1
|
Jhandai P, Mittal D, Gupta R, Kumar M, Khurana R. Therapeutics and prophylactic efficacy of novel lytic Escherichia phage vB_EcoS_PJ16 against multidrug-resistant avian pathogenic E. coli using in vivo study. Int Microbiol 2024; 27:673-687. [PMID: 37632591 DOI: 10.1007/s10123-023-00420-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 08/15/2023] [Accepted: 08/18/2023] [Indexed: 08/28/2023]
Abstract
Avian pathogenic Escherichia coli (APEC) is the causative agent of avian colibacillosis, which causes significant economic losses to the poultry industry. The growing resistance of bacteria to antibiotics is a major global public health concern. However, there is limited data on the efficacy of phage therapy in effectively controlling and treating APEC infections. In this study, a novel lytic Escherichia phage, vB_EcoS_PJ16, was isolated from poultry farm wastewater and characterized in both in vitro and in vivo conditions. Transmission electron microscopy analysis revealed the presence of an icosahedral head and a long non-contractile tail, classifying the phage under the Caudoviricetes class. Host range determination showed that Escherichia phage vB_EcoS_PJ16 exhibited lytic activity against multiple strains of pathogenic E. coli, while no significant signs of lysis for Klebsiella pneumoniae, Salmonella Typhimurium, Listeria monocytogenes, and Staphylococcus aureus. Biophysical characterization revealed that the isolated phage was sturdy, as it remained viable for up to 300 days at temperatures of 30 °C, 37 °C, and 42 °C and for up to 24 h at pH 5 to 11, with only minor changes in titer. Kinetic analysis at multiplicity of infection (MOI) 0.1 showed a latency period of about 20 min and a burst size of 26.5 phage particles per infected cell for phage vB_EcoS_PJ16. Whole genome sequencing unveiled that the phage vB_EcoS_PJ16 genome consists of a double-stranded linear DNA molecule with 57,756 bp and a GC content of 43.58%. The Escherichia phage vB_EcoS_PJ16 genome consisted of 98 predicted putative ORFs, with no transfer RNA identified in the genome. Among these 98 genes, 34 genes were predicted to have known functions. A significant reduction in APEC viability was observed at MOI 100 during in vitro bacterial challenge tests conducted at different MOIs (0.01, 1, and 100). In vivo oral evaluation of the isolated phage to limit E. coli infections in day-old chicks indicated a decrease in mortality within both the therapeutic (20%) and prophylactic (30%) groups, when compared to the control group. The findings of this study contribute to our current knowledge of Escherichia phages and suggest a potentially effective role of phages in the therapeutic and prophylactic control of antibiotic-resistant APEC strains.
Collapse
Affiliation(s)
- Punit Jhandai
- Department of Veterinary Public Health and Epidemiology, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, 125004, India
| | - Dinesh Mittal
- Department of Veterinary Public Health and Epidemiology, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, 125004, India.
| | - Renu Gupta
- Department of Veterinary Public Health and Epidemiology, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, 125004, India
| | - Manesh Kumar
- Department of Veterinary Public Health and Epidemiology, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, 125004, India
| | - Rajesh Khurana
- Department of Veterinary Public Health and Epidemiology, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, 125004, India
| |
Collapse
|
2
|
Vander Elst N. Bacteriophage-derived endolysins as innovative antimicrobials against bovine mastitis-causing streptococci and staphylococci: a state-of-the-art review. Acta Vet Scand 2024; 66:20. [PMID: 38769566 PMCID: PMC11106882 DOI: 10.1186/s13028-024-00740-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 04/05/2024] [Indexed: 05/22/2024] Open
Abstract
Bacteriophage-encoded endolysins, peptidoglycan hydrolases breaking down the Gram-positive bacterial cell wall, represent a groundbreaking class of novel antimicrobials to revolutionize the veterinary medicine field. Wild-type endolysins exhibit a modular structure, consisting of enzymatically active and cell wall-binding domains, that enable genetic engineering strategies for the creation of chimeric fusion proteins or so-called 'engineered endolysins'. This biotechnological approach has yielded variants with modified lytic spectrums, introducing new possibilities in antimicrobial development. However, the discovery of highly similar endolysins by different groups has occasionally resulted in the assignment of different names that complicate a straightforward comparison. The aim of this review was to perform a homology-based comparison of the wild-type and engineered endolysins that have been characterized in the context of bovine mastitis-causing streptococci and staphylococci, grouping homologous endolysins with ≥ 95.0% protein sequence similarity. Literature is explored by homologous groups for the wild-type endolysins, followed by a chronological examination of engineered endolysins according to their year of publication. This review concludes that the wild-type endolysins encountered persistent challenges in raw milk and in vivo settings, causing a notable shift in the field towards the engineering of endolysins. Lead candidates that display robust lytic activity are nowadays selected from screening assays that are performed under these challenging conditions, often utilizing advanced high-throughput protein engineering methods. Overall, these recent advancements suggest that endolysins will integrate into the antibiotic arsenal over the next decade, thereby innovating antimicrobial treatment against bovine mastitis-causing streptococci and staphylococci.
Collapse
Affiliation(s)
- Niels Vander Elst
- Department of Neuroscience, Karolinska Institutet, Biomedicum 7D, Solnavägen 9, 17165, Solna, Stockholm, Sweden.
| |
Collapse
|
3
|
Zhen J, Liu R, Man C, Xu S, Zhang W, Zou L, Liu W, Ni HB, Zou M, He T, Wang R, Zhang XX, Zhang C. Bacteriophage LHE83 targeting OmpA as a receptor exhibited synergism with spectinomycin against Escherichia coli. Poult Sci 2024; 103:103643. [PMID: 38537406 PMCID: PMC10987938 DOI: 10.1016/j.psj.2024.103643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/06/2024] [Accepted: 03/07/2024] [Indexed: 04/07/2024] Open
Abstract
Understanding the characteristics of bacteriophages is crucial for the optimization of phage therapy. In this study, the biological and genomic characteristics of coliphage LHE83 were determined and its synergistic effects with different types of antibiotics against E. coli E82 were investigated. Phage LHE83 displayed a contractile tail morphology and had a titer of 3.02 × 109 pfu/mL at an optimal MOI of 0.01. Meanwhile, phage LHE83 exhibited good physical and chemical factors tolerance. The 1-step growth analysis revealed a latent period of approx. 10 min with a burst size of 87 pfu/infected cell. Phage LHE83 belongs to the genus Dhakavirus. Its genome consists of 170,464 bp with a 40% GC content, and a total of 268 Open Reading Frames (ORF) were predicted with no detected virulent or resistant genes. ORF 213 was predicted to encode the receptor binding protein (RBP) and confirmed by the antibody-blocking assay. Furthermore, a phage-resistant strain E. coli E82R was generated by co-culturing phage LHE83 with E. coli E82. Genomic analysis revealed that OmpA served as the receptor for phage LHE83, which was further confirmed by phage adsorption assay using E. coli BL21ΔOmpA, E. coli BL21ΔOmpA: OmpA and E. coli BL21:OmpA strains. Additionally, a synergistic effect was observed between phage LHE83 and spectinomycin against the drug-resistant strain E. coli E82. These results provide a theoretical basis for understanding the interactions between phages, antibiotics, and host bacteria, which can assist in the clinical application of phages and antibiotics against drug-resistant bacteria.
