1
|
Charles OJ, Venturini C, Goldstein RA, Breuer J. HerpesDRG: a comprehensive resource for human herpesvirus antiviral drug resistance genotyping. BMC Bioinformatics 2024; 25:279. [PMID: 39192205 DOI: 10.1186/s12859-024-05885-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 07/29/2024] [Indexed: 08/29/2024] Open
Abstract
The prevention and treatment of many herpesvirus associated diseases is based on the utilization of antiviral therapies, however therapeutic success is limited by the development of drug resistance. Currently no single database cataloguing resistance mutations exists, which hampers the use of sequence data for patient management. We therefore developed HerpesDRG, a drug resistance mutation database that incorporates all the known resistance genes and current treatment options, built from a systematic review of available genotype to phenotype literature. The database is released along with an R package that provides a simple approach to resistance variant annotation and clinical implication analysis from common sanger and next generation sequencing data. This represents the first openly available and community maintainable database of drug resistance mutations for the human herpesviruses (HHV), developed for the community of researchers and clinicians tackling HHV drug resistance.
Collapse
Affiliation(s)
- O J Charles
- Department of Infection, Immunity and Inflammation, University College London, Great Ormond Street Institute of Child Health, London, WC1N 1EH, UK.
| | - C Venturini
- Department of Infection, Immunity and Inflammation, University College London, Great Ormond Street Institute of Child Health, London, WC1N 1EH, UK
| | - R A Goldstein
- Division of Infection and Immunity, University College London, London, WC1E 6BT, UK
| | - J Breuer
- Department of Infection, Immunity and Inflammation, University College London, Great Ormond Street Institute of Child Health, London, WC1N 1EH, UK
- Great Ormond Street Hospital for Children National Health Service Foundation Trust, London, WC1N 1LE, UK
| |
Collapse
|
2
|
Mokhtary P, Pourhashem Z, Mehrizi AA, Sala C, Rappuoli R. Recent Progress in the Discovery and Development of Monoclonal Antibodies against Viral Infections. Biomedicines 2022; 10:biomedicines10081861. [PMID: 36009408 PMCID: PMC9405509 DOI: 10.3390/biomedicines10081861] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/21/2022] [Accepted: 07/29/2022] [Indexed: 01/09/2023] Open
Abstract
Monoclonal antibodies (mAbs), the new revolutionary class of medications, are fast becoming tools against various diseases thanks to a unique structure and function that allow them to bind highly specific targets or receptors. These specialized proteins can be produced in large quantities via the hybridoma technique introduced in 1975 or by means of modern technologies. Additional methods have been developed to generate mAbs with new biological properties such as humanized, chimeric, or murine. The inclusion of mAbs in therapeutic regimens is a major medical advance and will hopefully lead to significant improvements in infectious disease management. Since the first therapeutic mAb, muromonab-CD3, was approved by the U.S. Food and Drug Administration (FDA) in 1986, the list of approved mAbs and their clinical indications and applications have been proliferating. New technologies have been developed to modify the structure of mAbs, thereby increasing efficacy and improving delivery routes. Gene delivery technologies, such as non-viral synthetic plasmid DNA and messenger RNA vectors (DMabs or mRNA-encoded mAbs), built to express tailored mAb genes, might help overcome some of the challenges of mAb therapy, including production restrictions, cold-chain storage, transportation requirements, and expensive manufacturing and distribution processes. This paper reviews some of the recent developments in mAb discovery against viral infections and illustrates how mAbs can help to combat viral diseases and outbreaks.
Collapse
Affiliation(s)
- Pardis Mokhtary
- Monoclonal Antibody Discovery Laboratory, Fondazione Toscana Life Sciences, 53100 Siena, Italy;
- Department of Biochemistry and Molecular Biology, University of Siena, 53100 Siena, Italy
| | - Zeinab Pourhashem
- Student Research Committee, Pasteur Institute of Iran, Tehran 1316943551, Iran;
- Malaria and Vector Research Group, Biotechnology Research Center, Pasteur Institute of Iran, Tehran 1316943551, Iran;
| | - Akram Abouei Mehrizi
- Malaria and Vector Research Group, Biotechnology Research Center, Pasteur Institute of Iran, Tehran 1316943551, Iran;
| | - Claudia Sala
- Monoclonal Antibody Discovery Laboratory, Fondazione Toscana Life Sciences, 53100 Siena, Italy;
- Correspondence: (C.S.); (R.R.)
| | - Rino Rappuoli
- Monoclonal Antibody Discovery Laboratory, Fondazione Toscana Life Sciences, 53100 Siena, Italy;
- Correspondence: (C.S.); (R.R.)
