1
|
Sari MF, Esen F, Cetin B. Concentration levels, spatial variations and exchanges of polychlorinated biphenyls (PCBs) in ambient air, surface water and sediment in Bursa, Türkiye. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 880:163224. [PMID: 37019236 DOI: 10.1016/j.scitotenv.2023.163224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 03/28/2023] [Accepted: 03/29/2023] [Indexed: 04/14/2023]
Abstract
In this study, ambient air, surface water and sediment samples were simultaneously collected and analyzed for PCBs to investigate their levels, spatial variations and exchanges between these three compartments at different sampling sites for 12 months in Bursa, Türkiye. During the sampling period, a total of 41 PCB concentrations were determined in the ambient air, surface water (dissolved and particle phase) and sediment. Thus, 945.9 ± 491.6 pg/m3 (average ± STD), 53.8 ± 54.7 ng/L, 92.8 ± 59.3 ng/L and 71.4 ± 38.7 ng/g, respectively. The highest concentrations of PCBs in the ambient air and in water particulate phase were measured at the industrial/agricultural sampling site (1308.6 ± 252.1 pg/m3 and 168.7 ± 21.2 ng/L, respectively), ∼ 4-10 times higher than background sites; while the highest concentrations in the sediment and dissolved phase were measured at the urban/agricultural sampling sites (163.8 ± 27.0 ng/L and 145.7 ± 15.3 ng/g, respectively), ∼ 5-20 times higher than background sites. PCB transitions between ambient air-surface water (fA/fW) and surface water-sediment (fW/fS) were investigated by fugacity ratio calculations. According to the fugacity ratios obtained, volatilization from the surface water to the ambient air was observed at all sampling sites (98.7 % of fA/fW ratios are <1.0). Additionally, it has been determined that there is a transport from the surface water to the sediment (100.0 % of fW/fS ratios are higher than 1.0). The flux values in ambient air-surface water and surface water-sediment environments ranged from -1.2 to 1770.6 pg/m2-day and from -225.9 to 0.001 pg/m2-day, respectively. The highest flux values were measured for PCBs with low chlorine content (Mono-, Di-Cl PCBs), while the lowest flux values were measured for the high chlorine content PCBs (Octa-, Nona- and Deca-Cl PCBs). As it was determined in this study that surface waters contaminated by PCBs have the potential to pollute both air and sediments, it will be important to take measures to protect surface waters.
Collapse
Affiliation(s)
- Mehmet Ferhat Sari
- Department of Environmental Engineering, Bursa Uludag University, 16059 Nilufer, Bursa, Türkiye
| | - Fatma Esen
- Department of Environmental Engineering, Bursa Uludag University, 16059 Nilufer, Bursa, Türkiye.
| | - Banu Cetin
- Department of Environmental Engineering, Gebze Technical University (GTU), 41400 Gebze, Kocaeli, Türkiye
| |
Collapse
|
2
|
Agasti N, Gautam V, Priyanka, Manju, Pandey N, Genwa M, Meena P, Tandon S, Samantaray R. Carbon nanotube based magnetic composites for decontamination of organic chemical pollutants in water: A review. APPLIED SURFACE SCIENCE ADVANCES 2022; 10:100270. [DOI: 10.1016/j.apsadv.2022.100270] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/17/2024]
|
3
|
Azizi D, Arif A, Blair D, Dionne J, Filion Y, Ouarda Y, Pazmino AG, Pulicharla R, Rilstone V, Tiwari B, Vignale L, Brar SK, Champagne P, Drogui P, Langlois VS, Blais JF. A comprehensive review on current technologies for removal of endocrine disrupting chemicals from wastewaters. ENVIRONMENTAL RESEARCH 2022; 207:112196. [PMID: 34634314 DOI: 10.1016/j.envres.2021.112196] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 09/22/2021] [Accepted: 10/06/2021] [Indexed: 05/25/2023]
Abstract
In the recent years, endocrine disrupting compounds (EDCs) has received increasing attention due to their significant toxic effects on human beings and wildlife by affecting their endocrine systems. As an important group of emerging pollutant, EDCs have been detected in various aquatic environments, including surface waters, groundwater, wastewater, runoff, and landfill leachates. Their removal from water resources has also been an emerging concern considering growing population as well as reducing access to fresh water resources. EDC removal from wastewaters is highly dependent on physicochemical properties of the given EDCs present in each wastewater types as well as various aquatic environments. Due to chemical, physical and physicochemical diversities in these parameters, variety of technologies consisting of physical, biological, electrochemical, and chemical processes have been developed for their removal. This review highlights that the effectiveness of EDC removal is highly dependent of selecting the appropriate technology; which decision is made upon a full wastewater chemical characterization. This review aims to provide a comprehensive perspective about all the current technologies used for EDCs removal from various aquatic matrices along with rising challenges such as the antimicrobial resistance gene transfer during EDC treatment.
