these patients (CI). Despite substantial risk of IFI, we cannot provide a stronger recommendation for these patients. There is poor evidence regarding voriconazole prophylaxis in patients with neutropenia (CII). Therapeutic drug monitoring TDM should be performed within 2 to 5 days of initiating voriconazole prophylaxis and should be repeated in case of suspicious adverse events or of dose changes of interacting drugs (BIItu). General TDM during posaconazole prophylaxis is not recommended (CIItu), but may be helpful in cases of clinical failure such as breakthrough IFI for verification of compliance or absorption.
Collapse
Affiliation(s)
- Sibylle C Mellinghoff
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany. .,Department I of Internal Medicine, German Centre for Infection Research (DZIF), University Hospital of Cologne, University of Cologne, Cologne, Germany.
| | - Jens Panse
- Department of Oncology, Haematology, Haemostaseology and Stem Cell Transplantation, University Hospital RWTH Aachen, Aachen, Germany
| | - Nael Alakel
- Department I of Internal Medicine, Haematology and Oncology, University Hospital Dresden, Dresden, Germany
| | - Gerhard Behre
- Division of Haematology and Oncology, Leipzig University Hospital, Leipzig, Germany
| | - Dieter Buchheidt
- Department of Internal Medicine-Haematology and Oncology, Mannheim University Hospital, Heidelberg University, Mannheim, Germany
| | - Maximilian Christopeit
- Department of Stem Cell Transplantation, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Justin Hasenkamp
- Clinic for Haematology and Medical Oncology with Department for Stem Cell Transplantation, University Medicine Göttingen, Göttingen, Germany
| | - Michael Kiehl
- Department I for Internal Medicine, Klinikum Frankfurt (Oder), Frankfurt (Oder), Germany
| | - Michael Koldehoff
- Department of Bone Marrow Transplantation, West German Cancer Centre, University Hospital of Essen, University of Duisburg-Essen, Duisburg, Germany
| | - Stefan W Krause
- Department V for Internal Medicine, University Hospital Erlangen, Erlangen, Germany
| | - Nicola Lehners
- Department of Internal Medicine V, Heidelberg University Hospital, Heidelberg, Germany
| | | | - Annika Y Löhnert
- Department I of Internal Medicine, German Centre for Infection Research (DZIF), University Hospital of Cologne, University of Cologne, Cologne, Germany
| | - Georg Maschmeyer
- Department of Haematology, Oncology and Palliative Care, Klinikum Ernst von Bergmann, Potsdam, Germany
| | - Daniel Teschner
- Department of Haematology, Medical Oncology, and Pneumology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Andrew J Ullmann
- Department II of Internal Medicine, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Olaf Penack
- Department for Haematology, Oncology and Tumour immunology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Markus Ruhnke
- Department of Haematology and Oncology, Paracelsus-Kliniken Osnabrück, Osnabrück, Germany
| | - Karin Mayer
- Department III of Internal Medicine, University Hospital Bonn, Bonn, Germany
| | - Helmut Ostermann
- Department of Haematology and Oncology, University of Munich, Munich, Germany
| | - Hans-H Wolf
- Department IV of Internal Medicine, University Hospital Halle, Halle, Germany
| | - Oliver A Cornely
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany.,Department I of Internal Medicine, German Centre for Infection Research (DZIF), University Hospital of Cologne, University of Cologne, Cologne, Germany.,Clinical Trials Centre Cologne (ZKS Köln), University of Cologne, Cologne, Germany
| |
Collapse
|
38
|
Development and validation of a liquid chromatography-tandem mass spectrometry assay for the simultaneous quantitation of 5 azole antifungals and 1 active metabolite. Clin Chim Acta 2017; 474:8-13. [DOI: 10.1016/j.cca.2017.08.032] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 08/25/2017] [Accepted: 08/28/2017] [Indexed: 12/11/2022]
|
39
|
Update on Therapeutic Drug Monitoring of Antifungals for the Prophylaxis and Treatment of Invasive Fungal Infections. CURRENT FUNGAL INFECTION REPORTS 2017. [DOI: 10.1007/s12281-017-0287-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
40
|
Omrani AS, Almaghrabi RS. Complications of hematopoietic stem transplantation: Fungal infections. Hematol Oncol Stem Cell Ther 2017. [PMID: 28636889 DOI: 10.1016/j.hemonc.2017.05.