| |
Collapse
|
3
|
Yin Z, Sun J, Yang Y, Xu N, Jiang L, Fan Z, Huang F, Shi P, Wang Z, Xuan L, Xu J, Liu Q, Yu G. Cidofovir, a choice for salvage treatment of CMV infection in patients with haploidentical hematopoietic stem cell transplantation. Transpl Infect Dis 2021; 24:e13776. [PMID: 34941004 DOI: 10.1111/tid.13776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/18/2021] [Accepted: 11/21/2021] [Indexed: 11/29/2022]
Abstract
BACKGROUND Cidofovir (CDV) is a nucleotide analogue with broad antiviral activities. It remains unclear about the CDV administration for anti-cytomegalovirus (CMV) treatment in patients with haploidentical hematopoietic stem cell transplantation (haplo-HSCT). PATIENTS AND METHODS In this study, 31 out of 101 haplo-HSCT recipients suffered CMV infection in the CT group (conventional treatment) were enrolled into the CDV-ST group (CDV-second-line treatment). These patients were treated with CDV as they failed conventional treatment or they were unavailable to the preemptive antiviral therapy. Nine patients with CMV infection were enrolled into the CDV-FT group (CDV-frontline treatment) and received CDV preemptive therapy. RESULTS In the CDV-ST group, 23/28(82.1%) patients were observed treatment response with a median time of 9 (2-23) days, and 20 (71.8%) among these patients obtained complete response (CR). In the CDV-FT group, 6/8 (75.0%) patients acquired CR with a median of 6 (4-25) days. The treatment response in CDV-treated groups was comparable with those in CT groups. Besides, there was no statistical difference in CMV-related mortality between the three groups (P>0.05). During the follow-up period (Median follow-up:10 (1-28) months), a total of 8/22 (36.4%) patients experienced CMV reactivation in the CDV-ST group, versus 23/62 (37.1%) in CT group (P>0.05). CDV-related toxicities occurred in 13/40 (32.5%) patients, including 6 (15%) reversible nephrotoxicity. CONCLUSION Our study suggests that CDV is potentially an option for the salvage treatment of CMV infection in the haplo-HSCT patients. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Zhao Yin
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jing Sun
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ying Yang
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Na Xu
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ling Jiang
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zhiping Fan
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Fen Huang
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Pengcheng Shi
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zhixiang Wang
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Li Xuan
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jun Xu
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Qifa Liu
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Guopan Yu
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
4
|
Recent progress in development of monoclonal antibodies against human cytomegalovirus. Curr Opin Virol 2021; 52:166-173. [PMID: 34952264 DOI: 10.1016/j.coviro.2021.12.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 11/23/2021] [Accepted: 12/04/2021] [Indexed: 01/03/2023]
Abstract
Human cytomegalovirus (HCMV) is a ubiquitous pathogen that can cause permanent childhood disabilities following in utero infection and life threatening diseases in immune-compromised individuals such as those post transplantation. Without an effective vaccine, small molecule antiviral drugs are routinely used in high-risk transplant recipients, but the effectiveness of which is limited by side effects and drug resistance. The potentials of antibody-based passive immune therapies alone or in combination with the small molecule antivirals to treat or prevent HCMV infection have been actively studied. In this review, we focus on the recent publications on identification and characterization of monoclonal antibodies that have the potential to be developed as anti-HCMV therapies. We review the progress in clinical evaluation of antibody-based therapies to prevent HCMV-associated diseases.
Collapse
|
5
|
Yin Z, Yu GP, Xu N, Jiang L, Huang F, Fan ZP, Wang ZX, Xuan L, Liu QF, Sun J. [Clinical observation of cidofovir in salvage therapy for cytomegalovirus infection in patients with haploid hematopoietic stem cell transplantation]. ZHONGHUA XUE YE XUE ZA ZHI = ZHONGHUA XUEYEXUE ZAZHI 2020; 41:326-330. [PMID: 32447939 PMCID: PMC7364930 DOI: 10.3760/cma.j.issn.0253-2727.2020.04.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Indexed: 11/05/2022]
Affiliation(s)
- Z Yin
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - G P Yu
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - N Xu
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - L Jiang
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - F Huang
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Z P Fan
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Z X Wang
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - L Xuan
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Q F Liu
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - J Sun
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
6
|
The Third International Consensus Guidelines on the Management of Cytomegalovirus in Solid-organ Transplantation. Transplantation 2019; 102:900-931. [PMID: 29596116 DOI: 10.1097/tp.0000000000002191] [Citation(s) in RCA: 770] [Impact Index Per Article: 128.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Despite recent advances, cytomegalovirus (CMV) infections remain one of the most common complications affecting solid organ transplant recipients, conveying higher risks of complications, graft loss, morbidity, and mortality. Research in the field and development of prior consensus guidelines supported by The Transplantation Society has allowed a more standardized approach to CMV management. An international multidisciplinary panel of experts was convened to expand and revise evidence and expert opinion-based consensus guidelines on CMV management including prevention, treatment, diagnostics, immunology, drug resistance, and pediatric issues. Highlights include advances in molecular and immunologic diagnostics, improved understanding of diagnostic thresholds, optimized methods of prevention, advances in the use of novel antiviral therapies and certain immunosuppressive agents, and more savvy approaches to treatment resistant/refractory disease. The following report summarizes the updated recommendations.
