1
|
Aitchison AH, Allen NB, O’Neill CN, Droz LG, Patel P, Anastasio AT, Reilly RM, Pean CA, DeBaun MR, Nunley JA, Adams SB. Synovial Fluid Immune Cell Composition Following Intraarticular Fracture May Contribute to Posttraumatic Osteoarthritis. Int J Mol Sci 2024; 25:12037. [PMID: 39596106 PMCID: PMC11593866 DOI: 10.3390/ijms252212037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 11/05/2024] [Accepted: 11/07/2024] [Indexed: 11/28/2024] Open
Abstract
Intra-articular ankle fracture (IAF) often leads to post-traumatic osteoarthritis (PTOA), resulting in significant long-term morbidity. While previous research has focused on the inflammatory cytokines and matrix metalloproteinases within the synovial fluid fracture hematoma (SFFH), the immune cell populations within SFFH that contribute to PTOA development remain underexplored. This study aimed to characterize the immune cell populations in SFFH to better understand their role in the inflammatory response and potential for inducing lasting cartilage damage. Twenty-four patients with IAF underwent surgical ankle aspiration to collect SFFH, which was analyzed using polychromatic flow cytometry. The analysis revealed that 72.8% of the CD45+ cells were lymphocytes, predominantly CD3+ T cells (76.5%), with 42.1% being CD4+ and 39.2% CD8+ T cells. Additionally, monocytes accounted for 21.2% of CD45+ cells, with small populations of natural killer cells and myeloid-derived suppressor cells also present. These findings emphasize the predominance of T cells, particularly CD4+ subsets, in the immune response following IAF. Understanding these dynamics is essential for developing targeted interventions to prevent PTOA. Future research should focus on elucidating the specific roles of these immune cell populations in PTOA progression and exploring potential therapeutic strategies.
Collapse
Affiliation(s)
- Alexandra Hunter Aitchison
- Department of Orthopaedic Surgery, Duke University Health System, Durham, NC 27710, USA; (A.H.A.); (N.B.A.); (C.N.O.); (L.G.D.); (A.T.A.); (R.M.R.); (C.A.P.); (M.R.D.); (J.A.N.)
| | - Nicholas B. Allen
- Department of Orthopaedic Surgery, Duke University Health System, Durham, NC 27710, USA; (A.H.A.); (N.B.A.); (C.N.O.); (L.G.D.); (A.T.A.); (R.M.R.); (C.A.P.); (M.R.D.); (J.A.N.)
| | - Conor N. O’Neill
- Department of Orthopaedic Surgery, Duke University Health System, Durham, NC 27710, USA; (A.H.A.); (N.B.A.); (C.N.O.); (L.G.D.); (A.T.A.); (R.M.R.); (C.A.P.); (M.R.D.); (J.A.N.)
| | - Lindsey G. Droz
- Department of Orthopaedic Surgery, Duke University Health System, Durham, NC 27710, USA; (A.H.A.); (N.B.A.); (C.N.O.); (L.G.D.); (A.T.A.); (R.M.R.); (C.A.P.); (M.R.D.); (J.A.N.)
| | - Prekshaben Patel
- Duke Immune Profiling Core, Duke University Health System, Durham, NC 27710, USA;
| | - Albert T. Anastasio
- Department of Orthopaedic Surgery, Duke University Health System, Durham, NC 27710, USA; (A.H.A.); (N.B.A.); (C.N.O.); (L.G.D.); (A.T.A.); (R.M.R.); (C.A.P.); (M.R.D.); (J.A.N.)
| | - Rachel M. Reilly
- Department of Orthopaedic Surgery, Duke University Health System, Durham, NC 27710, USA; (A.H.A.); (N.B.A.); (C.N.O.); (L.G.D.); (A.T.A.); (R.M.R.); (C.A.P.); (M.R.D.); (J.A.N.)
| | - Christian A. Pean
- Department of Orthopaedic Surgery, Duke University Health System, Durham, NC 27710, USA; (A.H.A.); (N.B.A.); (C.N.O.); (L.G.D.); (A.T.A.); (R.M.R.); (C.A.P.); (M.R.D.); (J.A.N.)
| | - Malcolm R. DeBaun
- Department of Orthopaedic Surgery, Duke University Health System, Durham, NC 27710, USA; (A.H.A.); (N.B.A.); (C.N.O.); (L.G.D.); (A.T.A.); (R.M.R.); (C.A.P.); (M.R.D.); (J.A.N.)
| | - James A. Nunley
- Department of Orthopaedic Surgery, Duke University Health System, Durham, NC 27710, USA; (A.H.A.); (N.B.A.); (C.N.O.); (L.G.D.); (A.T.A.); (R.M.R.); (C.A.P.); (M.R.D.); (J.A.N.)