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Patients undergoing allogeneic hematopoietic stem cell transplantation (HSCT) are at increased risk of invasive fungal infections, especially during the early neutropenic phase and severe graft-versus-host disease. Mold-active prophylaxis should be limited to the highest risk groups. Empiric antifungal therapy for HSCT with persistent febrile neutropenia is associated with unacceptable response rates, unnecessary antifungal therapy, increased risk of toxicity, and inflated costs. Empiric therapy should not be a substitute for detailed work up to identify the cause of fever in such patients. The improved diagnostic performance of serum biomarkers such as galactomannan and β-D-glucan, as well as polymerase chain reaction assays has allowed the development of diagnostic-driven antifungal therapy strategies for high risk patients. Diagnostic-driven approaches have resulted in reduced unnecessary antifungal exposure, improved diagnosis of invasive fungal disease, and reduced costs without increased risk of mortality. The appropriateness of diagnostic-driven antifungal strategy for individual HSCT centers depends on the availability and turnaround times for diagnostics, multidisciplinary expertise, and the local epidemiology of invasive fungal infections. Echinocandins are the treatment of choice for invasive candidiasis in most HSCT recipients. Fluconazole may be used for the treatment of invasive candidiasis in hemodynamically stable patients with no prior azole exposure. The primary treatment of choice for invasive aspergillosis is voriconazole. Alternatives include isavuconazole and lipid formulations of amphotericin. Currently available evidence does not support routine primary combination antifungal therapy for invasive aspergillosis. However, combination salvage antifungal therapy may be considered in selected patients. Therapeutic drug monitoring is recommended for the majority of HSCT recipients on itraconazole, posaconazole, or voriconazole.
Collapse
Affiliation(s)
- Ali S Omrani
- Section of Infectious Diseases, Department of Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia.
| | - Reem S Almaghrabi
- Section of Infectious Diseases, Department of Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| |
Collapse
|
41
|
West KA, Gea-Banacloche J, Stroncek D, Kadri SS. Granulocyte transfusions in the management of invasive fungal infections. Br J Haematol 2017; 177:357-374. [PMID: 28295178 DOI: 10.1111/bjh.14597] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2016] [Accepted: 12/14/2016] [Indexed: 01/01/2023]
Abstract
Granulocyte transfusions have a long history of being used in patients with neutropenia or neutrophil dysfunction to prevent and treat invasive fungal infections. However, there are limited and conflicting data concerning its clinical effectiveness, considerable variations in current granulocyte transfusion practices, and uncertainties about its benefit as an adjunct to modern antifungal therapy. In this review, we provide an overview on granulocyte transfusions and summarize the evidence on their role in the prevention and treatment of invasive fungal infections.
Collapse
Affiliation(s)
- Kamille A West
- Department of Transfusion Medicine, National Institutes of Health Clinical Center, Bethesda, MD, USA
| | - Juan Gea-Banacloche
- Experimental Transplantation and Immunology Branch, National Cancer Institute, Bethesda, MD, USA
| | - David Stroncek
- Department of Transfusion Medicine, National Institutes of Health Clinical Center, Bethesda, MD, USA
| | - Sameer S Kadri
- Critical Care Medicine Department, National Institutes of Health Clinical Center, Bethesda, MD, USA
| |
Collapse
|
42
|
Dilokpattanamongkol P, Panusitthikorn P, Boonprasert R, Chayakulkeeree M, Rotjanapan P. A case report of intravenous posaconazole in hepatic and renal impairment patient with invasive Aspergillus terreus infection: safety and role of therapeutic drug monitoring. BMC Pharmacol Toxicol 2017; 18:8. [PMID: 28143591 PMCID: PMC5282663 DOI: 10.1186/s40360-017-0115-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 01/14/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Invasive aspergillosis (IA) is a fatal infectious complication among immunocompromised patients. Aspergillus terreus, the fourth common species can be difficult to treat due to a unique resistance pattern. To date, there has been no report on safety and dose adjustment when intravenous posaconazole is selected in hepatic and renal impairment patient. We present a rare case of intravenous posaconazole use in a hepatic and renal impairment patient with invasive A. terreus pulmonary infection. To our knowledge, this is the first report of intravenous posaconazole use in IA due to A. terreus with hepatic and renal impairment focusing on drug safety and role of therapeutic drug monitoring (TDM). CASE PRESENTATION A 37-year-old previously healthy man with diagnosis of dengue hemorrhagic fever and shock complicated with hepatic and renal impairment proposed to have proven invasive A. terreus pulmonary infection is described. Due to lack of good clinical response and concern of potential adverse effects whilst on intravenous voriconazole, intravenous posaconazole 300 mg every 48 h was chosen with confirmed therapeutic plasma concentrations. Despite the death of the patient and IA deemed uncontrollable, there were no significant side effects attributable to intravenous posaconazole use demonstrated over a period of 34 days. CONCLUSIONS Intravenous posaconazole use with TDM implementation maybe a safe alternative option to standard therapy. Therapeutic plasma posaconazole level may be reached at lower dosing regimen in renal and hepatic impairment patient. However, explanations of clinical failure on this patient with immunodeficiency state were multifactorial.