Collapse
Affiliation(s)
- Dariush Azizi
- Centre Eau, Terre et Environnement (ETE), Institut National de la Recherche Scientifique (INRS), Université du Québec, 490 Rue de la Couronne, Québec, QC, G1K 9A9, Canada
| | - Ayman Arif
- Beaty Water Research Centre, Department of Civil Engineering, Union Street, Queen's University, Kingston, K7L 3Z6, Canada
| | - David Blair
- Beaty Water Research Centre, Department of Civil Engineering, Union Street, Queen's University, Kingston, K7L 3Z6, Canada
| | - Justine Dionne
- Centre Eau, Terre et Environnement (ETE), Institut National de la Recherche Scientifique (INRS), Université du Québec, 490 Rue de la Couronne, Québec, QC, G1K 9A9, Canada
| | - Yves Filion
- Beaty Water Research Centre, Department of Civil Engineering, Union Street, Queen's University, Kingston, K7L 3Z6, Canada
| | - Yassine Ouarda
- Centre Eau, Terre et Environnement (ETE), Institut National de la Recherche Scientifique (INRS), Université du Québec, 490 Rue de la Couronne, Québec, QC, G1K 9A9, Canada
| | - Ana Gisell Pazmino
- Centre Eau, Terre et Environnement (ETE), Institut National de la Recherche Scientifique (INRS), Université du Québec, 490 Rue de la Couronne, Québec, QC, G1K 9A9, Canada
| | - Rama Pulicharla
- Department of Civil Engineering, Lassonde School of Engineering, York University, Canada
| | - Victoria Rilstone
- Beaty Water Research Centre, Department of Civil Engineering, Union Street, Queen's University, Kingston, K7L 3Z6, Canada
| | - Bhagyashree Tiwari
- Centre Eau, Terre et Environnement (ETE), Institut National de la Recherche Scientifique (INRS), Université du Québec, 490 Rue de la Couronne, Québec, QC, G1K 9A9, Canada
| | - Leah Vignale
- Beaty Water Research Centre, Department of Civil Engineering, Union Street, Queen's University, Kingston, K7L 3Z6, Canada
| | - Satinder Kaur Brar
- Department of Civil Engineering, Lassonde School of Engineering, York University, Canada
| | - Pascale Champagne
- Centre Eau, Terre et Environnement (ETE), Institut National de la Recherche Scientifique (INRS), Université du Québec, 490 Rue de la Couronne, Québec, QC, G1K 9A9, Canada; Beaty Water Research Centre, Department of Civil Engineering, Union Street, Queen's University, Kingston, K7L 3Z6, Canada
| | - Patrick Drogui
- Centre Eau, Terre et Environnement (ETE), Institut National de la Recherche Scientifique (INRS), Université du Québec, 490 Rue de la Couronne, Québec, QC, G1K 9A9, Canada
| | - Valerie S Langlois
- Centre Eau, Terre et Environnement (ETE), Institut National de la Recherche Scientifique (INRS), Université du Québec, 490 Rue de la Couronne, Québec, QC, G1K 9A9, Canada
| | - Jean-François Blais
- Centre Eau, Terre et Environnement (ETE), Institut National de la Recherche Scientifique (INRS), Université du Québec, 490 Rue de la Couronne, Québec, QC, G1K 9A9, Canada.
| |
Collapse
|
4
|
Evaluation of the Safety of High-Salt Wastewater Treatment in Coal Chemical Industry Based on the AHP Fuzzy Method. J CHEM-NY 2021. [DOI: 10.1155/2021/7107058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Aim. Epichlorohydrin (ECH) is a widely used chemical product. The production of glycerol has its irreplaceable advantages. With the development of biodiesel industry, it will become the main trend of ECH production in the future. Methods. A vacuum evaporation device is built to investigate the effect of evaporation on the treatment of this kind of high-salt wastewater, and the feasibility of the thermodynamic equation of the simulation process is verified. Process. An AHR fuzzy mathematics evaluation algorithm is used to compare experimental values with simulated numerical values in brine. Results and Conclusions. In the multieffect evaporation process simulation with glycerin-containing brine, the amount of salt precipitated by unit steam energy is arranged in order from more to less than that of seven-effect parallel flow evaporation, is greater than five-effect parallel flow evaporation, and is larger than three-effect parallel flow evaporation, which shows that the increase of validity number is beneficial to the utilization of heat.