Collapse
Affiliation(s)
- Jianyu Zhen
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| | - Rui Liu
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| | - Cheng Man
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| | - Shijie Xu
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| | - Wenxiu Zhang
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| | - Ling Zou
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| | - Wenhua Liu
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| | - Hong-Bo Ni
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| | - Ming Zou
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| | - Tao He
- Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Ran Wang
- Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Xiao-Xuan Zhang
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| | - Can Zhang
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China.
| |
Collapse
|
4
|
Jokar J, Abdulabbas HT, Javanmardi K, Mobasher MA, Jafari S, Ghasemian A, Rahimian N, Zarenezhad A, ُSoltani Hekmat A. Enhancement of bactericidal effects of bacteriophage and gentamicin combination regimen against Staphylococcus aureus and Pseudomonas aeruginosa strains in a mice diabetic wound model. Virus Genes 2024; 60:80-96. [PMID: 38079060 DOI: 10.1007/s11262-023-02037-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 10/17/2023] [Indexed: 02/15/2024]
Abstract
Diabetic patients are more susceptible to developing wound infections resulting in poor and delayed wound healing. Bacteriophages, the viruses that target-specific bacteria, can be used as an alternative to antibiotics to eliminate drug-resistant bacterial infections. Pseudomonas aeruginosa (P. aeruginosa) and Staphylococcus aureus (S. aureus) are among the most frequently identified pathogens in diabetic foot ulcers (DFUs). The aim of this study was assessment of bacteriophage and gentamicin combination effects on bacterial isolates from DFU infections. Specific bacteriophages were collected from sewage and animal feces samples and the phages were enriched using S. aureus and P. aeruginosa cultures. The lytic potential of phage isolates was assessed by the clarity of plaques. We isolated and characterized four lytic phages: Stp2, Psp1, Stp1, and Psp2. The phage cocktail was optimized and investigated in vitro. We also assessed the effects of topical bacteriophage cocktail gel on animal models of DFU. Results revealed that the phage cocktail significantly reduced the mortality rate in diabetic infected mice. We determined that treatment with bacteriophage cocktail effectively decreased bacterial colony counts and improved wound healing in S. aureus and P. aeruginosa infections, especially when administrated concomitantly with gentamicin. The application of complementary therapy using a phage cocktail and gentamicin, could offer an attractive approach for the treatment of wound diabetic bacterial infections.
Collapse
Affiliation(s)
- Javad Jokar
- Department of Tissue Engineering, Faculty of Medicine, Fasa University of Medical Science, Fasa, Iran
| | - Hussein T Abdulabbas
- Department of Medical Microbiology, Medical College, Al Muthanna University, Samawah, Al Muthann, Iraq
| | - Kazem Javanmardi
- Department of Physiology, Fasa University of Medical Sciences, Fasa, Iran
| | - Mohammad Ali Mobasher
- Department of Biotechnology, Faculty of Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Shima Jafari
- Department of Biotechnology, Faculty of Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Abdolmajid Ghasemian
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| | - Niloofar Rahimian
- Department of Biotechnology, Faculty of Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Ali Zarenezhad
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| | | |
Collapse
|
5
|
Pradal I, Casado A, del Rio B, Rodriguez-Lucas C, Fernandez M, Alvarez MA, Ladero V. Enterococcus faecium Bacteriophage vB_EfaH_163, a New Member of the Herelleviridae Family, Reduces the Mortality Associated with an E. faecium vanR Clinical Isolate in a Galleria mellonella Animal Model. Viruses 2023; 15:179. [PMID: 36680219 PMCID: PMC9860891 DOI: 10.3390/v15010179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/22/2022] [Accepted: 01/03/2023] [Indexed: 01/11/2023] Open
Abstract
The rise of antimicrobial resistant (AMR) bacteria is a major health concern, especially with regard to members of the ESKAPE group, to which vancomycin-resistant (VRE) Enterococcus faecium belongs. Phage therapy has emerged as a novel alternative for the treatment of AMR infections. This, however, relies on the isolation and characterisation of a large collection of phages. This work describes the exploration of human faeces as a source of new E. faecium-infecting phages. Phage vB_EfaH_163 was isolated and characterised at the microbiological, genomic, and functional levels. vB_EfaH_163 phage, a new member of Herelleviridae, subfamily Brockvirinae, has a dsDNA genome of 150,836 bp that does not harbour any virulence factors or antibiotic resistance genes. It infects a wide range of E. faecium strains of different origins, including VRE strains. Interestingly, it can also infect Enterococcus faecalis strains, even some that are linezolid-resistant. Its capacity to control the growth of a clinical VRE isolate was shown in broth culture and in a Galleria mellonella animal model. The discovery and characterisation of vB_EfaH_163 increases the number of phages that might be used therapeutically against AMR bacteria.
Collapse
Affiliation(s)
- Inés Pradal
- Department of Technology and Biotechnology of Dairy Products, Dairy Research Institute, IPLA-CSIC, 33300 Villaviciosa, Spain
| | - Angel Casado
- Department of Technology and Biotechnology of Dairy Products, Dairy Research Institute, IPLA-CSIC, 33300 Villaviciosa, Spain
| | - Beatriz del Rio
- Department of Technology and Biotechnology of Dairy Products, Dairy Research Institute, IPLA-CSIC, 33300 Villaviciosa, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
| | - Carlos Rodriguez-Lucas
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
- Microbiology Laboratory, Hospital el Bierzo, 24404 Ponferrada, Spain
- Microbiology Laboratory, Hospital Universitario de Cabueñes, 33394 Gijón, Spain
| | - Maria Fernandez
- Department of Technology and Biotechnology of Dairy Products, Dairy Research Institute, IPLA-CSIC, 33300 Villaviciosa, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
| | - Miguel A. Alvarez
- Department of Technology and Biotechnology of Dairy Products, Dairy Research Institute, IPLA-CSIC, 33300 Villaviciosa, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
| | - Victor Ladero
- Department of Technology and Biotechnology of Dairy Products, Dairy Research Institute, IPLA-CSIC, 33300 Villaviciosa, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
| |
Collapse
|
6
|
Cao S, Yang W, Zhu X, Liu C, Lu J, Si Z, Pei L, Zhang L, Hu W, Li Y, Wang Z, Pang Z, Xue X, Li Y. Isolation and identification of the broad-spectrum high-efficiency phage vB_SalP_LDW16 and its therapeutic application in chickens. BMC Vet Res 2022; 18:386. [PMID: 36329508 PMCID: PMC9632116 DOI: 10.1186/s12917-022-03490-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 10/27/2022] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Salmonella infection in livestock and poultry causes salmonellosis, and is mainly treated using antibiotics. However, the misuse use of antibiotics often triggers the emergence of multi-drug-resistant Salmonella strains. Currently, Salmonella phages is safe and effective against Salmonella, serving as the best drug of choice. This study involved 16 Salmonella bacteriophages separated and purified from the sewage and the feces of the broiler farm. A phage, vB_SalP_LDW16, was selected based on the phage host range test. The phage vB_SalP_LDW16 was characterized by the double-layer plate method and transmission electron microscopy. Furthermore, the clinical therapeutic effect of phage vB_SalP_LDW16 was verified by using the pathogenic Salmonella Enteritidis in the SPF chicken model. RESULTS The phage vB_SalP_LDW16 with a wide host range was identified to the family Siphoviridae and the order Caudoviridae, possess a double-stranded DNA and can lyse 88% (22/25) of Salmonella strains stored in the laboratory. Analysis of the biological characteristics, in addition, revealed the optimal multiplicity of infection (MOI) of vB_SalP_LDW16 to be 0.01 and the phage titer to be up to 3 × 1014 PFU/mL. Meanwhile, the phage vB_SalP_LDW16 was found to have some temperature tolerance, while the titer decreases rapidly above 60 ℃, and a wide pH (i.e., 5-12) range as well as relative stability in pH tolerance. The latent period of phage was 10 min, the burst period was 60 min, and the burst size was 110 PFU/cell. Furthermore, gastric juice was also found to highly influence the activity of the phage. The clinical treatment experiments showed that phage vB_SalP_LDW16 was able to significantly reduce the bacterial load in the blood through phage treatment, thereby improving the pathological changes in the intestinal, liver, and heart damage, and promoting the growth and development of the chicken. CONCLUSIONS The phage vB_SalP_LDW16 is a highly lytic phage with a wide host range, which can be potentially used for preventing and treating chicken salmonellosis, as an alternative or complementary antibiotic treatment in livestock farming.