Collapse
Affiliation(s)
- Pitchaya Dilokpattanamongkol
- Department of Pharmacy, Faculty of Pharmacy, Mahidol University, 447 Sri-Ayutthaya Road, Ratchathewi, Bangkok, 10400, Thailand
| | - Panadda Panusitthikorn
- Department of Pharmacy, Faculty of Medicine, Siriraj Hospital, Mahidol University, 2 Wanglang Road Bangkoknoi, Bangkok, 10700, Thailand
| | - Rasda Boonprasert
- Clinical Toxicology Laboratory, Siriraj Poison Control Center, Faculty of Medicine, Siriraj Hospital, Mahidol University, 2 Wanglang Road Bangkoknoi, Bangkok, 10700, Thailand
| | - Methee Chayakulkeeree
- Division of Infectious Diseases and Tropical Medicine, Department of Medicine, Faculty of Medicine, Siriraj Hospital, Mahidol University, 2 Wanglang Road Bangkoknoi, Bangkok, 10700, Thailand
| | - Porpon Rotjanapan
- Division of Infectious Diseases, Department of Medicine, Ramathibodi Hospital, Mahidol University, 270 Rama VI Road, Ratchathewi, Bangkok, 10400, Thailand.
| |
Collapse
|
43
|
Samanta P, Singh N. Complications of invasive mycoses in organ transplant recipients. Expert Rev Anti Infect Ther 2016; 14:1195-1202. [PMID: 27690694 DOI: 10.1080/14787210.2016.1242412] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
INTRODUCTION Opportunistic mycoses remain a significant complication in organ recipients. Areas covered: This review is an evidence-based presentation of current state-of-knowledge and our perspective on recent developments in the field Expert commentary: Invasive fungal infections are associated with reduced allograft and patient survival, increase in healthcare resource utilization, and newly appreciated but largely unrecognized immunologic sequelae, such as immune reconstitution syndrome. Given adverse outcomes associated with established infections, prophylaxis is a widely used strategy for the prevention of these infections. Currently available biomarkers that detect circulating fungal cell wall constituents i.e., galactomannan and 1, 3-β-D-glucan have not proven to be beneficial as screening tools for employing targeted prophylaxis or as diagnostic assays in this patient population. However, subsets of patients at risk for opportunistic fungal infections can be identified based on clinically identifiable characteristics or events. Preventive strategies targeted towards these patients are a rational approach for optimizing outcomes.