Collapse
|
5
|
Lu Q, Liang Y, Fang W, Guan KL, Huang C, Qi X, Liang Z, Zeng Y, Luo X, He Z, Mai B, Wang S. Spatial Distribution, Bioconversion and Ecological Risk of PCBs and PBDEs in the Surface Sediment of Contaminated Urban Rivers: A Nationwide Study in China. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:9579-9590. [PMID: 33852286 DOI: 10.1021/acs.est.1c01095] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Surface sediments of polluted urban rivers can be a reservoir of hydrophobic persistent organic pollutants (POPs). In this study, we comprehensively assessed the contamination of two groups of POPs, that is, polychlorinated biphenyls (PCBs) and polybrominated diphenyl ethers (PBDEs), in 173 black-odorous urban rivers in China. Spatial distribution of PCBs and PBDEs showed similar patterns but very different contamination levels in surface sediments, that is, average concentrations of 10.73 and 401.16 ng/g dw for the ∑PCBs and ∑PBDEs, respectively. Tetra-/di-CBs and deca-BDE are major PCBs and PBDEs and accounted for 59.11 and 95.11 wt % of the ∑PCBs and ∑PBDEs, respectively. Compared with the persistence of PBDEs, the EF changes of chiral PCBs together with previous cultivation evidence indicated indigenous bioconversion of PCBs in black-odorous urban rivers, particularly the involvement of uncharacterized Dehalococcoidia in PCB dechlorination. Major PCB sources (and their relative contributions) included pigment/painting (25.36%), e-waste (22.92%), metallurgical industry (13.25%), and e-waste/biological degradation process (10.95%). A risk assessment indicated that exposure of resident organisms in urban river sediments to deca-/penta-BDEs could pose a high ecological risk. This study provides the first insight into the contamination, conversion and ecological risk of PCBs and PBDEs in nationwide polluted urban rivers in China.
Collapse
Affiliation(s)
- Qihong Lu
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou 510006, China
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Yongyi Liang
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou 510006, China
| | - Wenwen Fang
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou 510006, China
| | - Ke-Lan Guan
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Chenchen Huang
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Xuemeng Qi
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Zhiwei Liang
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou 510006, China
| | - Yanhong Zeng
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Xiaojun Luo
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Zhili He
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou 510006, China
| | - Bixian Mai
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Shanquan Wang
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou 510006, China
| |
Collapse
|
6
|
Anh HQ, Watanabe I, Minh TB, Takahashi S. Unintentionally produced polychlorinated biphenyls in pigments: An updated review on their formation, emission sources, contamination status, and toxic effects. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 755:142504. [PMID: 33035974 DOI: 10.1016/j.scitotenv.2020.142504] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 08/31/2020] [Accepted: 09/15/2020] [Indexed: 06/11/2023]
Abstract
The formation, emission, environmental occurrence, and potential adverse effects of unintentionally produced polychlorinated biphenyls (PCBs) in pigments are reviewed, providing a comprehensive and up-to-date picture on these pollutants. PCBs are typically formed during manufacturing of organic pigments that involve chlorinated intermediates and reaction solvents, rather than those of inorganic pigments. Concentrations and profiles of PCBs vary greatly among pigment types and producers, with total PCB levels ranging from lower than detection limits to several hundred ppm; major components can be low-chlorinated (e.g., CB-11) or high-chlorinated congeners (e.g., CB-209). Pigment-derived PCBs can be released into the environment through different steps including pigment production, application, and disposal. They can contaminate atmospheric, terrestrial, and aquatic ecosystems, and then affect organisms living there. This situation garners scientific and public attention to nonlegacy emissions of PCBs and suggests the need for appropriate monitoring, management, and abatement strategies regarding these pollutants.