Collapse
Affiliation(s)
- Shengliang Cao
- Phage Research Center, Liaocheng University, No. 1 Hunan Road, 252000, Liaocheng, Shandong, China
- School of Agricultural Science and Engineering, Liaocheng University, No. 1 Hunan Road, 252000, Liaocheng, Shandong, China
| | - Wenwen Yang
- Phage Research Center, Liaocheng University, No. 1 Hunan Road, 252000, Liaocheng, Shandong, China
- School of Agricultural Science and Engineering, Liaocheng University, No. 1 Hunan Road, 252000, Liaocheng, Shandong, China
| | - Xihui Zhu
- Phage Research Center, Liaocheng University, No. 1 Hunan Road, 252000, Liaocheng, Shandong, China
- School of Agricultural Science and Engineering, Liaocheng University, No. 1 Hunan Road, 252000, Liaocheng, Shandong, China
| | - Cheng Liu
- Phage Research Center, Liaocheng University, No. 1 Hunan Road, 252000, Liaocheng, Shandong, China
- School of Agricultural Science and Engineering, Liaocheng University, No. 1 Hunan Road, 252000, Liaocheng, Shandong, China
| | - Jianbiao Lu
- Phage Research Center, Liaocheng University, No. 1 Hunan Road, 252000, Liaocheng, Shandong, China
- School of Agricultural Science and Engineering, Liaocheng University, No. 1 Hunan Road, 252000, Liaocheng, Shandong, China
| | - Zhenshu Si
- Phage Research Center, Liaocheng University, No. 1 Hunan Road, 252000, Liaocheng, Shandong, China
- School of Agricultural Science and Engineering, Liaocheng University, No. 1 Hunan Road, 252000, Liaocheng, Shandong, China
| | - Lanying Pei
- Phage Research Center, Liaocheng University, No. 1 Hunan Road, 252000, Liaocheng, Shandong, China
- School of Agricultural Science and Engineering, Liaocheng University, No. 1 Hunan Road, 252000, Liaocheng, Shandong, China
| | - Leilei Zhang
- Phage Research Center, Liaocheng University, No. 1 Hunan Road, 252000, Liaocheng, Shandong, China
- School of Agricultural Science and Engineering, Liaocheng University, No. 1 Hunan Road, 252000, Liaocheng, Shandong, China
| | - Wensi Hu
- Phage Research Center, Liaocheng University, No. 1 Hunan Road, 252000, Liaocheng, Shandong, China
- School of Agricultural Science and Engineering, Liaocheng University, No. 1 Hunan Road, 252000, Liaocheng, Shandong, China
| | - Yanlan Li
- Phage Research Center, Liaocheng University, No. 1 Hunan Road, 252000, Liaocheng, Shandong, China
- School of Agricultural Science and Engineering, Liaocheng University, No. 1 Hunan Road, 252000, Liaocheng, Shandong, China
| | - Zhiwei Wang
- Phage Research Center, Liaocheng University, No. 1 Hunan Road, 252000, Liaocheng, Shandong, China
- School of Agricultural Science and Engineering, Liaocheng University, No. 1 Hunan Road, 252000, Liaocheng, Shandong, China
| | - Zheyu Pang
- Phage Research Center, Liaocheng University, No. 1 Hunan Road, 252000, Liaocheng, Shandong, China
- School of Agricultural Science and Engineering, Liaocheng University, No. 1 Hunan Road, 252000, Liaocheng, Shandong, China
| | - Xijuan Xue
- Shandong Sinder Technology Co., Ltd., Sinder Industrial Park, Shungeng Road, Zhucheng Development Zone, Weifang, Shandong, 262200, China
| | - Yubao Li
- Phage Research Center, Liaocheng University, No. 1 Hunan Road, 252000, Liaocheng, Shandong, China.
- School of Agricultural Science and Engineering, Liaocheng University, No. 1 Hunan Road, 252000, Liaocheng, Shandong, China.
| |
Collapse
|
7
|
Parida PK, Behera BK, Dehury B, Rout AK, Sarkar DJ, Rai A, Das BK, Mohapatra T. Community structure and function of microbiomes in polluted stretches of river Yamuna in New Delhi, India, using shotgun metagenomics. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:71311-71325. [PMID: 35596862 DOI: 10.1007/s11356-022-20766-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 05/08/2022] [Indexed: 06/15/2023]
Abstract
The large population residing in the northern region of India surrounding Delhi mostly depends on water of River Yamuna, a tributary of mighty Ganga for agriculture, drinking and various religious activities. However, continuous anthropogenic activities mostly due to pollution mediated by rapid urbanization and industrialization have profoundly affected river microflora and their function thus its health. In this study, potential of whole-genome metagenomics was exploited to unravel the novel consortia of microbiome and their functional potential in the polluted sediments of the river at Delhi. Analysis of high-quality metagenome data from Illumina NextSeq500 revealed substantial differences in composition of microbiota at different sites dominated by Proteobacteria, Bacteroidetes, Firmicutes, Actinobacteria and Chloroflexi phyla. The presence of highly dominant anaerobic bacteria like Dechloromonas aromatica (benzene reducing and denitrifying), Rhodopseudomonas palustris (organic matter reducing), Syntrophus aciditrophicus (fatty acid reducing) and Syntrophobacter fumaroxidans (sulphate reducing) in the polluted river Yamuna signifies the impact of unchecked pollution in declining health of the river ecosystem. A decline in abundance of phages was also noticed along the downstream river Yamuna. Mining of mycobiome reads uncovered plethora of fungal communities (i.e. Nakaseomyces, Aspergillus, Schizosaccharomyces and Lodderomyces) in the polluted stretches due to the availability of higher organic carbon and total nitrogen (%) could be decoded as promising bioindicators of river trophic status. Pathway analysis through KEGG revealed higher abundance of genes involved in energy metabolism (nitrogen and sulphur), methane metabolism, degradation of xenobiotics (Nitrotoluene, Benzoate and Atrazine), two-component system (atoB, cusA and silA) and membrane transport (ABC transporters). Catalase-peroxidase and 4-hydroxybenzoate 3-monooxygenase were the most enriched pollution degrading enzymes in the polluted study sites of river Yamuna. Overall, our results provide crucial insights into microbial dynamics and their function in response to high pollution and could be insightful to the ongoing remediation strategies to clean river Yamuna.
Collapse
Affiliation(s)
- Pranaya Kumar Parida
- Aquatic Environmental Biotechnology and Nanotechnology Division, ICAR-Central Inland Fisheries Research Institute, Kolkata, 700120, West Bengal, India
| | - Bijay Kumar Behera
- Aquatic Environmental Biotechnology and Nanotechnology Division, ICAR-Central Inland Fisheries Research Institute, Kolkata, 700120, West Bengal, India.
| | - Budheswar Dehury
- Aquatic Environmental Biotechnology and Nanotechnology Division, ICAR-Central Inland Fisheries Research Institute, Kolkata, 700120, West Bengal, India
| | - Ajaya Kumar Rout
- Aquatic Environmental Biotechnology and Nanotechnology Division, ICAR-Central Inland Fisheries Research Institute, Kolkata, 700120, West Bengal, India
| | - Dhruba Jyoti Sarkar
- Aquatic Environmental Biotechnology and Nanotechnology Division, ICAR-Central Inland Fisheries Research Institute, Kolkata, 700120, West Bengal, India
| | - Anil Rai
- Centre for Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, Library Avenue, Pusa, New Delhi, 110012, India
| | - Basanta Kumar Das
- Aquatic Environmental Biotechnology and Nanotechnology Division, ICAR-Central Inland Fisheries Research Institute, Kolkata, 700120, West Bengal, India
| | | |
Collapse
|
8
|
Alomari MMM, Dec M, Urban-Chmiel R. Bacteriophages as an Alternative Method for Control of Zoonotic and Foodborne Pathogens. Viruses 2021; 13:2348. [PMID: 34960617 PMCID: PMC8709489 DOI: 10.3390/v13122348] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/18/2021] [Accepted: 11/22/2021] [Indexed: 12/11/2022] Open
Abstract
The global increase in multidrug-resistant infections caused by various pathogens has raised concerns in human and veterinary medicine. This has renewed interest in the development of alternative methods to antibiotics, including the use of bacteriophages for controlling bacterial infections. The aim of this review is to present potential uses of bacteriophages as an alternative to antibiotics in the control of bacterial infections caused by multidrug-resistant bacteria posing a risk to humans, with particular emphasis on foodborne and zoonotic pathogens. A varied therapeutic and immunomodulatory (activation or suppression) effect of bacteriophages on humoral and cellular immune response mechanisms has been demonstrated. The antibiotic resistance crisis caused by global antimicrobial resistance among bacteria creates a compelling need for alternative safe and selectively effective antibacterial agents. Bacteriophages have many properties indicating their potential suitability as therapeutic and/or prophylactic agents. In many cases, bacteriophages can also be used in food quality control against microorganisms such as Salmonella, Escherichia coli, Listeria, Campylobacter and others. Future research will provide potential alternative solutions using bacteriophages to treat infections caused by multidrug-resistant bacteria.