| | - Samuel B. Adams
- Department of Orthopaedic Surgery, Duke University Health System, Durham, NC 27710, USA; (A.H.A.); (N.B.A.); (C.N.O.); (L.G.D.); (A.T.A.); (R.M.R.); (C.A.P.); (M.R.D.); (J.A.N.)
| |
Collapse
|
2
|
Allen NB, Aitchison AH, Bagheri K, Guardino NJ, Abar B, Adams SB. Exposure of Tissue-Engineered Cartilage Analogs to Synovial Fluid Hematoma After Ankle Fracture Is Associated With Chondrocyte Death and Altered Cartilage Maintenance Gene Expression. Foot Ankle Int 2023; 44:922-930. [PMID: 37329280 DOI: 10.1177/10711007231178829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
BACKGROUND The first stage of fracture healing consists of hematoma formation with recruitment of proinflammatory cytokines and matrix metalloproteinases. Unfortunately, when there is an intra-articular fracture, these inflammatory mediators are not retained at the fracture site, but instead, envelop the healthy cartilage of the entire joint via the synovial fluid fracture hematoma (SFFH). These inflammatory cytokines and matrix metalloproteinases are known factors in the progression of osteoarthritis and rheumatoid arthritis. Despite the known inflammatory contents of the SFFH, little research has been done on the effects of the SFFH on healthy cartilage with regard to cell death and alteration in gene expression that could lead to posttraumatic osteoarthritis (PTOA). METHODS SFFH was collected from 12 patients with intraarticular ankle fracture at the time of surgery. Separately, C20A4 immortalized human chondrocytes were 3-dimensionally cultured to create scaffold-free cartilage tissue analogs (CTAs) to simulate healthy cartilage. Experimental CTAs (n = 12) were exposed to 100% SFFH for 3 days, washed, and transferred to complete media for 3 days. Control CTAs (n = 12) were simultaneously cultured in complete medium without exposure to SFFH. Subsequently, CTAs were harvested and underwent biochemical, histological, and gene expression analysis. RESULTS Exposure of CTAs to ankle SFFH for 3 days significantly decreased chondrocyte viability by 34% (P = .027). Gene expression of both COL2A1 and SOX9 were significantly decreased after exposure to SFFH (P = .012 and P = .0013 respectively), while there was no difference in COL1A1, RUNX2, and MMP13 gene expression. Quantitative analysis of Picrosirius red staining demonstrated increased collagen I deposition with poor ultrastructural organization in SFFH-exposed CTAs. CONCLUSION Exposure of an organoid model of healthy cartilage tissue to SFFH after intraarticular ankle fracture resulted in decreased chondrocyte viability, decreased expression of genes regulating normal chondrocyte phenotype, and altered matrix ultrastructure indicating differentiation toward an osteoarthritis phenotype. CLINICAL RELEVANCE The majority of ankle fracture open reduction and internal fixation does not occur immediately after fracture. In fact, typically these fractures are treated several days to weeks later in order to let the swelling subside. This means that the healthy innocent bystander cartilage not involved in the fracture is exposed to SFFH during this time. In this study, the SFFH caused decreased chondrocyte viability and specific altered gene expression that might have the potential to induce osteoarthritis. These data suggest that early intervention after intraarticular ankle fracture could possibly mitigate progression toward PTOA.
Collapse
Affiliation(s)
- Nicholas B Allen
- Department of Orthopaedic Surgery, Duke University Medical Center, Durham, NC, USA
| | | | - Kian Bagheri
- Department of Orthopaedic Surgery, Duke University Medical Center, Durham, NC, USA
| | - Nicholas J Guardino
- Department of Orthopaedic Surgery, Duke University Medical Center, Durham, NC, USA
| | - Bijan Abar
- Department of Orthopaedic Surgery, Duke University Medical Center, Durham, NC, USA
- Department of Mechanical Engineering and Material Science, Duke University, Durham, NC, USA
| | - Samuel B Adams
- Department of Orthopaedic Surgery, Duke University Medical Center, Durham, NC, USA
| |
Collapse
|
3
|
Longo UG, Papalia R, De Salvatore S, Picozzi R, Sarubbi A, Denaro V. Induced Models of Osteoarthritis in Animal Models: A Systematic Review. BIOLOGY 2023; 12:283. [PMID: 36829562 PMCID: PMC9953428 DOI: 10.3390/biology12020283] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/05/2023] [Accepted: 02/06/2023] [Indexed: 02/15/2023]
Abstract
The most common induction methods for OA are mechanical, surgical and chemical. However, there is not a gold standard in the choice of OA animal models, as different animals and induction methods are helpful in different contexts. Reporting the latest evidence and results in the literature could help researchers worldwide to define the most appropriate indication for OA animal-model development. This review aims to better define the most appropriate animal model for various OA conditions. The research was conducted on the following literature databases: Medline, Embase, Cinahl, Scopus, Web of Science and Google Scholar. Studies reporting cases of OA in animal models and their induction from January 2010 to July 2021 were included in the study and reviewed by two authors. The literature search retrieved 1621 articles, of which 36 met the selection criteria and were included in this review. The selected studies included 1472 animals. Of all the studies selected, 8 included information about the chemical induction of OA, 19 were focused on mechanical induction, and 9 on surgical induction. Nevertheless, it is noteworthy that several induction models, mechanical, surgical and chemical, have been proven suitable for the induction of OA in animals.