Collapse
Affiliation(s)
- Palash Samanta
- a Division of Infectious Diseases , University of Pittsburgh , Pittsburgh , PA , USA
| | - Nina Singh
- b Division of Infectious Diseases , University of Pittsburgh and VA Pittsburgh Medical Center , Pittsburgh , PA , USA
| |
Collapse
|
44
|
Mukkada S, Kirby J, Apiwattanakul N, Hayden RT, Caniza MA. Use of Fungal Diagnostics and Therapy in Pediatric Cancer Patients in Resource-Limited Settings. CURRENT CLINICAL MICROBIOLOGY REPORTS 2016; 3:120-131. [PMID: 27672551 PMCID: PMC5034939 DOI: 10.1007/s40588-016-0038-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Fungal diseases are an important cause of mortality in immunocompromised hosts, and their incidence in pediatric cancer patients in low- to middle-income countries is underestimated. In this review, we present relevant, up-to-date information about the most common opportunistic and endemic fungal diseases among children with cancer, their geographic distribution, and recommended diagnostics and treatment. Efforts to improve the care of children with cancer and fungal disease must address the urgent need for sustainable and cost-effective solutions that improve training, fungal disease testing capability, and the use of available resources. We hope that the collective information presented here will be used to advise healthcare providers, regional and country health leaders, and policymakers of the current challenges in diagnosing and treating fungal infections in children with cancer in low- to middle-income countries.
Collapse
Affiliation(s)
- Sheena Mukkada
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, USA
- Division of Infectious Diseases, Department of Pediatrics, University of Tennessee Health Sciences Center, Memphis, TN, USA
| | - Jeannette Kirby
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Nopporn Apiwattanakul
- Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Randall T. Hayden
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Miguela A. Caniza
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Global Pediatric Medicine, St Jude Children’s Research Hospital, Memphis, TN, USA
- International Outreach Program, St. Jude Children's Research Hospital, Memphis, TN, USA
| |
Collapse
|
45
|
Yamazaki T, Desai A, Goldwater R, Han D, Lasseter KC, Howieson C, Akhtar S, Kowalski D, Lademacher C, Rammelsberg D, Townsend R. Pharmacokinetic Interactions Between Isavuconazole and the Drug Transporter Substrates Atorvastatin, Digoxin, Metformin, and Methotrexate in Healthy Subjects. Clin Pharmacol Drug Dev 2016; 6:66-75. [PMID: 27273004 PMCID: PMC5297980 DOI: 10.1002/cpdd.280] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 06/03/2016] [Indexed: 11/21/2022]
Abstract
This article summarizes 4 phase 1 trials that explored interactions between the novel, triazole antifungal isavuconazole and substrates of the drug transporters breast cancer resistance protein (BCRP), multidrug and toxin extrusion protein‐1 (MATE1), organic anion transporters 1/3 (OAT1/OAT3), organic anion‐transporting polypeptide 1B1 (OATP1B1), organic cation transporters 1/2 (OCT1/OCT2), and P‐glycoprotein (P‐gp). Healthy subjects received single doses of atorvastatin (20 mg; OATP1B1 and P‐gp substrate), digoxin (0.5 mg; P‐gp substrate), metformin (850 mg; OCT1, OCT2, and MATE1 substrate), or methotrexate (7.5 mg; BCRP, OAT1, and OAT3 substrate) in the presence and absence of clinical doses of isavuconazole (200 mg 3 times a day for 2 days; 200 mg once daily thereafter). Coadministration with isavuconazole increased mean area under the plasma concentration‐time curves (90% confidence interval) of atorvastatin, digoxin, and metformin to 137% (129, 145), 125% (117, 134), and 152% (138, 168) and increased mean maximum plasma concentrations to 103% (88, 121), 133% (119, 149), and 123% (109, 140), respectively. Methotrexate parameters were unaffected by isavuconazole. There were no serious adverse events. These findings indicate that isavuconazole is a weak inhibitor of P‐gp, as well as OCT1, OCT2, MATE1, or a combination thereof but not of BCRP, OATP1B1, OAT1, or OAT3.