Collapse
Affiliation(s)
| | - Marta Dec
- Department of Veterinary Prevention and Avian Diseases, Faculty of Veterinary Medicine University of Life Sciences in Lublin, 20-033 Lublin, Poland;
| | - Renata Urban-Chmiel
- Department of Veterinary Prevention and Avian Diseases, Faculty of Veterinary Medicine University of Life Sciences in Lublin, 20-033 Lublin, Poland;
| |
Collapse
|
9
|
Kazantseva OA, Piligrimova EG, Shadrin AM. vB_BcM_Sam46 and vB_BcM_Sam112, members of a new bacteriophage genus with unusual small terminase structure. Sci Rep 2021; 11:12173. [PMID: 34108535 PMCID: PMC8190038 DOI: 10.1038/s41598-021-91289-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Accepted: 05/25/2021] [Indexed: 12/13/2022] Open
Abstract
One of the serious public health concerns is food contaminated with pathogens and their vital activity products such as toxins. Bacillus cereus group of bacteria includes well-known pathogenic species such as B. anthracis, B. cereus sensu stricto (ss), B. cytotoxicus and B. thuringiensis. In this report, we describe the Bacillus phages vB_BcM_Sam46 and vB_BcM_Sam112 infecting species of this group. Electron microscopic analyses indicated that phages Sam46 and Sam112 have the myovirus morphotype. The genomes of Sam46 and Sam112 comprise double-stranded DNA of 45,419 bp and 45,037 bp in length, respectively, and have the same GC-content. The genome identity of Sam46 and Sam112 is 96.0%, indicating that they belong to the same phage species. According to the phylogenetic analysis, these phages form a distinct clade and may be members of a new phage genus, for which we propose the name 'Samaravirus'. In addition, an interesting feature of the Sam46 and Sam112 phages is the unusual structure of their small terminase subunit containing N-terminal FtsK_gamma domain.
Collapse
Affiliation(s)
- Olesya A Kazantseva
- Laboratory of Bacteriophage Biology, G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Federal Research Center, 142290, Pushchino, Russia.
| | - Emma G Piligrimova
- Laboratory of Bacteriophage Biology, G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Federal Research Center, 142290, Pushchino, Russia
| | - Andrey M Shadrin
- Laboratory of Bacteriophage Biology, G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Federal Research Center, 142290, Pushchino, Russia.
| |
Collapse
|
10
|
Ben-Zaken H, Kraitman R, Coppenhagen-Glazer S, Khalifa L, Alkalay-Oren S, Gelman D, Ben-Gal G, Beyth N, Hazan R. Isolation and Characterization of Streptococcus mutans Phage as a Possible Treatment Agent for Caries. Viruses 2021; 13:825. [PMID: 34063251 PMCID: PMC8147482 DOI: 10.3390/v13050825] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/27/2021] [Accepted: 04/29/2021] [Indexed: 12/22/2022] Open
Abstract
Streptococcus mutans is a key bacterium in dental caries, one of the most prevalent chronic infectious diseases. Conventional treatment fails to specifically target the pathogenic bacteria, while tending to eradicate commensal bacteria. Thus, caries remains one of the most common and challenging diseases. Phage therapy, which involves the use of bacterial viruses as anti-bacterial agents, has been gaining interest worldwide. Nevertheless, to date, only a few phages have been isolated against S. mutans. In this study, we describe the isolation and characterization of a new S. mutans phage, termed SMHBZ8, from hundreds of human saliva samples that were collected, filtered, and screened. The SMHBZ8 genome was sequenced and analyzed, visualized by TEM, and its antibacterial properties were evaluated in various states. In addition, we tested the lytic efficacy of SMHBZ8 against S. mutans in a human cariogenic dentin model. The isolation and characterization of SMHBZ8 may be the first step towards developing a potential phage therapy for dental caries.
Collapse
Affiliation(s)
- Hadar Ben-Zaken
- Department of Prosthodontics, Hadassah School of Dental Medicine, Hebrew University, Jerusalem 91120, Israel; (H.B.-Z.); (R.K.); (G.B.-G.); (N.B.)
- Institute of Biomedical and Oral Research (IBOR), Faculty of Dental Sciences, School of Dental Medicine, The Hebrew University, Jerusalem 91120, Israel; (S.C.-G.); (L.K.); (S.A.-O.); (D.G.)
| | - Reut Kraitman
- Department of Prosthodontics, Hadassah School of Dental Medicine, Hebrew University, Jerusalem 91120, Israel; (H.B.-Z.); (R.K.); (G.B.-G.); (N.B.)
- Institute of Biomedical and Oral Research (IBOR), Faculty of Dental Sciences, School of Dental Medicine, The Hebrew University, Jerusalem 91120, Israel; (S.C.-G.); (L.K.); (S.A.-O.); (D.G.)
| | - Shunit Coppenhagen-Glazer
- Institute of Biomedical and Oral Research (IBOR), Faculty of Dental Sciences, School of Dental Medicine, The Hebrew University, Jerusalem 91120, Israel; (S.C.-G.); (L.K.); (S.A.-O.); (D.G.)
| | - Leron Khalifa
- Institute of Biomedical and Oral Research (IBOR), Faculty of Dental Sciences, School of Dental Medicine, The Hebrew University, Jerusalem 91120, Israel; (S.C.-G.); (L.K.); (S.A.-O.); (D.G.)
| | - Sivan Alkalay-Oren
- Institute of Biomedical and Oral Research (IBOR), Faculty of Dental Sciences, School of Dental Medicine, The Hebrew University, Jerusalem 91120, Israel; (S.C.-G.); (L.K.); (S.A.-O.); (D.G.)
| | - Daniel Gelman
- Institute of Biomedical and Oral Research (IBOR), Faculty of Dental Sciences, School of Dental Medicine, The Hebrew University, Jerusalem 91120, Israel; (S.C.-G.); (L.K.); (S.A.-O.); (D.G.)
| | - Gilad Ben-Gal
- Department of Prosthodontics, Hadassah School of Dental Medicine, Hebrew University, Jerusalem 91120, Israel; (H.B.-Z.); (R.K.); (G.B.-G.); (N.B.)
| | - Nurit Beyth
- Department of Prosthodontics, Hadassah School of Dental Medicine, Hebrew University, Jerusalem 91120, Israel; (H.B.-Z.); (R.K.); (G.B.-G.); (N.B.)
| | - Ronen Hazan
- Institute of Biomedical and Oral Research (IBOR), Faculty of Dental Sciences, School of Dental Medicine, The Hebrew University, Jerusalem 91120, Israel; (S.C.-G.); (L.K.); (S.A.-O.); (D.G.)
| |
Collapse
|
11
|
Gkartziou F, Giormezis N, Spiliopoulou I, Antimisiaris SG. Nanobiosystems for Antimicrobial Drug-Resistant Infections. NANOMATERIALS 2021; 11:nano11051075. [PMID: 33922004 PMCID: PMC8143556 DOI: 10.3390/nano11051075] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/16/2021] [Accepted: 04/18/2021] [Indexed: 02/07/2023]
Abstract
The worldwide increased bacterial resistance toward antimicrobial therapeutics has led investigators to search for new therapeutic options. Some of the options currently exploited to treat drug-resistant infections include drug-associated nanosystems. Additionally, the use of bacteriophages alone or in combination with drugs has been recently revisited; some studies utilizing nanosystems for bacteriophage delivery have been already reported. In this review article, we focus on nine pathogens that are the leading antimicrobial drug-resistant organisms, causing difficult-to-treat infections. For each organism, the bacteriophages and nanosystems developed or used in the last 20 years as potential treatments of pathogen-related infections are discussed. Summarizing conclusions and future perspectives related with the potential of such nano-antimicrobials for the treatment of persistent infections are finally highlighted.