Collapse
Affiliation(s)
- Umile Giuseppe Longo
- Research Unit of Orthopaedic and Trauma Surgery, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo 200, 00128 Roma, Italy
- Research Unit of Orthopaedic and Trauma Surgery, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo 21, 00128 Roma, Italy
| | - Rocco Papalia
- Research Unit of Orthopaedic and Trauma Surgery, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo 200, 00128 Roma, Italy
- Research Unit of Orthopaedic and Trauma Surgery, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo 21, 00128 Roma, Italy
| | - Sergio De Salvatore
- Research Unit of Orthopaedic and Trauma Surgery, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo 200, 00128 Roma, Italy
- Research Unit of Orthopaedic and Trauma Surgery, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo 21, 00128 Roma, Italy
- Department of Orthopedics, Children’s Hospital Bambino Gesù, 00165 Roma, Italy
| | - Riccardo Picozzi
- Research Unit of Orthopaedic and Trauma Surgery, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo 200, 00128 Roma, Italy
- Research Unit of Orthopaedic and Trauma Surgery, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo 21, 00128 Roma, Italy
| | - Antonio Sarubbi
- Research Unit of Orthopaedic and Trauma Surgery, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo 200, 00128 Roma, Italy
- Research Unit of Orthopaedic and Trauma Surgery, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo 21, 00128 Roma, Italy
| | - Vincenzo Denaro
- Research Unit of Orthopaedic and Trauma Surgery, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo 200, 00128 Roma, Italy
- Research Unit of Orthopaedic and Trauma Surgery, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo 21, 00128 Roma, Italy
| |
Collapse
|
4
|
Santos S, Richard K, Fisher MC, Dealy CN, Pierce DM. Chondrocytes respond both anabolically and catabolically to impact loading generally considered non-injurious. J Mech Behav Biomed Mater 2020; 115:104252. [PMID: 33385951 DOI: 10.1016/j.jmbbm.2020.104252] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Revised: 11/25/2020] [Accepted: 12/03/2020] [Indexed: 11/24/2022]
Abstract
We aimed to determine the longitudinal effects of low-energy (generally considered non-injurious) impact loading on (1) chondrocyte proliferation, (2) chondroprogenitor cell activity, and (3) EGFR signaling. In an in vitro study, we assessed 127 full-thickness, cylindrical osteochondral plugs of bovine cartilage undergoing either single, uniaxial unconfined impact loads with energy densities in the range of 1.5-3.2mJ/mm3 or no impact (controls). We quantified cell responses at two, 24, 48, and 72 h via immunohistochemical labeling of Ki67, Sox9, and pEGFR antibodies. We compared strain, stress, and impact energy density as predictors for mechanotransductive responses from cells, and fit significant correlations using linear regressions. Our study demonstrates that low-energy mechanical impacts (1.5-3.2mJ/mm3) generally stimulate time-dependent anabolic responses in the superficial zone of articular cartilage and catabolic responses in the middle and deep zones. We also found that impact energy density is the most consistent predictor of cell responses to low-energy impact loading. These spatial and temporal changes in chondrocyte behavior result directly from low-energy mechanical impacts, revealing a new level of mechanotransductive sensitivity in chondrocytes not previously appreciated.
Collapse
Affiliation(s)
- Stephany Santos
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, United States of America
| | - Kelsey Richard
- Department of Global Health, University of Connecticut, Storrs, CT, United States of America
| | - Melanie C Fisher
- Center for Regenerative Medicine and Skeletal Development, Department of Reconstructive Services, University of Connecticut Health Center, Farmington, CT, United States of America
| | - Caroline N Dealy
- Center for Regenerative Medicine and Skeletal Development, Department of Reconstructive Services, University of Connecticut Health Center, Farmington, CT, United States of America; Department of Orthopaedic Surgery, University of Connecticut Health Center, Farmington, CT, United States of America
| | - David M Pierce
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, United States of America; Department of Mechanical Engineering, University of Connecticut, Storrs, CT, United States of America.