Collapse
|
7
|
Rolling KE, Jorgenson MR, Descourouez JL, Mandelbrot DA, Redfield RR, Smith JA. Ganciclovir-Resistant Cytomegalovirus Infection in Abdominal Solid Organ Transplant Recipients: Case Series and Review of the Literature. Pharmacotherapy 2017; 37:1258-1271. [PMID: 28699311 DOI: 10.1002/phar.1987] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Ganciclovir-resistant cytomegalovirus (GR-CMV) is emerging as a significant infection in the abdominal transplant population. GR-CMV is difficult to manage, and treatment options are limited. We report a descriptive case series of 15 patients who had documented GR-CMV at our center and review the literature on treatment of GR-CMV. The first case in this series was detected in 2012; the majority of cases occurred after January 1, 2014, with approximately 50% occurring in 2015. UL97 and UL54 viral genome mutations were present in 100% and 40% of CMV-infected patients, respectively. GR-CMV infection occurred ≤ 1 year posttransplantation in 11 patients (73%). All patients experienced dose reduction of valganciclovir (the oral prodrug of ganciclovir) before the development of GR-CMV. Initial treatment for GR-CMV included a variety of regimens, all including reduction in maintenance immunosuppression. Of the 6 patients with detectable GR-CMV by polymerase chain reaction (PCR) who were discharged without GR-CMV treatment and had a length of stay (LOS) less than 14 days, 83% were subsequently readmitted for treatment of GR-CMV within 2 months (60% in < 20 days); none received leflunomide. Of six patients with a LOS ≥ 14 days, 80% had CMV PCR below quantification on hospital discharge, and only one patient was readmitted in less than 20 days; 83% received leflunomide. Following GR-CMV, there was a 50% rejection incidence, 27% graft loss, and 20% mortality. For patients with more than three admissions for GR-CMV treatment, 100% had a major complication: 60% rejection, 20% graft loss, and 40% mortality. Common clinical characteristics of patients with GR-CMV included high-risk serostatus, lymphocyte depletion, and history of valganciclovir dose reduction. Overall, outcomes were poor. It appears that hospital readmission rate was reduced when CMV was treated to negativity with an initial treatment regimen of reduced immunosuppression, foscarnet, intravenous immunoglobulins, and leflunomide.
Collapse
Affiliation(s)
| | - Margaret R Jorgenson
- Department of Pharmacy, University of Wisconsin Hospital and Clinics, Madison, Wisconsin
| | - Jillian L Descourouez
- Department of Pharmacy, University of Wisconsin Hospital and Clinics, Madison, Wisconsin
| | - Didier A Mandelbrot
- Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health, University of Wisconsin Hospital and Clinics, Madison, Wisconsin
| | - Robert R Redfield
- Department of Surgery, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin
| | - Jeannina A Smith
- Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health, University of Wisconsin Hospital and Clinics, Madison, Wisconsin
| |
Collapse
|
8
|
Bonatti H, Sifri CD, Larcher C, Schneeberger S, Kotton C, Geltner C. Use of Cidofovir for Cytomegalovirus Disease Refractory to Ganciclovir in Solid Organ Recipients. Surg Infect (Larchmt) 2017; 18:128-136. [DOI: 10.1089/sur.2015.266] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Affiliation(s)
- Hugo Bonatti
- Department of Surgery, University of Maryland, Shore Health System, Easton, Maryland
- Department for Visceral, Transplant and Thoracic Surgery, Innsbruck Medical University, Innsbruck, Austria
| | - Costi D. Sifri
- Department of Medicine, Division of Infectious Diseases and International Health, University of Virginia Health System, Charlottesville, Virginia
| | | | - Stefan Schneeberger
- Department for Visceral, Transplant and Thoracic Surgery, Innsbruck Medical University, Innsbruck, Austria
| | - Camille Kotton
- Division of Infectious Diseases, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | | |
Collapse
|
9
|
Campos AB, Ribeiro J, Boutolleau D, Sousa H. Human cytomegalovirus antiviral drug resistance in hematopoietic stem cell transplantation: current state of the art. Rev Med Virol 2016; 26:161-82. [DOI: 10.1002/rmv.1873] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Revised: 01/09/2016] [Accepted: 02/01/2016] [Indexed: 11/08/2022]
Affiliation(s)
- Ana Bela Campos
- Molecular Oncology and Viral Pathology Group (CI-IPOP); Porto Portugal
- Faculty of Medicine; University of Porto; Porto Portugal
| | - Joana Ribeiro
- Molecular Oncology and Viral Pathology Group (CI-IPOP); Porto Portugal
- Virology Service; Portuguese Oncology Institute of Porto; Porto Portugal
- Faculty of Medicine; University of Porto; Porto Portugal
| | - David Boutolleau
- Sorbonne Universités; UPMC Université Paris 06, CR7, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris); Paris France
- INSERM, U1135, CIMI-Paris; Paris France
- AP-HP, Hôpitaux Universitaires La Pitié-Salpêtrière - Charles Foix; Service de Virologie; Paris France
| | - Hugo Sousa
- Molecular Oncology and Viral Pathology Group (CI-IPOP); Porto Portugal
- Virology Service; Portuguese Oncology Institute of Porto; Porto Portugal
| |
Collapse
|