Collapse
Affiliation(s)
- Foteini Gkartziou
- Institute of Chemical Engineering, FORTH/ICES, Platani, 26504 Patras, Greece;
| | - Nikolaos Giormezis
- National Reference Centre for Staphylococci, School of Medicine, University of Patras, 26504 Patras, Greece;
| | - Iris Spiliopoulou
- National Reference Centre for Staphylococci, School of Medicine, University of Patras, 26504 Patras, Greece;
- Department of Microbiology, School of Medicine, University of Patras, 26504 Patras, Greece
- Correspondence: (I.S.); (S.G.A.)
| | - Sophia G. Antimisiaris
- Institute of Chemical Engineering, FORTH/ICES, Platani, 26504 Patras, Greece;
- Laboratory of Pharmaceutical Technology, Department of Pharmacy, University of Patras, 26504 Patras, Greece
- Correspondence: (I.S.); (S.G.A.)
| |
Collapse
|
12
|
Zeng Z, Salmond GPC. Bacteriophage host range evolution through engineered enrichment bias, exploiting heterologous surface receptor expression. Environ Microbiol 2020; 22:5207-5221. [PMID: 32776385 DOI: 10.1111/1462-2920.15188] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 08/05/2020] [Accepted: 08/05/2020] [Indexed: 01/16/2023]
Abstract
Research on the initial phage-host interaction has been conducted on a limited repertoire of phages and their cognate receptors, such as phage λ and the Escherichia coli LamB (EcLamB) protein. Apart from phage λ, little is known about other phages that target EcLamB. Here, we developed a simple method for isolating novel environmental phages in a predictable way, i.e. isolating phages that target a particular receptor(s) of a bacterium, in this case, the EcLamB protein. A plasmid (pMUT13) encoding the EcLamB porin was transferred into three different enterobacterial genera. By enrichment with these engineered bacteria, a number of phages (ZZ phages) that targeted EcLamB were easily isolated from the environment. Interestingly, although EcLamB-dependent in their recombinant heterologous hosts, these newly isolated ZZ phages also targeted OmpC as an alternative receptor when infecting E. coli. Moreover, the phage host range was readily extended within three different bacterial genera with heterologously expressed EcLamB. Unlike phage λ, which is a member of the Siphoviridae family, these newly isolated EcLamB-dependent phages were more commonly members of the Myoviridae family, based on transmission electron microscopy and genomic sequences. Modifications of this convenient and efficient phage enrichment method could be useful for the discovery of novel phages.
Collapse
Affiliation(s)
- Ziyue Zeng
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | | |
Collapse
|
13
|
Garvey M. Bacteriophages and the One Health Approach to Combat Multidrug Resistance: Is This the Way? Antibiotics (Basel) 2020; 9:antibiotics9070414. [PMID: 32708627 PMCID: PMC7400126 DOI: 10.3390/antibiotics9070414] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 07/09/2020] [Accepted: 07/15/2020] [Indexed: 12/15/2022] Open
Abstract
Antimicrobial resistance necessitates action to reduce and eliminate infectious disease, ensure animal and human health, and combat emerging diseases. Species such as Acinetobacter baumanniii, vancomycin resistant Enterococcus, methicillin resistance Staphylococcus aureus, and Pseudomonas aeruginosa, as well as other WHO priority pathogens, are becoming extremely difficult to treat. In 2017, the EU adopted the “One Health” approach to combat antibiotic resistance in animal and human medicine and to prevent the transmission of zoonotic disease. As the current therapeutic agents become increasingly inadequate, there is a dire need to establish novel methods of treatment under this One Health Framework. Bacteriophages (phages), viruses infecting bacterial species, demonstrate clear antimicrobial activity against an array of resistant species, with high levels of specificity and potency. Bacteriophages play key roles in bacterial evolution and are essential components of all ecosystems, including the human microbiome. Factors such are their specificity, potency, biocompatibility, and bactericidal activity make them desirable options as therapeutics. Issues remain, however, relating to their large-scale production, formulation, stability, and bacterial resistance, limiting their implementation globally. Phages used in therapy must be virulent, purified, and well characterized before administration. Clinical studies are warranted to assess the in vivo pharmacokinetics and pharmacodynamic characteristics of phages to fully establish their therapeutic potential.
Collapse
Affiliation(s)
- Mary Garvey
- Department of Life Science, Sligo Institute of Technology, Sligo, Ireland
| |
Collapse
|
14
|
Abstract
Bacteriophages are the most abundant form of life on earth and are present everywhere. The total number of bacteriophages has been estimated to be 1032 virions. The main division of bacteriophages is based on the type of nucleic acid (DNA or RNA) and on the structure of the capsid. Due to the significant increase in the number of multi-drug-resistant bacteria, bacteriophages could be a useful tool as an alternative to antibiotics in experimental therapies to prevent and to control bacterial infections in people and animals. The aim of this review was to discuss the history of phage therapy as a replacement for antibiotics, in response to EU regulations prohibiting the use of antibiotics in livestock, and to present current examples and results of experimental phage treatments in comparison to antibiotics. The use of bacteriophages to control human infections has had a high success rate, especially in mixed infections caused mainly by Staphylococcus, Pseudomonas, Enterobacter, and Enterococcus. Bacteriophages have also proven to be an effective tool in experimental treatments for combating diseases in livestock.
Collapse
|
15
|
Blasco L, Ambroa A, Trastoy R, Bleriot I, Moscoso M, Fernández-Garcia L, Perez-Nadales E, Fernández-Cuenca F, Torre-Cisneros J, Oteo-Iglesias J, Oliver A, Canton R, Kidd T, Navarro F, Miró E, Pascual A, Bou G, Martínez-Martínez L, Tomas M. In vitro and in vivo efficacy of combinations of colistin and different endolysins against clinical strains of multi-drug resistant pathogens. Sci Rep 2020; 10:7163. [PMID: 32346029 PMCID: PMC7188820 DOI: 10.1038/s41598-020-64145-7] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 04/13/2020] [Indexed: 12/15/2022] Open
Abstract
The emergence of multidrug resistant (MDR) pathogenic bacteria is jeopardizing the value of antimicrobials, which had previously changed the course of medical science. In this study, we identified endolysins ElyA1 and ElyA2 (GH108-PG3 family), present in the genome of bacteriophages Ab1051Φ and Ab1052Φ, respectively. The muralytic activity of these endolysins against MDR clinical isolates (Acinetobacter baumannii, Pseudomonas aeruginosa and Klebsiella pneumoniae) was tested using the turbidity reduction assay. Minimal inhibitory concentrations (MICs) of endolysin, colistin and a combination of endolysin and colistin were determined, and the antimicrobial activity of each treatment was confirmed by time kill curves. Endolysin ElyA1 displayed activity against all 25 strains of A. baumannii and P. aeruginosa tested and against 13 out of 17 strains of K. pneumoniae. Endolysin ElyA2 did not display any such activity. The combined antimicrobial activity of colistin and ElyA1 yielded a reduction in the colistin MIC for all strains studied, except K. pneumoniae. These results were confirmed in vivo in G. mellonella survival assays and in murine skin and lung infection models. In conclusion, combining colistin (1/4 MIC) with the new endolysin ElyA1 (350 µg) enhanced the bactericidal activity of colistin in both in vitro and in vivo studies. This will potentially enable reduction of the dose of colistin used in clinical practice.