| |
Collapse
|
5
|
Haller JM, Ross H, Jacobson K, Ou Z, Rothberg D, Githens M. Supination adduction ankle fractures: Ankle fracture or pilon variant? Injury 2020; 51:759-763. [PMID: 31932039 DOI: 10.1016/j.injury.2020.01.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 11/26/2019] [Accepted: 01/05/2020] [Indexed: 02/02/2023]
Abstract
BACKGROUND Supination adduction (SAD) fractures are rotational ankle fractures with a characteristic vertical medial malleolus fracture and tension failure fibula fracture. While these fractures are considered rotational injuries, they can have joint impaction that could lead to early joint degeneration. The purpose of this study was to characterize SAD ankle fractures and compare these injuries with partial articular pilon fractures. METHODS Following IRB approval, we retrospectively reviewed ankle and pilon fractures (OTA 43 & 44) treated at two academic level-1 trauma centers from 2008-2016. Our primary outcome was failure defined as either ankle arthrodesis or arthroplasty. Infection and significant arthrosis were also compared. We performed multivariate Cox regression to compare failure between SAD ankles and pilon fractures. RESULTS Seventy-nine SAD ankle and 91 pilon fractures met inclusion criteria. Patient demographics including age and open injury did not differ between groups. For SAD ankle fractures, impaction occurred in 66% (44/79) of injuries. Impaction failed to be significant risk factor for arthrosis after adjustment for malreduction (p = 0.13). Failure was significantly more common in pilon fractures (11/91, 12%) than SAD fractures (5/79, 6%) (HR=0.25, 95% CI:[0.07,0.92], p = 0.036). Infection and arthrosis rates failed to show a difference between the groups (p = 0.19, 0.63, respectively). Malreduction was significantly associated with joint arthrosis (OR=7.05, 95% CI: [1.63,36.12], p = 0.01). CONCLUSION Rotational ankle fractures have low rates (<2%) of ankle arthrodesis or arthroplasty. The present study demonstrates that SAD ankles have failure (6%) that remains somewhere between rotational ankle fractures and pilon fractures (12%) on the ankle injury spectrum. LEVEL OF EVIDENCE Level 3, Prognostic.
Collapse
Affiliation(s)
- Justin M Haller
- Department of Orthopaedic Surgery, University of Utah School of Medicine, 590 Wakara Way Salt Lake City, UT 84108 United States.
| | - Hunter Ross
- Department of Orthopedic Surgery, MetroHealth Hospital - University of Michigan Health, Wyoming, MI United States
| | - Kimberly Jacobson
- Department of Orthopedic Surgery, Harborview Medical Center, University of Washington, Seattle WA United States
| | - Zhining Ou
- Division of Epidemiology, Department of Internal Medicine, University of Utah, Salt Lake City, UT United States
| | - David Rothberg
- Department of Orthopaedic Surgery, University of Utah School of Medicine, 590 Wakara Way Salt Lake City, UT 84108 United States
| | - Michael Githens
- Department of Orthopedic Surgery, Harborview Medical Center, University of Washington, Seattle WA United States
| |
Collapse
|
6
|
Jeong SY, Kang ML, Park JW, Im GI. Dual functional nanoparticles containing SOX duo and ANGPT4 shRNA for osteoarthritis treatment. J Biomed Mater Res B Appl Biomater 2019; 108:234-242. [PMID: 30957437 DOI: 10.1002/jbm.b.34383] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Revised: 03/09/2019] [Accepted: 03/24/2019] [Indexed: 12/15/2022]
Abstract
In our previous studies, we found that adult stem cells transfected with sex-determining region Y-box (SOX)-9, -6 and -5 genes (SOX trio) enhanced chondrogenesis and suppressed the progression of osteoarthritis (OA). The inhibition of angiopoietin-like 4 (ANGPT4) is known to reduce levels of cartilage damaging enzymes, such as, matrix metalloproteinases (MMPs). In this study, we designed nanoparticles comprising dexamethasone-conjugated polyethylenimine (DEX PEI) complexed with minicircle plasmid (MC) harboring SOX duo (SOX-9, -6) and ANGPTL4 small hairpin RNA (shANG) [MC SOX9/6/shANG] in the expectation that transfection of these nanoparticles would enhance chondrogenesis of stem cells and suppress inflammation in OA. Adipose-derived stem cells (ADSCs) transfected with MC SOX9/6/shANG (MC SOX9/6/shANG-tADSCs) showed significantly higher expressions of COL2 gene and protein than MC SOX9/6-transfected ADSCs (MC SOX9/6-tADSCs) during in vitro chondrogenesis while both enhanced chondrogenesis in the absence of growth factor addition as compared with negative controls. Furthermore, the expressions of MMP13 and MMP3 genes were significantly more diminished in MC SOX9/6/shANG-tADSCs than in MC SOX9/6-tADSCs. In vivo experiments using surgically-induced OA rats showed MC SOX9/6/shANG-tADSC-treated rats had significantly lower levels of cyclooxygenase (COX-2) and MMP13 in synovial fluids than MC SOX9/6-tADSC-treated rats, but no significant difference was observed between them in histological appearances. Both groups showed significantly less joint destruction than control groups did. These results demonstrate that dual functional nanoparticles containing SOX duo and ANGPT4 shRNA enhance chondrogenesis of ADSCs and suppress inflammation in OA. © 2019 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 108B:234-242, 2020.