Collapse
Affiliation(s)
| | - Amit Desai
- Astellas Pharma Global Development, Northbrook, IL, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Horn D, Goff D, Khandelwal N, Spalding J, Azie N, Shi F, Franks B, Shorr AF. Hospital resource use of patients receiving isavuconazole vs voriconazole for invasive mold infections in the phase III SECURE trial. J Med Econ 2016; 19:728-34. [PMID: 26960060 DOI: 10.3111/13696998.2016.1164175] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
OBJECTIVE In the phase III SECURE trial, isavuconazole was non-inferior to voriconazole for all-cause mortality for the primary treatment of invasive mold disease (IMD) caused by Aspergillus spp. and other filamentous fungi. This analysis assessed whether hospital resource utilization was different between patients treated with isavuconazole vs voriconazole in SECURE. METHODS The analysis population comprised adults with proven/probable/possible IMD enrolled in SECURE. The primary endpoint was hospital length of stay (LOS) in the overall trial population. Patients were also stratified by estimated glomerular filtration rate-modification of diet in renal disease category (< 60 mL/min/1.73 m(2) [moderate-to-severe impairment] and ≥60 mL/min/1.73 m(2) [mild or no impairment]), body mass index (BMI; <25, ≥25-<30, and ≥30 kg/m(2)), and age (≤45, >45-≤65, and >65 years). RESULTS Data from 516 patients (258 per arm) were evaluated. Overall, median LOS was not statistically significantly different between the isavuconazole (15.0 days) and voriconazole (16.0 days; p = 0.607) arms. Median LOS was statistically significantly shorter in patients with moderate-to-severe renal impairment treated with isavuconazole (9.0 days) vs voriconazole (19.0 days; hazard ratio [HR]: 3.44; 95% confidence interval [CI] = 1.51-7.83). Median LOS was shorter, but not significantly, in patients with a BMI ≥30 kg/m(2) (isavuconazole 13.5 days vs voriconazole 22 days; HR = 1.57; 95% CI = 0.70-3.52) or aged >65 years (isavuconazole 15.0 days vs voriconazole 20.0 days; HR = 1.37; 95% CI = 0.87-2.16). LIMITATIONS As the patient subgroups analyzed were small, sub-group findings should be interpreted with caution in light of the lack of statistical significance for each sub-group-by-treatment interaction. CONCLUSIONS Isavuconazole may reduce hospital LOS in certain subgroups of patients with IMD, especially those with moderate-to-severe renal impairment.
Collapse
Affiliation(s)
- David Horn
- a David Horn, LLC , Doylestown , PA , USA
| | - Debra Goff
- b The Ohio State University Wexner Medical Center , Columbus , OH , USA
| | | | - James Spalding
- c Astellas Pharma Global Development, Inc. , Northbrook , IL , USA
| | - Nkechi Azie
- c Astellas Pharma Global Development, Inc. , Northbrook , IL , USA
| | - Fei Shi
- c Astellas Pharma Global Development, Inc. , Northbrook , IL , USA
| | - Billy Franks
- c Astellas Pharma Global Development, Inc. , Northbrook , IL , USA
| | | |
Collapse
|
47
|
Luong ML, Al-Dabbagh M, Groll AH, Racil Z, Nannya Y, Mitsani D, Husain S. Utility of voriconazole therapeutic drug monitoring: a meta-analysis. J Antimicrob Chemother 2016; 71:1786-99. [DOI: 10.1093/jac/dkw099] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 02/29/2016] [Indexed: 11/12/2022] Open
|
48
|
Neofytos D, Ostrander D, Shoham S, Laverdiere M, Hiemenz J, Nguyen H, Clarke W, Brass L, Lu N, Marr KA. Voriconazole therapeutic drug monitoring: results of a prematurely discontinued randomized multicenter trial. Transpl Infect Dis 2015; 17:831-7. [PMID: 26346408 DOI: 10.1111/tid.12454] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Revised: 04/24/2015] [Accepted: 08/15/2015] [Indexed: 11/28/2022]
Abstract
BACKGROUND Voriconazole (VOR) levels are highly variable, with potential implications to both efficacy and safety. We hypothesized that VOR therapeutic drug monitoring (TDM) will decrease the incidence of treatment failures and adverse events (AEs). METHODS We initiated a prospective, randomized, non-blinded multicenter study to compare clinical outcomes in adult patients randomized to standard dosing (clinician-driven) vs. TDM (doses adjusted based on levels). VOR trough levels were obtained on day 5, 14, 28, and 42 (or at completion of drug; ± 3 days). Real-time dose adjustments were made to maintain a range between 1-5 μg/mL on the TDM-arm, while levels were assessed retrospectively in the standard-arm. Patient questionnaires were administered to assess subjective AEs. RESULTS The study was discontinued prematurely, after 29 patients were enrolled. Seventeen (58.6%) patients experienced 38 AEs: visual changes (22/38, 57.9%), neurological symptoms (13/38, 34.2%), and liver abnormalities (3/38, 7.9%). VOR was discontinued in 7 (25%) patients because of an AE (4 standard-arm, 3 TDM-arm). VOR levels were frequently out of range in the standard-arm (8 tests >5 μg/mL; 9 tests <1 μg/mL). Three dose changes occurred in the TDM-arm for VOR levels <1 μg/mL. Levels decreased over time in the standard-arm, with mean VOR levels lower at end of therapy compared to TDM (1.3 vs. 4.6 μg/mL, P = 0.008). CONCLUSIONS VOR TDM has become widespread clinical practice, based on known variability in drug levels, which impaired accrual in this study. Although comparative conclusions are limited, observations of variability and waning levels over time support TDM.
