1
|
Fattahi AS, Khalili A, Hashemi SA, Najafizadeh P, Mazloom R, Khodayar S, Bayat G. A trend over time study of hepatic Farnesoid-X-activated receptor and its downstream targets modulation by valproic acid in mice. Toxicol Mech Methods 2024; 34:920-925. [PMID: 39319528 DOI: 10.1080/15376516.2024.2364192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 05/27/2024] [Accepted: 05/31/2024] [Indexed: 09/26/2024]
Abstract
Valproic acid (VA) is a broad-spectrum anticonvulsant agent that acts through several molecular mechanisms to control different types of seizures. The main concern of the drug is its liver toxicity. Considering the regulatory roles of the Farnesoid nuclear receptors and the nuclear transcription factor Nrf2 in modifying and neutralizing the harmful effects of oxidative damage, the present study was designed to evaluate the role of FXR-Nrf2 and some downstream target gene alterations in hepatotoxicity induced by VA. Thirty-five eight-week-old male albino mice were randomly divided into five groups, including a control group, and four groups were assigned to receive VA (300 mg/kg/day; oral) for 3, 7, 10, and 14 days. Serum levels of ALT, AST, ALP, and total and direct bilirubin (TB, DB) were measured. Liver histology and the expression of FXR, Nrf2, α-GST, SOD, and TNF-α were assessed using H&E staining and real-time RT-PCR techniques. Maximum extent of biochemical and histopathological damage was observed on the 14th day, but changes in the expression of FXR, Nrf2, α-GST, and SOD were seen at three points: a significant upregulation on the 3rd day, a remarkable downregulation on the 10th day, and a second-time upregulation on the 14th day. In conclusion, considering the observed dysregulation in FXR-Nrf2 cascade expression during VA administration, it seems that downregulation in this pathway and consequently its downstream detoxification and antioxidant genes may play a role in liver toxicity.
Collapse
Affiliation(s)
- Amir Saamaan Fattahi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Pharmaceutical Sciences Branch, Islamic Azad University, Tehran, Iran
| | - Azadeh Khalili
- Evidence-based Phytotherapy and Complementary Medicine Research Center, Alborz University of Medical Sciences, Karaj, Iran
- Department of Physiology-Pharmacology-Medical Physics, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Seyed Ali Hashemi
- Department of Pathology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Parvaneh Najafizadeh
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Pharmaceutical Sciences Branch, Islamic Azad University, Tehran, Iran
- Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Roham Mazloom
- Department of Physiology-Pharmacology-Medical Physics, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Sara Khodayar
- Department of Microbiology and Virology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Gholamreza Bayat
- Evidence-based Phytotherapy and Complementary Medicine Research Center, Alborz University of Medical Sciences, Karaj, Iran
- Department of Physiology-Pharmacology-Medical Physics, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| |
Collapse
|
2
|
The Expression of RAAS Key Receptors, Agtr2 and Bdkrb1, Is Downregulated at an Early Stage in a Rat Model of Wolfram Syndrome. Genes (Basel) 2021; 12:genes12111717. [PMID: 34828323 PMCID: PMC8621801 DOI: 10.3390/genes12111717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/22/2021] [Accepted: 10/27/2021] [Indexed: 11/25/2022] Open
Abstract
Wolfram syndrome (WS) 1 is a rare monogenic neurodegenerative disorder caused by mutations in the gene encoding WFS1. Knowledge of the pathophysiology of WS is incomplete and to date, there is no treatment available. Here, we describe early deviations in the renin-angiotensin-aldosterone system (RAAS) and bradykinin pathway (kallikrein kinin system, KKS) observed in a rat model of WS (Wfs1 KO) and the modulative effect of glucagon-like peptide-1 receptor agonist liraglutide (LIR) and anti-epileptic drug valproate (VPA), which have been proven effective in delaying WS progression in WS animal models. We found that the expression of key receptors of the RAAS and KKS, Agtr2 and Bdkrb1, were drastically downregulated both in vitro and in vivo at an early stage in a rat model of WS. Moreover, in Wfs1, KO serum aldosterone levels were substantially decreased and bradykinin levels increased compared to WT animals. Neither treatment nor their combination affected the gene expression levels seen in the Wfs1 KO animals. However, all the treatments elevated serum aldosterone and decreased bradykinin in the Wfs1 KO rats, as well as increasing angiotensin II levels independent of genotype. Altogether, our results indicate that Wfs1 deficiency might disturb the normal functioning of RAAS and KKS and that LIR and VPA have the ability to modulate these systems.