Collapse
Affiliation(s)
- Se-Young Jeong
- Integrative Research Institute for Regenerative Medical Engineering, Dongguk University, 814 Siksa-Dong, 411-773, Goyang, Republic of Korea
| | - Mi-Lan Kang
- Integrative Research Institute for Regenerative Medical Engineering, Dongguk University, 814 Siksa-Dong, 411-773, Goyang, Republic of Korea
| | - Jeong-Won Park
- Integrative Research Institute for Regenerative Medical Engineering, Dongguk University, 814 Siksa-Dong, 411-773, Goyang, Republic of Korea
| | - Gun-Il Im
- Integrative Research Institute for Regenerative Medical Engineering, Dongguk University, 814 Siksa-Dong, 411-773, Goyang, Republic of Korea
| |
Collapse
|
7
|
Xia C, Mei S, Gu C, Zheng L, Fang C, Shi Y, Wu K, Lu T, Jin Y, Lin X, Chen P. Decellularized cartilage as a prospective scaffold for cartilage repair. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 101:588-595. [PMID: 31029352 DOI: 10.1016/j.msec.2019.04.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 03/29/2019] [Accepted: 04/01/2019] [Indexed: 01/10/2023]
Abstract
Articular cartilage lacks self-healing capacity, and there is no effective therapy facilitating cartilage repair. Osteoarthritis (OA) due to cartilage defects represents large and increasing healthcare burdens worldwide. Nowadays, the generation of scaffolds to preserve bioactive factors and the biophysical environment has received increasing attention. Furthermore, improved decellularization technology has provided novel insights into OA treatment. This review provides a comparative account of different cartilage defect therapies. Furthermore, some recent effective decellularization protocols have been discussed. In particular, this review focuses on the decellularization ratio of each protocol. Moreover, these protocols were compared particularly on the basis of immunogenicity and mechanical functionality. Further, various recellularization methods have been enlisted and the reparative capacity of decellularized cartilage scaffolds is evaluated herein. The advantages and limitations of different recellularization processes have been described herein. This provides a basis for the generation of decellularized cartilage scaffolds, thereby potentially promoting the possibility of decellularization as a clinical therapeutic target.
Collapse
Affiliation(s)
- Chen Xia
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, China; Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, China; Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Sheng Mei
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, China; Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, China
| | - Chenhui Gu
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, China; Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, China
| | - Lin Zheng
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, China; Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, China; Department of Orthopedics, 5th Affiliated Hospital, Lishui Municipal Central Hospital, Wenzhou Medical University, Lishui, China
| | - Chen Fang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, China; Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, China
| | - Yiling Shi
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, China; Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, China
| | - Kaiwei Wu
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, China; Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, China
| | - Tongtong Lu
- Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Yongming Jin
- Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China.
| | - Xianfeng Lin
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, China; Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, China.
| | - Pengfei Chen
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, China; Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, China.
| |
Collapse
|
8
|
McCulloch RS, Mente PL, O’Nan AT, Ashwell MS. Articular cartilage gene expression patterns in the tissue surrounding the impact site following applications of shear and axial loads. BMC Musculoskelet Disord 2018; 19:449. [PMID: 30579353 PMCID: PMC6303924 DOI: 10.1186/s12891-018-2374-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 12/06/2018] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Osteoarthritis is a degradative joint disease found in humans and commercial swine which can develop from a number of factors, including prior joint trauma. An impact injury model was developed to deliver in vitro loads to disease-free porcine patellae in a model of OA. METHODS Axial impactions (2000 N normal) and shear impactions (500 N normal with induced shear forces) were delivered to 48 randomly assigned patellae. The patellae were then cultured for 0, 3, 7, or 14 days following the impact. Specimens in the tissue surrounding the loading site were harvested and expression of 18 OA related genes was studied via quantitative PCR. The selected genes were previously identified from published work and fell into four categories: cartilage matrix, degradative enzymes, inflammatory response, and apoptosis. RESULTS Type II collagen (Col2a1) showed significantly lower expression in shear vs. axial adjacent tissue at day 0 and 7 (fold changes of 0.40 & 0.19, respectively). In addition, higher expression of degradative enzymes and Fas, an apoptosis gene, was observed in the shear specimens. CONCLUSIONS The results suggest that a more physiologically valid shear load may induce more damage to surrounding articular cartilage than a normal load alone.