Collapse
Affiliation(s)
- Lucia Blasco
- Microbiology Department-Research Institute Biomedical A Coruña (INIBIC), Hospital A Coruña (CHUAC), University of A Coruña (UDC), A Coruña, Spain
- Study Group on Mechanisms of Action and Resistance to Antimicrobials (GEMARA) of the Spanish Society of Infectious Diseases and Clinical Microbiology (SEIMC), Madrid, Spain
| | - Anton Ambroa
- Microbiology Department-Research Institute Biomedical A Coruña (INIBIC), Hospital A Coruña (CHUAC), University of A Coruña (UDC), A Coruña, Spain
- Study Group on Mechanisms of Action and Resistance to Antimicrobials (GEMARA) of the Spanish Society of Infectious Diseases and Clinical Microbiology (SEIMC), Madrid, Spain
| | - Rocio Trastoy
- Microbiology Department-Research Institute Biomedical A Coruña (INIBIC), Hospital A Coruña (CHUAC), University of A Coruña (UDC), A Coruña, Spain
- Study Group on Mechanisms of Action and Resistance to Antimicrobials (GEMARA) of the Spanish Society of Infectious Diseases and Clinical Microbiology (SEIMC), Madrid, Spain
| | - Ines Bleriot
- Microbiology Department-Research Institute Biomedical A Coruña (INIBIC), Hospital A Coruña (CHUAC), University of A Coruña (UDC), A Coruña, Spain
- Study Group on Mechanisms of Action and Resistance to Antimicrobials (GEMARA) of the Spanish Society of Infectious Diseases and Clinical Microbiology (SEIMC), Madrid, Spain
| | - Miriam Moscoso
- Microbiology Department-Research Institute Biomedical A Coruña (INIBIC), Hospital A Coruña (CHUAC), University of A Coruña (UDC), A Coruña, Spain
- Spanish Network for Research in Infectious Diseases (REIPI), Seville, Spain
| | - Laura Fernández-Garcia
- Microbiology Department-Research Institute Biomedical A Coruña (INIBIC), Hospital A Coruña (CHUAC), University of A Coruña (UDC), A Coruña, Spain
- Study Group on Mechanisms of Action and Resistance to Antimicrobials (GEMARA) of the Spanish Society of Infectious Diseases and Clinical Microbiology (SEIMC), Madrid, Spain
| | - Elena Perez-Nadales
- Unit of Microbiology, University Hospital Reina Sofía, Department of Microbiology, University of Córdoba, Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Cordoba, Spain
- Spanish Network for Research in Infectious Diseases (REIPI), Seville, Spain
| | - Felipe Fernández-Cuenca
- Clinical Unit for Infectious Diseases, Microbiology and Preventive Medicine, Hospital Universitario Virgen Macarena / Department of Microbiology and Medicine, University of Seville/ Biomedicine Institute of Seville (IBIS), Seville, Spain
- Study Group on Mechanisms of Action and Resistance to Antimicrobials (GEMARA) of the Spanish Society of Infectious Diseases and Clinical Microbiology (SEIMC), Madrid, Spain
- Spanish Network for Research in Infectious Diseases (REIPI), Seville, Spain
| | - Julian Torre-Cisneros
- Unit of Microbiology, University Hospital Reina Sofía, Department of Microbiology, University of Córdoba, Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Cordoba, Spain
- Spanish Network for Research in Infectious Diseases (REIPI), Seville, Spain
| | - Jesus Oteo-Iglesias
- Reference and Research Laboratory for Antibiotic Resistance and Health Care Infections, National Centre for Microbiology, Institute of Health Carlos III, Majadahonda, Madrid, Spain
- Study Group on Mechanisms of Action and Resistance to Antimicrobials (GEMARA) of the Spanish Society of Infectious Diseases and Clinical Microbiology (SEIMC), Madrid, Spain
- Spanish Network for Research in Infectious Diseases (REIPI), Seville, Spain
| | - Antonio Oliver
- Microbiology Department-Research Institute Biomedical Islas Baleares (IdISBa), Hospital Son Espases, Palma de Mallorca, Spain
- Study Group on Mechanisms of Action and Resistance to Antimicrobials (GEMARA) of the Spanish Society of Infectious Diseases and Clinical Microbiology (SEIMC), Madrid, Spain
- Spanish Network for Research in Infectious Diseases (REIPI), Seville, Spain
| | - Rafael Canton
- Microbiology Department-Research Institute Biomedical Ramón and Cajal (IRYCIS), Hospital Ramón and Cajal, Madrid, Spain
- Study Group on Mechanisms of Action and Resistance to Antimicrobials (GEMARA) of the Spanish Society of Infectious Diseases and Clinical Microbiology (SEIMC), Madrid, Spain
- Spanish Network for Research in Infectious Diseases (REIPI), Seville, Spain
| | - Tim Kidd
- School of Chemistry and Molecular Biosciences and Child Health Research Centre, The University of Queensland, Brisbane, QLD, Australia
| | - Ferran Navarro
- Microbiology Department-Sant Pau Hospital, Barcelona, Spain
- Study Group on Mechanisms of Action and Resistance to Antimicrobials (GEMARA) of the Spanish Society of Infectious Diseases and Clinical Microbiology (SEIMC), Madrid, Spain
| | - Elisenda Miró
- Microbiology Department-Sant Pau Hospital, Barcelona, Spain
- Study Group on Mechanisms of Action and Resistance to Antimicrobials (GEMARA) of the Spanish Society of Infectious Diseases and Clinical Microbiology (SEIMC), Madrid, Spain
| | - Alvaro Pascual
- Clinical Unit for Infectious Diseases, Microbiology and Preventive Medicine, Hospital Universitario Virgen Macarena / Department of Microbiology and Medicine, University of Seville/ Biomedicine Institute of Seville (IBIS), Seville, Spain
- Study Group on Mechanisms of Action and Resistance to Antimicrobials (GEMARA) of the Spanish Society of Infectious Diseases and Clinical Microbiology (SEIMC), Madrid, Spain
- Spanish Network for Research in Infectious Diseases (REIPI), Seville, Spain
| | - German Bou
- Microbiology Department-Research Institute Biomedical A Coruña (INIBIC), Hospital A Coruña (CHUAC), University of A Coruña (UDC), A Coruña, Spain
- Study Group on Mechanisms of Action and Resistance to Antimicrobials (GEMARA) of the Spanish Society of Infectious Diseases and Clinical Microbiology (SEIMC), Madrid, Spain
- Spanish Network for Research in Infectious Diseases (REIPI), Seville, Spain
| | - Luis Martínez-Martínez
- Unit of Microbiology, University Hospital Reina Sofía, Department of Microbiology, University of Córdoba, Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Cordoba, Spain
- Study Group on Mechanisms of Action and Resistance to Antimicrobials (GEMARA) of the Spanish Society of Infectious Diseases and Clinical Microbiology (SEIMC), Madrid, Spain
- Spanish Network for Research in Infectious Diseases (REIPI), Seville, Spain
| | - Maria Tomas
- Microbiology Department-Research Institute Biomedical A Coruña (INIBIC), Hospital A Coruña (CHUAC), University of A Coruña (UDC), A Coruña, Spain.
- Study Group on Mechanisms of Action and Resistance to Antimicrobials (GEMARA) of the Spanish Society of Infectious Diseases and Clinical Microbiology (SEIMC), Madrid, Spain.
- Spanish Network for Research in Infectious Diseases (REIPI), Seville, Spain.
| |
Collapse
|
16
|
Bolocan AS, Upadrasta A, Bettio PHDA, Clooney AG, Draper LA, Ross RP, Hill C. Evaluation of Phage Therapy in the Context of Enterococcus faecalis and Its Associated Diseases. Viruses 2019; 11:E366. [PMID: 31010053 PMCID: PMC6521178 DOI: 10.3390/v11040366] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 04/16/2019] [Accepted: 04/17/2019] [Indexed: 12/11/2022] Open
Abstract
Bacteriophages (phages) or bacterial viruses have been proposed as natural antimicrobial agents to fight against antibiotic-resistant bacteria associated with human infections. Enterococcus faecalis is a gut commensal, which is occasionally found in the mouth and vaginal tract, and does not usually cause clinical problems. However, it can spread to other areas of the body and cause life-threatening infections, such as septicemia, endocarditis, or meningitis, in immunocompromised hosts. Although E. faecalis phage cocktails are not commercially available within the EU or USA, there is an accumulated evidence from in vitro and in vivo studies that have shown phage efficacy, which supports the idea of applying phage therapy to overcome infections associated with E. faecalis. In this review, we discuss the potency of bacteriophages in controlling E. faecalis, in both in vitro and in vivo scenarios. E. faecalis associated bacteriophages were compared at the genome level and an attempt was made to categorize phages with respect to their suitability for therapeutic application, using orthocluster analysis. In addition, E. faecalis phages have been examined for the presence of antibiotic-resistant genes, to ensure their safe use in clinical conditions. Finally, the domain architecture of E. faecalis phage-encoded endolysins are discussed.
Collapse
Affiliation(s)
- Andrei S Bolocan
- APC Microbiome Ireland, University College Cork, Cork T12 YT20, Ireland.
- School of Microbiology, University College Cork, Cork T12 YN60, Ireland.
| | - Aditya Upadrasta
- APC Microbiome Ireland, University College Cork, Cork T12 YT20, Ireland.
- School of Microbiology, University College Cork, Cork T12 YN60, Ireland.
| | - Pedro H de Almeida Bettio
- APC Microbiome Ireland, University College Cork, Cork T12 YT20, Ireland.
- School of Microbiology, University College Cork, Cork T12 YN60, Ireland.
| | - Adam G Clooney
- APC Microbiome Ireland, University College Cork, Cork T12 YT20, Ireland.