Collapse
|
3
|
Ivask M, Volke V, Raasmaja A, Kõks S. High-fat diet associated sensitization to metabolic stress in Wfs1 heterozygous mice. Mol Genet Metab 2021; 134:203-211. [PMID: 34312071 DOI: 10.1016/j.ymgme.2021.07.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 07/07/2021] [Accepted: 07/07/2021] [Indexed: 12/14/2022]
Abstract
Wolfram syndrome is a rare autosomal recessive disorder caused by mutations in the wolframin ER transmembrane glycoprotein (WFS1) gene and characterized by diabetes mellitus, diabetes insipidus, optic atrophy and deafness. In experimental models the homozygous Wfs1 mutant mice have a full penetrance and clearly expressed phenotype, whereas heterozygous mutants have a less-pronounced phenotype between the wild-type and homozygous mutant mice. Heterozygous WFS1 mutations have been shown to be significant risk factors for diabetes and metabolic disorders in humans. In the present study we analyzed the response of heterozygous Wfs1 mice to high fat diet (HFD) by exploring potential outcomes and molecular changes induced by this challenge. The HFD treatment increased the body weight (BW) similarly both in Wfs1 wild-type (WT) and heterozygous (HZ) mice, and therefore HFD also prevented the impaired BW gain found in Wfs1 mutant mice. In Wfs1HZ mutant mice, HFD impaired the normalized insulin secretion and the expression of ER stress genes in isolated pancreatic islets. These results suggest that Wfs1HZ mice have a decreased insulin response and pronounced cellular stress response due to a higher sensitivity to HFD as hypothesized. In Wfs1HZ mice, HFD increased the expression of Ire1α and Chop in pancreas and decreased that of Ire1α and Atf4 in liver. The present study shows that HFD can disturb insulin function with an increased ER stress in Wfs1HZ mice and only one functional Wfs1 gene copy is not sufficient to compensate this challenge. In conclusion, our study indicates that quantitative Wfs1 gene deficiency is sufficient to predispose the carriers of single functional Wfs1 copy to diabetes and metabolic syndrome and makes them susceptible to the environmental challenges such as HFD.
Collapse
Affiliation(s)
- Marilin Ivask
- Department of Pathophysiology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Vallo Volke
- Department of Pathophysiology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia; Endocrinology Unit, Tartu University Hospital, Tartu, Estonia
| | - Atso Raasmaja
- Department of Pathophysiology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia; Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, Finland.
| | - Sulev Kõks
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, WA, Australia; Perron Institute for Neurological and Translational Science, Perth, WA, Australia
| |
Collapse
|
4
|
Porosk R, Terasmaa A, Mahlapuu R, Soomets U, Kilk K. Metabolomics of the Wolfram Syndrome 1 Gene (Wfs1) Deficient Mice. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2018; 21:721-732. [PMID: 29257731 DOI: 10.1089/omi.2017.0143] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Wolfram syndrome 1 is a rare autosomal recessive neurodegenerative disease characterized by diabetes insipidus, diabetes mellitus, optic atrophy, and deafness. Mutations in the WFS1 gene encoding the wolframin glycoprotein can lead to endoplasmic reticulum stress and unfolded protein responses in cells, but the pathophysiology at whole organism level is poorly understood. In this study, several organs (heart, liver, kidneys, and pancreas) and bodily fluids (trunk blood and urine) of 2- and 6-month old Wfs1 knockout (KO), heterozygote (HZ), and wild-type (WT) mice were analyzed by untargeted and targeted metabolomics using liquid chromatography-mass spectrometry. The key findings were significant perturbations in the metabolism of pancreas and heart before the onset of related clinical signs such as glycosuria that precedes hyperglycemia and thus implies a kidney dysfunction before the onset of classical diabetic nephropathy. The glucose use and gluconeogenesis in KO mice are intensified in early stages, but later the energetic needs are mainly covered by lipolysis. Furthermore, in young mice liver and trunk blood hypouricemia, which in time turns to hyperuricemia, was detected. In summary, we show that the metabolism in Wfs1-deficient mice markedly differs from the metabolism of WT mice in many aspects and discuss the future biological and clinical relevance of these observations.