Collapse
Affiliation(s)
- R. S. McCulloch
- Joint Department of Biomedical Engineering, North Carolina State University, Raleigh, NC, USA and University of North Carolina, Chapel Hill, North Carolina USA
- Department of Human Physiology, Gonzaga University, 502 E Boone Ave, Spokane, WA 99258 USA
| | - P. L. Mente
- Joint Department of Biomedical Engineering, North Carolina State University, Raleigh, NC, USA and University of North Carolina, Chapel Hill, North Carolina USA
| | - A. T. O’Nan
- Department of Animal Science, North Carolina State University, 120 Broughton Dr, Raleigh, NC 27695 USA
| | - M. S. Ashwell
- Department of Animal Science, North Carolina State University, 120 Broughton Dr, Raleigh, NC 27695 USA
| |
Collapse
|
9
|
Bell R, Robles-Harris M, Anderson M, Laudier D, Schaffler M, Flatow E, Andarawis-Puri N. Inhibition of apoptosis exacerbates fatigue-damage tendon injuries in an in vivo rat model. Eur Cell Mater 2018; 36:44-56. [PMID: 30058060 PMCID: PMC6350530 DOI: 10.22203/ecm.v036a04] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Tendinopathy is a common and progressive musculoskeletal disease. Increased apoptosis is an end-stage tendinopathy manifestation, but its contribution to the pathology of the disease is unknown. A previously established in vivo model of fatigue damage accumulation shows that increased apoptosis is correlated with the severity of induced tendon damage, even in early onset of the disease, supporting its implication in the pathogenesis of the disease. Consequently, this study aimed to determine: (1) whether apoptosis could be inhibited after fatigue damage and (2) whether its inhibition could lead to remodeling of the extracellular matrix (ECM) and pericellular matrix (PCM), to ultimately improve the mechanical properties of fatigue-damaged tendons. The working hypothesis was that, despite the low vascular nature of the tendon, apoptosis would be inhibited, prompting increased production of matrix proteins and restoring tendon mechanical properties. Rats received 2 or 5 d of systemic pan-caspase inhibitor (Q-VD-OPh) or dimethyl sulfoxide (DMSO) carrier control injections starting immediately prior to fatigue loading and were sacrificed at days 7 and 14 post-fatigue-loading. Systemic pan-caspase inhibition for 2 d led to a surprising increase in apoptosis, but inhibition for 5 d increased the population of live cells that could repair the fatigue damage. Further analysis of the 5 d group showed that effective inhibition led to an increased population of cells producing ECM and PCM proteins, although typically in conjunction with oxidative stress markers. Ultimately, inhibition of apoptosis led to further deterioration in mechanical properties of fatigue-damaged tendons.
Collapse
Affiliation(s)
- R. Bell
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, USA
| | - M.A. Robles-Harris
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - M. Anderson
- Leni and Peter W. May Department of Orthopedics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - D. Laudier
- Leni and Peter W. May Department of Orthopedics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - M.B. Schaffler
- Department of Biomedical Engineering, City College of New York, New York, NY, USA
| | - E.L. Flatow
- Leni and Peter W. May Department of Orthopedics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - N. Andarawis-Puri
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, USA,Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA,Hospital for Special Surgery, New York, NY, USA,Address for correspondence: Nelly Andarawis-Puri, PhD, Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, 14850, NY, USA.
| |
Collapse
|
10
|
Khoshgoftar M, Torzilli PA, Maher SA. Influence of the pericellular and extracellular matrix structural properties on chondrocyte mechanics. J Orthop Res 2018; 36:721-729. [PMID: 29044742 PMCID: PMC5839971 DOI: 10.1002/jor.23774] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 10/01/2017] [Indexed: 02/04/2023]
Abstract
Understanding the mechanical factors that drive the biological responses of chondrocytes is central to our interpretation of the cascade of events that lead to osteoarthritic changes in articular cartilage. Chondrocyte mechanics is complicated by changes in tissue properties that can occur as osteoarthritis (OA) progresses and by the interaction between macro-scale, tissue level, properties, and micro-scale pericellular matrix (PCM) and local extracellular matrix (ECM) properties, both of which cannot be easily studied using in vitro systems. Our objective was to study the influence of macro- and micro-scale OA-associated structural changes on chondrocyte strains. We developed a multi-scale finite element model of articular cartilage subjected to unconfined loading, for the following three conditions: (i) normal articular cartilage, (ii) OA cartilage (where macro and micro-scale changes in collagen content, matrix modulus, and permeability were modeled), and (iii) early-stage OA cartilage (where only micro-scale changes in matrix modulus were modeled). In the macro-scale model, we found that a depth-dependent strain field was induced in both healthy and OA cartilage and that the middle and superficial zones of OA cartilage had increased tensile and compressive strains. At the micro-scale, chondrocyte shear strains were sensitive to PCM and local ECM properties. In the early-OA model, micro-scale spatial softening of PCM and ECM resulted in a substantial increase (30%) of chondrocyte shear strain, even with no structural changes in macro-scale tissue properties. Our study provides evidence that micromechanical changes at the cellular level may affect chondrocyte activities before macro-scale degradations at the tissue level become apparent. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:721-729, 2018.