Collapse
Affiliation(s)
- Hoang Quoc Anh
- Faculty of Chemistry, University of Science, Vietnam National University, Hanoi, 19 Le Thanh Tong, Hanoi 100000, Viet Nam.
| | - Isao Watanabe
- Center of Advanced Technology for the Environment (CATE), Graduate School of Agriculture, Ehime University, 3-5-7 Tarumi, Matsuyama 790-8566, Japan
| | - Tu Binh Minh
- Faculty of Chemistry, University of Science, Vietnam National University, Hanoi, 19 Le Thanh Tong, Hanoi 100000, Viet Nam
| | - Shin Takahashi
- Center of Advanced Technology for the Environment (CATE), Graduate School of Agriculture, Ehime University, 3-5-7 Tarumi, Matsuyama 790-8566, Japan.
| |
Collapse
|
7
|
Zhao S, Jones KC, Li J, Sweetman AJ, Liu X, Xu Y, Wang Y, Lin T, Mao S, Li K, Tang J, Zhang G. Evidence for Major Contributions of Unintentionally Produced PCBs in the Air of China: Implications for the National Source Inventory. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:2163-2171. [PMID: 31851493 DOI: 10.1021/acs.est.9b06051] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Polychlorinated biphenyls (PCBs) were not widely manufactured or used in China before they became the subject of international bans on production. Recent work has shown that they have reached China associated with imported wastes and that there are considerable unintentional sources of PCBs that have only recently been identified. As such, it was hypothesized that the source inventory and profile of PCBs may be different or unique in China, compared to countries where they were widely used and which have been widely studied. For the first time in this study, we undertook a complete analysis of 209 PCB congeners and assessed the contribution of unintentionally produced PCBs (UP-PCBs) in the atmosphere of China, using polyurethane foam passive air samplers (PUF-PAS) deployed across a wide range of Chinese locations. ∑209 PCBs ranged from 9 to 6856 pg/m3 (median: 95 pg/m3) during three deployments in 2016-2017. PCB 11 was one of the most detected congeners, contributing 33 ± 19% to ∑209 PCBs. The main sources to airborne PCBs in China were estimated and ranked as pigment/painting (34%), metallurgical industry/combustion (31%), e-waste (23%), and petrochemical/plastic industry (6%). For typical Aroclor-PCBs, e-waste sources were dominated (>50%). Results from our study indicate that UP-PCBs have become the controlling source in the atmosphere of China, and an effective control strategy is urgently needed to mitigate emissions from multiple industrial sources.
Collapse
Affiliation(s)
- Shizhen Zhao
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry , Chinese Academy of Sciences , Guangzhou 510640 , China
| | - Kevin C Jones
- Lancaster Environment Centre , Lancaster University , Lancaster LA1 4YQ , U.K
| | - Jun Li
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry , Chinese Academy of Sciences , Guangzhou 510640 , China
| | - Andrew J Sweetman
- Lancaster Environment Centre , Lancaster University , Lancaster LA1 4YQ , U.K
| | - Xin Liu
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry , Chinese Academy of Sciences , Guangzhou 510640 , China
| | - Yue Xu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry , Chinese Academy of Sciences , Guiyang 550002 , China
| | - Yan Wang
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology , Dalian University of Technology , Dalian 116024 , China
| | - Tian Lin
- College of Marine Ecology and Environment , Shanghai Ocean University , Shanghai 201306 , China
| | - Shuduan Mao
- College of Environmental and Resource Sciences , Zhejiang University , Hangzhou 310058 , China
| | - Kechang Li
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry , Chinese Academy of Sciences , Guangzhou 510640 , China
| | - Jiao Tang
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry , Chinese Academy of Sciences , Guangzhou 510640 , China
| | - Gan Zhang
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry , Chinese Academy of Sciences , Guangzhou 510640 , China
| |
Collapse
|
8
|
Kumari P, Bahadur N, Dumée LF. Photo-catalytic membrane reactors for the remediation of persistent organic pollutants – A review. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2019.115878] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
9
|
Brito IDA, López-Barrera EA, Araújo SBL, Ribeiro CADO. Modeling the exposure risk of the silver catfish Rhamdia quelen (Teleostei, Heptapteridae) to wastewater. Ecol Modell 2017. [DOI: 10.1016/j.ecolmodel.2016.12.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
10
|
Vorkamp K. An overlooked environmental issue? A review of the inadvertent formation of PCB-11 and other PCB congeners and their occurrence in consumer products and in the environment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 541:1463-1476. [PMID: 26490526 DOI: 10.1016/j.scitotenv.2015.10.019] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 10/05/2015] [Accepted: 10/05/2015] [Indexed: 05/25/2023]
Abstract
Polychlorinated biphenyls (PCBs) are banned from production and use in most countries as they are persistent organic pollutants (POPs) of concern for environment and health. Recent research has pointed at a new environment issue resulting from the inadvertent formation of PCBs in certain processes, in particular the pigment production. PCB-11 is a major by-product in these processes, but PCB-28, PCB-52, PCB-77 as well as the nonachlorinated PCBs and PCB-209 have been found in pigments and consumer products as well. In addition to environmental emissions via point sources, in particular related to industrial and municipal wastewater, atmospheric transport seems to be important for the global distribution of PCB-11. Thus, PCB-11 has also been detected in the polar regions. Worldwide air concentrations appear relatively uniform, but maxima have been found in urban and industrialised areas. Data on the uptake and accumulation of PCB-11 in the food chain are still inconclusive: Although food web studies do not show biomagnification, PCB-11 has been detected in humans. The human exposure might originate from the direct contact to consumer products as well as from the omnipresence of PCB-11 in the environment.