Collapse
Affiliation(s)
- Rando Porosk
- 1 Department of Biochemistry, Institute of Biomedicine and Translational Medicine, University of Tartu , Tartu, Estonia
| | - Anton Terasmaa
- 2 Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu , Tartu, Estonia
| | - Riina Mahlapuu
- 1 Department of Biochemistry, Institute of Biomedicine and Translational Medicine, University of Tartu , Tartu, Estonia
| | - Ursel Soomets
- 1 Department of Biochemistry, Institute of Biomedicine and Translational Medicine, University of Tartu , Tartu, Estonia
| | - Kalle Kilk
- 1 Department of Biochemistry, Institute of Biomedicine and Translational Medicine, University of Tartu , Tartu, Estonia
| |
Collapse
|
5
|
Ehrlich A, Tsytkin-Kirschenzweig S, Ioannidis K, Ayyash M, Riu A, Note R, Ouedraogo G, Vanfleteren J, Cohen M, Nahmias Y. Microphysiological flux balance platform unravels the dynamics of drug induced steatosis. LAB ON A CHIP 2018; 18:2510-2522. [PMID: 29992215 PMCID: PMC7004819 DOI: 10.1039/c8lc00357b] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Drug development is currently hampered by the inability of animal experiments to accurately predict human response. While emerging organ on chip technology offers to reduce risk using microfluidic models of human tissues, the technology still mostly relies on end-point assays and biomarker measurements to assess tissue damage resulting in limited mechanistic information and difficulties to detect adverse effects occurring below the threshold of cellular damage. Here we present a sensor-integrated liver on chip array in which oxygen is monitored using two-frequency phase modulation of tissue-embedded microprobes, while glucose, lactate and temperature are measured in real time using microfluidic electrochemical sensors. Our microphysiological platform permits the calculation of dynamic changes in metabolic fluxes around central carbon metabolism, producing a unique metabolic fingerprint of the liver's response to stimuli. Using our platform, we studied the dynamics of human liver response to the epilepsy drug Valproate (Depakine™) and the antiretroviral medication Stavudine (Zerit™). Using E6/E7LOW hepatocytes, we show TC50 of 2.5 and 0.8 mM, respectively, coupled with a significant induction of steatosis in 2D and 3D cultures. Time to onset analysis showed slow progressive damage starting only 15-20 hours post-exposure. However, flux analysis showed a rapid disruption of metabolic homeostasis occurring below the threshold of cellular damage. While Valproate exposure led to a sustained 15% increase in lipogenesis followed by mitochondrial stress, Stavudine exposure showed only a transient increase in lipogenesis suggesting disruption of β-oxidation. Our data demonstrates the importance of tracking metabolic stress as a predictor of clinical outcome.
Collapse
Affiliation(s)
- Avner Ehrlich
- Grass Center for Bioengineering, Benin School of Computer Science and Engineering, Jerusalem 91904, Israel.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Toots M, Seppa K, Jagomäe T, Koppel T, Pallase M, Heinla I, Terasmaa A, Plaas M, Vasar E. Preventive treatment with liraglutide protects against development of glucose intolerance in a rat model of Wolfram syndrome. Sci Rep 2018; 8:10183. [PMID: 29976929 PMCID: PMC6033861 DOI: 10.1038/s41598-018-28314-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 06/14/2018] [Indexed: 12/18/2022] Open
Abstract
Wolfram syndrome (WS) is a rare autosomal recessive disorder caused by mutations in the WFS1 (Wolframin1) gene. The syndrome first manifests as diabetes mellitus, followed by optic nerve atrophy, deafness, and neurodegeneration. The underlying mechanism is believed to be a dysregulation of endoplasmic reticulum (ER) stress response, which ultimately leads to cellular death. Treatment with glucagon-like peptide-1 (GLP-1) receptor agonists has been shown to normalize ER stress response in several in vitro and in vivo models. Early chronic intervention with the GLP-1 receptor agonist liraglutide starting before the onset of metabolic symptoms prevented the development of glucose intolerance, improved insulin and glucagon secretion control, reduced ER stress and inflammation in Langerhans islets in Wfs1 mutant rats. Thus, treatment with GLP-1 receptor agonists might be a promising strategy as a preventive treatment for human WS patients.