Collapse
Affiliation(s)
- Mehdi Khoshgoftar
- Orthopaedic Soft Tissue Research Program,Department of Biomechanics, Hospital for Special Surgery, 535 East 70 Street, New York, NY 10021, United States
| | - Peter A. Torzilli
- Orthopaedic Soft Tissue Research Program, Hospital for Special Surgery, 535 East 70 Street, New York, NY 10021, United States, Tel: +1 (212) 606-1087
| | - Suzanne A. Maher
- Orthopaedic Soft Tissue Research Program,Department of Biomechanics, Hospital for Special Surgery, 535 East 70 Street, New York, NY 10021, United States, Tel: +1 (212) 606-1083
| |
Collapse
|
11
|
van Haaften EE, Ito K, van Donkelaar CC. The initial repair response of articular cartilage after mechanically induced damage. J Orthop Res 2017; 35:1265-1273. [PMID: 27500885 DOI: 10.1002/jor.23382] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 08/05/2016] [Indexed: 02/04/2023]
Abstract
The regenerative potential of articular cartilage (AC) defects is limited and depends on defect size, biomechanical conditions, and age. Early events after overloading might be predictive for cartilage degeneration in the long term. Therefore, the present aim is to investigate the temporal response of cartilage to overloading at cell, matrix, and tissue level during the first period after mechanical overloading. In the present study, the effect of high loading (∼8 MPa) at a high rate (∼14 MPa/s) at day 0 during a 9 day period on collagen damage, gene expression, cell death, and biochemical composition in AC was investigated. A model system was developed which enabled culturing osteochondral explants after loading. Proteoglycan content was repeatedly monitored over time using μCT, whereas other evaluations required destructive measurements. Changes in matrix related gene expressions indicated a degenerative response during the first 6 h after loading. After 24 h, this was restored and data suggested an initial repair response. Cell death and microscopic damage increased after 24 h following loading. These degradative changes were not restored within the 9 day culture period, and were accompanied by a slight loss of proteoglycans at the articular surface that extended into the middle zones. The combined findings indicate that high magnitude loading of articular cartilage at a high rate induces an initial damage that later initiates a healing response that can probably not be retained due to loss of cell viability. Consequently, the matrix cannot be restored in the short term. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:1265-1273, 2017.
Collapse
Affiliation(s)
- Eline E van Haaften
- Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Keita Ito
- Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Corrinus C van Donkelaar
- Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| |
Collapse
|
12
|
Takahashi H, Tamaki H, Yamamoto N, Onishi H. Articular chondrocyte alignment in the rat after surgically induced osteoarthritis. J Phys Ther Sci 2017; 29:598-604. [PMID: 28533592 PMCID: PMC5430255 DOI: 10.1589/jpts.29.598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2016] [Accepted: 12/15/2016] [Indexed: 11/24/2022] Open
Abstract
[Purpose] Chondrocytes in articular cartilage are aligned as columns from the joint
surface. Notably, loss of chondrocyte and abnormalities of differentiation factors give
rise to osteoarthritis (OA). However, the relationship between chondrocyte alignment and
OA progression remains unclear. This study was performed to investigate temporal
alterations in surgically-induced OA rats. [Subjects and Methods] Thirteen-week-old Wistar
rats (n=30) underwent destabilized medial meniscus surgery in their right knee and sham
surgery in their left knee. Specimens (n=5) were collected at 0, 1, 2, 4 and 8 weeks after
surgery. Histological analysis with Osteoarthritis Research Society International (OARSI)
scores, cell density ratios, cell alignments and correlation between OARSI scores and cell
density/alignment was performed. [Results] OARSI scores were significantly higher at 1, 2,
4 and 8 weeks in the DMM group than in the control. Cell density ratios were decreased
significantly in the DMM group at 2, 4 and 8 weeks compared with the control. Chondrocyte
alignment was decreased significantly in the DMM group at 4 and 8 weeks. There were
negative correlations between OA severity and cell density / cell alignment. [Conclusion]
The results suggest a relationship between chondrocyte alignment and cartilage
homeostasis, which plays an important role in OA progression.