Collapse
Affiliation(s)
- Katrin Vorkamp
- Aarhus University, Department of Environmental Science, Frederiksborgvej 399, 4000 Roskilde, Denmark.
| |
Collapse
|
11
|
Koh WX, Hornbuckle KC, Thorne PS. Human Serum from Urban and Rural Adolescents and Their Mothers Shows Exposure to Polychlorinated Biphenyls Not Found in Commercial Mixtures. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:8105-12. [PMID: 26053216 PMCID: PMC4774248 DOI: 10.1021/acs.est.5b01854] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Although polychlorinated biphenyls are no longer sold as commercial mixtures, they are still being produced through modern manufacturing processes. We have previously shown that non-Aroclor PCB 11 is prevalent in indoor and outdoor air and sediment and detected in human serum. Here we report the prevalence of non-Aroclor PCB congeners (≤0.20 wt % in Aroclor) in human serum collected from urban and rural adolescents and their mothers. We hypothesized that additional non-Aroclor congeners are present in serum. Sera were extracted and detected for 209 PCBs using gas chromatography-tandem mass spectrometry. A list of 70 non-Aroclor PCB congeners was determined by measurement of original Aroclors. PCB 11, 14, 35, and 209 are the major dominating and most frequently detected congeners. PCB 14 and 35 have not been previously reported for environmental matrices. Adolescents have significantly lower total non-Aroclor PCB concentrations than mothers in East Chicago (p < 0.001) and Columbus Junction (p = 0.008). There are significant differences in non-Aroclor PCBs between East Chicago community and Columbus Junction community (p < 0.001). Non-Aroclor PCBs represent an average of 10% (and up to 50%) of total PCBs measured in serum. An average of 50% (and up to 100%) of these concentrations may be attributed to aryl azo and phthalocyanine paint pigments.
Collapse
Affiliation(s)
- Wen Xin Koh
- Interdisciplinary Graduate Program in Human Toxicology, The University of Iowa, Iowa City, Iowa 52242, United States
| | - Keri C. Hornbuckle
- Interdisciplinary Graduate Program in Human Toxicology, The University of Iowa, Iowa City, Iowa 52242, United States
- Department of Civil and Environmental Engineering, The University of Iowa, Iowa City, Iowa 52242, United States
- Corresponding Author: Phone: (319) 335-4216 (P.S.T.); 319-384-0789 (K.C.H.). Fax: (319) 384-4138 (P.S.T.); (319) 335-5660 (K.C.H.). (P.S.T.); (K.C.H.)
| | - Peter S. Thorne
- Interdisciplinary Graduate Program in Human Toxicology, The University of Iowa, Iowa City, Iowa 52242, United States
- Department of Occupational and Environmental Health, The University of Iowa, Iowa City, Iowa 52242, United States
- Corresponding Author: Phone: (319) 335-4216 (P.S.T.); 319-384-0789 (K.C.H.). Fax: (319) 384-4138 (P.S.T.); (319) 335-5660 (K.C.H.). (P.S.T.); (K.C.H.)
| |
Collapse
|