Collapse
Affiliation(s)
- Maarja Toots
- Institute of Biomedicine and Translational Medicine, Laboratory Animal Centre, University of Tartu, 14B Ravila Street, Tartu, 50411, Estonia
| | - Kadri Seppa
- Institute of Biomedicine and Translational Medicine, Department of Physiology, University of Tartu, 19 Ravila Street, Tartu, 50411, Estonia
| | - Toomas Jagomäe
- Institute of Biomedicine and Translational Medicine, Department of Physiology, University of Tartu, 19 Ravila Street, Tartu, 50411, Estonia
| | - Tuuliki Koppel
- Institute of Biomedicine and Translational Medicine, Laboratory Animal Centre, University of Tartu, 14B Ravila Street, Tartu, 50411, Estonia
| | - Maia Pallase
- Institute of Biomedicine and Translational Medicine, Laboratory Animal Centre, University of Tartu, 14B Ravila Street, Tartu, 50411, Estonia
| | - Indrek Heinla
- Institute of Biomedicine and Translational Medicine, Laboratory Animal Centre, University of Tartu, 14B Ravila Street, Tartu, 50411, Estonia
| | - Anton Terasmaa
- Institute of Biomedicine and Translational Medicine, Department of Physiology, University of Tartu, 19 Ravila Street, Tartu, 50411, Estonia
| | - Mario Plaas
- Institute of Biomedicine and Translational Medicine, Department of Physiology, University of Tartu, 19 Ravila Street, Tartu, 50411, Estonia. .,Institute of Biomedicine and Translational Medicine, Laboratory Animal Centre, University of Tartu, 14B Ravila Street, Tartu, 50411, Estonia.
| | - Eero Vasar
- Institute of Biomedicine and Translational Medicine, Department of Physiology, University of Tartu, 19 Ravila Street, Tartu, 50411, Estonia.,Centre of Excellence for Genomics and Translational Medicine, University of Tartu, Ravila 19, Tartu, 50411, Estonia
| |
Collapse
|
7
|
Wfs1- deficient rats develop primary symptoms of Wolfram syndrome: insulin-dependent diabetes, optic nerve atrophy and medullary degeneration. Sci Rep 2017; 7:10220. [PMID: 28860598 PMCID: PMC5579261 DOI: 10.1038/s41598-017-09392-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 07/26/2017] [Indexed: 01/19/2023] Open
Abstract
Wolfram syndrome (WS) is a rare autosomal-recessive disorder that is caused by mutations in the WFS1 gene and is characterized by juvenile-onset diabetes, optic atrophy, hearing loss and a number of other complications. Here, we describe the creation and phenotype of Wfs1 mutant rats, in which exon 5 of the Wfs1 gene is deleted, resulting in a loss of 27 amino acids from the WFS1 protein sequence. These Wfs1-ex5-KO232 rats show progressive glucose intolerance, which culminates in the development of diabetes mellitus, glycosuria, hyperglycaemia and severe body weight loss by 12 months of age. Beta cell mass is reduced in older mutant rats, which is accompanied by decreased glucose-stimulated insulin secretion from 3 months of age. Medullary volume is decreased in older Wfs1-ex5-KO232 rats, with the largest decreases at the level of the inferior olive. Finally, older Wfs1-ex5-KO232 rats show retinal gliosis and optic nerve atrophy at 15 months of age. Electron microscopy revealed axonal degeneration and disorganization of the myelin in the optic nerves of older Wfs1-ex5-KO232 rats. The phenotype of Wfs1-ex5-KO232 rats indicates that they have the core symptoms of WS. Therefore, we present a novel rat model of WS.