Collapse
Affiliation(s)
- Hideaki Takahashi
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Japan.,Department of Physical Therapy, Niigata University of Health and Welfare, Japan
| | - Hiroyuki Tamaki
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Japan.,Department of Physical Therapy, Niigata University of Health and Welfare, Japan
| | - Noriaki Yamamoto
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Japan.,Department of Orthopaedic Surgery, Niigata Rehabilitation Hospital, Japan
| | - Hideaki Onishi
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Japan.,Department of Physical Therapy, Niigata University of Health and Welfare, Japan
| |
Collapse
|
13
|
Riegger J, Joos H, Palm HG, Friemert B, Reichel H, Ignatius A, Brenner RE. Antioxidative therapy in an ex vivo human cartilage trauma-model: attenuation of trauma-induced cell loss and ECM-destructive enzymes by N-acetyl cysteine. Osteoarthritis Cartilage 2016; 24:2171-2180. [PMID: 27514995 DOI: 10.1016/j.joca.2016.07.019] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 07/22/2016] [Accepted: 07/28/2016] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Mechanical trauma of articular cartilage results in cell loss and cytokine-driven inflammatory response. Subsequent accumulation of reactive oxygen (ROS) and nitrogen (RNS) species enhances the enzymatic degradation of the extracellular matrix (ECM). This study aims on the therapeutic potential of N-acetyl cysteine (NAC) in a human ex vivo cartilage trauma-model, focusing on cell- and chondroprotective features. DESIGN Human full-thickness cartilage explants were subjected to a defined impact trauma (0.59 J) and treated with NAC. Efficiency of NAC administration was evaluated by following outcome parameters: cell viability, apoptosis rate, anabolic/catabolic gene expression, secretion and activity of matrix metalloproteinases (MMPs) and proteoglycan (PG) release. RESULTS Continuous NAC administration increased cell viability and reduced the apoptosis rate after trauma. It also suppressed trauma-induced gene expression of ECM-destructive enzymes, such as ADAMTS-4, MMP-1, -2, -3 and -13 in a dosage- and time-depending manner. Subsequent suppression of MMP-2 and MMP-13 secretion reflected these findings on protein level. Moreover, NAC inhibited proteolytic activity of MMPs and reduced PG release. CONCLUSION In the context of this ex vivo study, we showed not only remarkable cell- and chondroprotective features, but also revealed new encouraging findings concerning the therapeutically effective concentration and treatment-time regimen of NAC. Its defense against chondrocyte apoptosis and catabolic enzyme secretion recommends NAC as a multifunctional add-on reagent for pharmaceutical intervention after cartilage injury. Taken together, our data increase the knowledge on the therapeutic potential of NAC after cartilage trauma and presents a basis for future in vivo studies.
Collapse
Affiliation(s)
- J Riegger
- Division for Biochemistry of Joint and Connective Tissue Diseases, Department of Orthopedics, University of Ulm, Ulm, Germany
| | - H Joos
- Division for Biochemistry of Joint and Connective Tissue Diseases, Department of Orthopedics, University of Ulm, Ulm, Germany
| | - H G Palm
- Department of Orthopedics and Trauma Surgery, German Armed Forces Hospital of Ulm, Ulm, Germany
| | - B Friemert
- Department of Orthopedics and Trauma Surgery, German Armed Forces Hospital of Ulm, Ulm, Germany
| | - H Reichel
- Department of Orthopedics, University of Ulm, Ulm, Germany
| | - A Ignatius
- Institute of Orthopedic Research and Biomechanics, University of Ulm, Ulm, Germany
| | - R E Brenner
- Division for Biochemistry of Joint and Connective Tissue Diseases, Department of Orthopedics, University of Ulm, Ulm, Germany.
| |
Collapse
|
14
|
Bar-Or D, Rael LT, Thomas GW, Brody EN. Inflammatory Pathways in Knee Osteoarthritis: Potential Targets for Treatment. Curr Rheumatol Rev 2015; 11:50-58. [PMID: 26002457 PMCID: PMC4997945 DOI: 10.2174/1573397111666150522094131] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 05/19/2015] [Accepted: 05/20/2015] [Indexed: 02/07/2023]
Abstract
Osteoarthritis (OA) of the knee is a wide-spread, debilitating disease that is prominent in Western countries. It is associated with old age, obesity, and mechanical stress on the knee joint. By examining the recent literature on the effect of the anti-inflammatory prostaglandins 15d-PGJ2 and Δ12-PGJ2, we propose that new therapeutic agents for this disease could facilitate the transition from the COX-2-dependent pro-inflammatory synthesis of the prostaglandin PGE2 (catalyzed by mPGES-1), to the equally COX-2-dependent synthesis of the aforementioned anti-inflammatory prostaglandins. This transition could be instrumental in halting the breakdown of cartilage via matrix metalloproteinases (MMPs) and aggrecanases, as well as promoting the matrix regeneration and synthesis of cartilage by chondrocytes. Another desirable property of new OA therapeutics could involve the recruitment of mesenchymal stem cells to the damaged cartilage and bone, possibly resulting in the generation of chondrocytes, synoviocytes, and, in the case of bone, osteoblasts. Moreover, we propose that research promoting this transition from pro-inflammatory to anti-inflammatory prostaglandins could aid in the identification of new OA therapeutics.
Collapse
Affiliation(s)
| | | | | | - Edward N Brody
- Swedish Medical Center/ Trauma Research Department, 501 E. Hampden Ave., Room 4-454, Englewood, CO 80113, USA
| |
Collapse
|