- School of Microbiology, University College Cork, Cork T12 YN60, Ireland.
| | - Lorraine A Draper
- APC Microbiome Ireland, University College Cork, Cork T12 YT20, Ireland.
- School of Microbiology, University College Cork, Cork T12 YN60, Ireland.
| | - R Paul Ross
- APC Microbiome Ireland, University College Cork, Cork T12 YT20, Ireland.
- School of Microbiology, University College Cork, Cork T12 YN60, Ireland.
- Teagasc Food Research Centre, Moorepark, Fermoy, Cork P61 C996, Ireland.
| | - Colin Hill
- APC Microbiome Ireland, University College Cork, Cork T12 YT20, Ireland.
- School of Microbiology, University College Cork, Cork T12 YN60, Ireland.
| |
Collapse
|
17
|
Tang SS, Biswas SK, Tan WS, Saha AK, Leo BF. Efficacy and potential of phage therapy against multidrug resistant Shigella spp. PeerJ 2019; 7:e6225. [PMID: 30984476 PMCID: PMC6452847 DOI: 10.7717/peerj.6225] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 12/04/2018] [Indexed: 12/21/2022] Open
Abstract
Shigella-infected bacillary dysentery or commonly known as Shigellosis is a leading cause of morbidity and mortality worldwide. The gradual emergence of multidrug resistant Shigella spp. has triggered the search for alternatives to conventional antibiotics. Phage therapy could be one such suitable alternative, given its proven long term safety profile as well as the rapid expansion of phage therapy research. To be successful, phage therapy will need an adequate regulatory framework, effective strategies, the proper selection of appropriate phages, early solutions to overcome phage therapy limitations, the implementation of safety protocols, and finally improved public awareness. To achieve all these criteria and successfully apply phage therapy against multidrug resistant shigellosis, a comprehensive study is required. In fact, a variety of phage-based approaches and products including single phages, phage cocktails, mutated phages, genetically engineered phages, and combinations of phages with antibiotics have already been carried out to test the applications of phage therapy against multidrug resistant Shigella. This review provides a broad survey of phage treatments from past to present, focusing on the history, applications, limitations and effective solutions related to, as well as the prospects for, the use of phage therapy against multidrug resistant Shigella spp. and other multidrug resistant bacterial pathogens.
Collapse
Affiliation(s)
- Swee-Seong Tang
- Division of Microbiology, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| | - Sudhangshu Kumar Biswas
- Division of Microbiology, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
- Department of Genetic Engineering and Biotechnology, Islamic University Kushtia, Kushtia, Bangladesh
| | - Wen Siang Tan
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
- Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Ananda Kumar Saha
- Department of Zoology, Faculty of Life and Earth Sciences, University of Rajshahi, Rajshahi, Bangladesh
| | - Bey-Fen Leo
- Central Unit for Advanced Research Imaging, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
- Nanotechnology and Catalysis Research Centre (NANOCAT), University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
18
|
Abstract
Antibiotic resistance is arguably the biggest current threat to global health. An increasing number of infections are becoming harder or almost impossible to treat, carrying high morbidity, mortality, and financial cost. The therapeutic use of bacteriophages, viruses that infect and kill bacteria, is well suited to be part of the multidimensional strategies to combat antibiotic resistance. Although phage therapy was first implemented almost a century ago, it was brought to a standstill after the successful introduction of antibiotics. Now, with the rise of antibiotic resistance, phage therapy is experiencing a well-deserved rebirth. Among the admittedly vast literature recently published on this topic, this review aims to provide a forward-looking perspective on phage therapy and its role in modern society. We cover the key points of the antibiotic resistance crisis and then explain the biological and evolutionary principles that support the use of phages, their interaction with the immune system, and a comparison with antibiotic therapy. By going through up-to-date reports and, whenever possible, human clinical trials, we examine the versatility of phage therapy. We discuss conventional approaches as well as novel strategies, including the use of phage-antibiotic combinations, phage-derived enzymes, exploitation of phage resistance mechanisms, and phage bioengineering. Finally, we discuss the benefits of phage therapy beyond the clinical perspective, including opportunities for scientific outreach and effective education, interdisciplinary collaboration, cultural and economic growth, and even innovative use of social media, making the case that phage therapy is more than just an alternative to antibiotics.
Collapse
|
19
|
Bacterial vaginosis: An insight into the prevalence, alternative treatments regimen and it's associated resistance patterns. Microb Pathog 2018; 127:21-30. [PMID: 30502515 DOI: 10.1016/j.micpath.2018.11.046] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 11/27/2018] [Accepted: 11/27/2018] [Indexed: 02/06/2023]
Abstract
Bacterial Vaginosis (BV) is a complex polymicrobial infection of vagina that shifts the paradigms of vaginal flora from lactobacilli to opportunistic pathogens. BV is catagorized by greyish white discharge, pH greater than 4.5. It results in the preterm labor, abortion, pelvic inflammatory disorders, post cesarean infections. BV is associated with Sexually Transmitted Diseases (STDs) or immune deficiency disorders like Human Immunodeficiency Virus, Human Papilloma Virus, Herpes Simplex Virus 1 and 2, and Neisseria gonorrhoeae. The prevalence rate is about 21.2 million (29.2%) worldwide. BV is more frequent in black females as compared to white females, independent of geographical distribution. Globally, BV is treated with the current recommended antibiotic therapy including Metronidazole and Clindamycin. The recurrence rates are 76% and occur within 06 months of treatment due to antibiotic resistance against pathogenic bacteria and their biofilms. The antibiotic resistance is a global health issue which directs the attentions towards other treatments. One of these is the treatment of sex partners, thus helping to stop the recurrence rates in females. However, this method does not show any positive results. Probiotic therapy is an incorporation of Lactobacilli orally or intravaginally for the recolonization of healthy microbes. This therapy has exhibited promising results but some studies revealed that Probiotic therapy does not control the recurrence rate. The other methods are in trials period and none of them are used clinically or commercially available for the treatment. The thermoplastic polyurethane (TPU) intravaginal rings contain lactic acid and metronidazole showed promising results in trials of BV treatment. The vaginal acidifiers are used as an alternative method to maintain the vaginal pH but the process of douching is a major limitation. The activated charcoal is used to treat BV patients in clinical trials showed decrease in the pH with only 3.1% loss of lactobacilli. Phage therapy is a reemerging field to overcome the bacterial resistance. They are host specific and easier to handle. They can be used naturally, synthetically; phage cocktails and phage-antibiotics combination can be used. Phages show auspicious results for the treatment of bacterial infections as compared to antibiotics as they also treat biofilms. This is one of the promising therapy in future to treat infections with no side effects. Phage therapy can be used in pharmaceuticals according to Food and Drug Administration (FDA) guidelines. Taken together, it is suggested that large funding is required by pharmaceutical sector or government for further investigation of bacteriophages to be used against BV pathogenesis.
Collapse
|
20
|
Bacharouche J, Erdemli O, Rivet R, Doucouré B, Caillet C, Mutschler A, Lavalle P, Duval JFL, Gantzer C, Francius G. On the Infectivity of Bacteriophages in Polyelectrolyte Multilayer Films: Inhibition or Preservation of Their Bacteriolytic Activity? ACS APPLIED MATERIALS & INTERFACES 2018; 10:33545-33555. [PMID: 30192508 DOI: 10.1021/acsami.8b10424] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Antibiotic resistance in bacterial cells has motivated the scientific community to design new and efficient (bio)materials with targeted bacteriostatic and/or bactericide properties. In this work, a series of polyelectrolyte multilayer films differing in terms of polycation-polyanion combinations are constructed according to the layer-by-layer deposition method. Their capacities to host T4 and φx174 phage particles and maintain their infectivity and bacteriolytic activity are thoroughly examined. It is found that the macroscopic physicochemical properties of the films, which includes film thickness, swelling ratio, or mechanical stiffness (as derived by atomic force microscopy and spectroscopy measurements), do not predominantly control the selectivity of the films for hosting infective phages. Instead, it is evidenced that the intimate electrostatic interactions locally operational between the loaded phages and the polycationic and polyanionic PEM components may lead to phage activity reduction and preservation/enhancement, respectively. It is argued that the underlying mechanism involves the screening of the phage capsid receptors (operational in cell recognition/infection processes) because of the formation of either polymer-phage hetero-assemblies or polymer coating surrounding the bioactive phage surface.