Collapse
Affiliation(s)
- D Neofytos
- School of Medicine, The Johns Hopkins University, Baltimore, Maryland, USA
| | - D Ostrander
- School of Medicine, The Johns Hopkins University, Baltimore, Maryland, USA
| | - S Shoham
- School of Medicine, The Johns Hopkins University, Baltimore, Maryland, USA
| | - M Laverdiere
- Hopital Maisonneuve-Rosemont, University of Montreal, Montreal, Quebec, Canada
| | - J Hiemenz
- University of Florida, Gaineville, Florida, USA
| | - H Nguyen
- University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - W Clarke
- School of Medicine, The Johns Hopkins University, Baltimore, Maryland, USA
| | - L Brass
- School of Medicine, The Johns Hopkins University, Baltimore, Maryland, USA
| | - N Lu
- School of Medicine, The Johns Hopkins University, Baltimore, Maryland, USA
| | - K A Marr
- School of Medicine, The Johns Hopkins University, Baltimore, Maryland, USA
| |
Collapse
|
49
|
Béïque L, Zvonar R. Addressing Concerns about Changing the Route of Antimicrobial Administration from Intravenous to Oral in Adult Inpatients. Can J Hosp Pharm 2015; 68:318-26. [PMID: 26327706 DOI: 10.4212/cjhp.v68i4.1472] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND Many health care institutions are in the process of establishing antimicrobial stewardship programs. Changing the route of administration of antimicrobial agents from intravenous to oral (IV to PO) is a simple, well-recognized intervention that is often part of an antimicrobial stewardship program. However, the attending health care team may have concerns about making this switch. OBJECTIVES To provide insights into common concerns related to IV to PO conversion, with the aim of helping antimicrobial stewardship teams to address them. DATA SOURCES Published clinical trials and reviews were identified from a literature search of Ovid MEDLINE with the keywords (step down or switch or conversion or transition or sequential) and (antibiotics or antibacterial agents or antimicrobial or anti-infective agents). DATA SYNTHESIS The following issues are addressed in this review: benefits of the oral route, serum concentrations yielded by the oral formulation, source of pharmacokinetic data, clinical outcomes, provision of care in the intensive care unit, fear of therapeutic failure, and administration of antimicrobials via feeding tube. CONCLUSIONS When considering a change to oral therapy, it is important to have a thorough understanding of key aspects of the antimicrobial agent, the patient, and the disease being treated. The antimicrobial stewardship team has an important role in facilitating IV to PO conversion, educating prescribers, and addressing any concerns or reservations that may interfere with timely transition from IV to PO administration.
Collapse
Affiliation(s)
- Lizanne Béïque
- BPharm, PharmD, is a Clinical Pharmacy Specialist for the Antimicrobial Stewardship Program, Pharmacy Department, The Ottawa Hospital, and a Clinical Investigator with the Ottawa Hospital Research Institute, Ottawa, Ontario
| | - Rosemary Zvonar
- BScPhm, ACPR, FCSHP, is currently Antimicrobial Stewardship Program Lead with Public Health Ontario (on leave from her position as Antimicrobial Pharmacy Specialist with the Pharmacy Department, The Ottawa Hospital, Ottawa, Ontario.)
| |
Collapse
|
50
|
Antifungal therapeutic drug monitoring: When, how, and why. Enferm Infecc Microbiol Clin 2015; 33:295-7. [DOI: 10.1016/j.eimc.2015.03.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 03/05/2015] [Indexed: 11/21/2022]
|