Collapse
|
8
|
Chatterjee SS, Mitra S, Pal SK. Mania in Wolfram's Disease: From Bedside to Bench. CLINICAL PSYCHOPHARMACOLOGY AND NEUROSCIENCE 2017; 15:70-72. [PMID: 28138115 PMCID: PMC5290722 DOI: 10.9758/cpn.2017.15.1.70] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Revised: 12/19/2015] [Accepted: 01/05/2016] [Indexed: 11/18/2022]
Abstract
Wolfram syndrome is a relatively unexplored entity in clinical psychiatry. Historically, the discovery of a specific WFS1 gene had generated huge fanfare regarding specific genetic causations of psychiatric disorders. While the initial enthusiasm has faded now, association of Wolfram syndrome with psychiatric illnesses like schizophrenia, psychosis and suicidal behavior still remain important for understanding biological underpinnings of such disorders. We report a case of Wolfram syndrome presenting with multiple manic episodes, discuss possible genetic underpinnings for the affective symptoms and then discuss certain issues regarding management.
Collapse
Affiliation(s)
| | - Sayantanava Mitra
- Consultant Psychiatrist, Calcutta National Medical College, Kolkata, India
| | - Salil Kumar Pal
- Department of Endocrinology, Calcutta National Medical College, Kolkata, India
| |
Collapse
|
9
|
Tein K, Kasvandik S, Kõks S, Vasar E, Terasmaa A. Prohormone convertase 2 activity is increased in the hippocampus of Wfs1 knockout mice. Front Mol Neurosci 2015; 8:45. [PMID: 26379490 PMCID: PMC4548212 DOI: 10.3389/fnmol.2015.00045] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 08/10/2015] [Indexed: 12/17/2022] Open
Abstract
Background: Mutations in WFS1 gene cause Wolfram syndrome, which is a rare autosomal recessive disorder, characterized by diabetes insipidus, diabetes mellitus, optic nerve atrophy, and deafness. The WFS1 gene product wolframin is located in the endoplasmic reticulum. Mice lacking this gene exhibit disturbances in the processing and secretion of peptides, such as vasopressin and insulin. In the brain, high levels of the wolframin protein have been observed in the hippocampus, amygdala, and limbic structures. The aim of this study was to investigate the effect of Wfs1 knockout (KO) on peptide processing in mouse hippocampus. A peptidomic approach was used to characterize individual peptides in the hippocampus of wild-type and Wfs1 KO mice. Results: We identified 126 peptides in hippocampal extracts and the levels of 10 peptides differed between Wfs1 KO and wild-type mice at P < 0.05. The peptide with the largest alteration was little-LEN, which level was 25 times higher in the hippocampus of Wfs1 KO mice compared to wild-type mice. Processing (cleavage) of little-LEN from the Pcsk1n gene product proSAAS involves prohormone convertase 2 (PC2). Thus, PC2 activity was measured in extracts prepared from the hippocampus of Wfs1 KO mice. The activity of PC2 in Wfs1 mutant mice was significantly higher (149.9 ± 2.3%, p < 0.0001, n = 8) than in wild-type mice (100.0 ± 7.0%, n = 8). However, Western blot analysis showed that protein levels of 7B2, proPC2 and PC2 were same in both groups, and so were gene expression levels. Conclusion: Processing of proSAAS is altered in the hippocampus of Wfs1-KO mice, which is caused by increased activity of PC2. Increased activity of PC2 in Wfs1 KO mice is not caused by alteration in the levels of PC2 protein. Our results suggest a functional link between Wfs1 and PC2. Thus, the detailed molecular mechanism of the role of Wfs1 in the regulation of PC2 activity needs further investigation.
Collapse
Affiliation(s)
- Karin Tein
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu Tartu, Estonia
| | - Sergo Kasvandik
- Proteomics core facility, Institute of Technology, University of Tartu Tartu, Estonia
| | - Sulev Kõks
- Department of Pathophysiology, Institute of Biomedicine and Translational Medicine, University of Tartu Tartu, Estonia ; Department of Reproductive Biology, Estonian University of Life Sciences Tartu, Estonia
| | - Eero Vasar
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu Tartu, Estonia
| | - Anton Terasmaa
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu Tartu, Estonia
| |
Collapse
|