Collapse
Affiliation(s)
- Jalal Bacharouche
- Université de Lorraine, Laboratoire de Chimie Physique et Microbiologie pour l'Environnement, LCPME, UMR 7564 , Villers-lès-Nancy F-54600 , France
- CNRS, Laboratoire de Chimie Physique et Microbiologie pour l'Environnement, LCPME, UMR 7564 , Villers-lès-Nancy F-54600 , France
| | - Ozge Erdemli
- CNRS, Laboratoire de Chimie Physique et Microbiologie pour l'Environnement, LCPME, UMR 7564 , Villers-lès-Nancy F-54600 , France
- Institut National de la Santé et de la Recherche Médicale, INSERM Unité 1121 , 11 rue Humann , 67085 Strasbourg Cedex , France
- Université de Strasbourg , Faculté de Chirurgie Dentaire , 8 rue Sainte Elisabeth , 67000 Strasbourg , France
| | - Romain Rivet
- Université de Lorraine, Laboratoire de Chimie Physique et Microbiologie pour l'Environnement, LCPME, UMR 7564 , Villers-lès-Nancy F-54600 , France
- CNRS, Laboratoire de Chimie Physique et Microbiologie pour l'Environnement, LCPME, UMR 7564 , Villers-lès-Nancy F-54600 , France
| | - Balla Doucouré
- Université de Lorraine, Laboratoire de Chimie Physique et Microbiologie pour l'Environnement, LCPME, UMR 7564 , Villers-lès-Nancy F-54600 , France
- CNRS, Laboratoire de Chimie Physique et Microbiologie pour l'Environnement, LCPME, UMR 7564 , Villers-lès-Nancy F-54600 , France
| | - Céline Caillet
- Université de Lorraine, Laboratoire Interdisciplinaire des Environnements Continentaux, UMR 7360 , 54501 Vandœuvre-lès-Nancy , France
- CNRS, Laboratoire Interdisciplinaire des Environnements Continentaux, UMR 7360 , 54501 Vandœuvre-lès-Nancy , France
| | - Angela Mutschler
- Institut National de la Santé et de la Recherche Médicale, INSERM Unité 1121 , 11 rue Humann , 67085 Strasbourg Cedex , France
- Université de Strasbourg , Faculté de Chirurgie Dentaire , 8 rue Sainte Elisabeth , 67000 Strasbourg , France
| | - Philippe Lavalle
- Institut National de la Santé et de la Recherche Médicale, INSERM Unité 1121 , 11 rue Humann , 67085 Strasbourg Cedex , France
- Université de Strasbourg , Faculté de Chirurgie Dentaire , 8 rue Sainte Elisabeth , 67000 Strasbourg , France
| | - Jérôme F L Duval
- Université de Lorraine, Laboratoire Interdisciplinaire des Environnements Continentaux, UMR 7360 , 54501 Vandœuvre-lès-Nancy , France
- CNRS, Laboratoire Interdisciplinaire des Environnements Continentaux, UMR 7360 , 54501 Vandœuvre-lès-Nancy , France
| | - Christophe Gantzer
- Université de Lorraine, Laboratoire de Chimie Physique et Microbiologie pour l'Environnement, LCPME, UMR 7564 , Villers-lès-Nancy F-54600 , France
- CNRS, Laboratoire de Chimie Physique et Microbiologie pour l'Environnement, LCPME, UMR 7564 , Villers-lès-Nancy F-54600 , France
| | - Grégory Francius
- Université de Lorraine, Laboratoire de Chimie Physique et Microbiologie pour l'Environnement, LCPME, UMR 7564 , Villers-lès-Nancy F-54600 , France
- CNRS, Laboratoire de Chimie Physique et Microbiologie pour l'Environnement, LCPME, UMR 7564 , Villers-lès-Nancy F-54600 , France
| |
Collapse
|
21
|
Bragg RR, Meyburgh CM, Lee JY, Coetzee M. Potential Treatment Options in a Post-antibiotic Era. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1052:51-61. [DOI: 10.1007/978-981-10-7572-8_5] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
22
|
Isolation of Potential Phages against Multidrug-Resistant Bacterial Isolates: Promising Agents in the Rivers of Kathmandu, Nepal. BIOMED RESEARCH INTERNATIONAL 2017; 2017:3723254. [PMID: 29359149 PMCID: PMC5735621 DOI: 10.1155/2017/3723254] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 10/28/2017] [Accepted: 11/02/2017] [Indexed: 12/14/2022]
Abstract
Bacteriophages are being the subject of interest for alternative antimicrobial therapy for infectious diseases in recent years. Therapeutic effectiveness regarding phage therapy is a matter of concern since it is the most promising biological treatment of this era. Hence, the present study was aimed to isolate the potential bacteriophages present in river water samples and to analyze their host range among clinical strains of bacteria. Ten different locations of Kathmandu valley were selected for the collection of river water for the detection of probable phages. Bacteriophages were isolated from water samples using the double agar overlay method. Isolated phages were purified by diluting in the SM-buffer and filtering through 0.22 μm filter. Purified lysate was further processed for analyzing its host range by using spot method. Their host range was characterized against 20 bacterial strains, including multidrug-resistant. Total 67 different phages were isolated against 8 different host organisms. Out of them, forty-seven phages were selected for analyzing its host range. Among them, Serratia phages (ΦSER) had the broad host range infecting 17 different bacterial strains including multidrug-resistant harboring ESBL and MBL genotypes. However, Klebsiella phages (ΦKP) had narrow host range in comparison to other phages. Isolated phages had the potential effect against clinical strains of bacteria along with their broader host spectrum. Most importantly, promising effect against MDR pathogens in this study has raised the probable chances of the utility of these phages for biological control of bacterial infection including MBL and ESBL strains.
Collapse
|
23
|
Meyburgh CM, Bragg RR, Boucher CE. Lactococcus garvieae: an emerging bacterial pathogen of fish. DISEASES OF AQUATIC ORGANISMS 2017; 123:67-79. [PMID: 28177294 DOI: 10.3354/dao03083] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Lactococcus garvieae is the causative agent of lactococcosis, a hyperacute, haemorrhagic septicaemia of fish. This bacterium is also considered an emerging zoonotic pathogen, as reports of human infection are increasing. Significant economic loss in aquaculture is suffered as a result of lactococcosis, as numerous freshwater and marine species of commercial interest are affected. Development of antibiotic resistance in L. garvieae to several chemotherapeutic agents complicates and restricts treatment options. Effective, sustainable treatment and prevention options are thus needed, but progress is impeded by the lack of knowledge concerning several aspects of the disease and the pathogen. This review aims to present the latest research on L. garvieae, with specific focus on pathogenesis, virulence factors, risks associated with chemotherapeutic administration and possible control options.
Collapse
Affiliation(s)
- C M Meyburgh
- Department of Microbial, Biochemical & Food Biotechnology, University of the Free State, Bloemfontein, South Africa
| | | | | |
Collapse
|
24
|
Nakonieczna A, Cooper CJ, Gryko R. Bacteriophages and bacteriophage-derived endolysins as potential therapeutics to combat Gram-positive spore forming bacteria. J Appl Microbiol 2015; 119:620-31. [PMID: 26109320 DOI: 10.1111/jam.12881] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Revised: 05/28/2015] [Accepted: 06/11/2015] [Indexed: 01/21/2023]
Abstract
Since their discovery in 1915, bacteriophages have been routinely used within Eastern Europe to treat a variety of bacterial infections. Although initially ignored by the West due to the success of antibiotics, increasing levels and diversity of antibiotic resistance is driving a renaissance for bacteriophage-derived therapy, which is in part due to the highly specific nature of bacteriophages as well as their relative abundance. This review focuses on the bacteriophages and derived lysins of relevant Gram-positive spore formers within the Bacillus cereus group and Clostridium genus that could have applications within the medical, food and environmental sectors.
Collapse
Affiliation(s)
- A Nakonieczna
- Biological Threats Identification and Countermeasure Center of the Military Institute of Hygiene and Epidemiology, Pulawy, Poland
| | - C J Cooper
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - R Gryko
- Biological Threats Identification and Countermeasure Center of the Military Institute of Hygiene and Epidemiology, Pulawy, Poland
| |
Collapse
|