1
|
Gourishetti K, Balaji Easwaran V, Mostakim Y, Ranganath Pai KS, Bhere D. MicroRNA (miR)-124: A Promising Therapeutic Gateway for Oncology. BIOLOGY 2023; 12:922. [PMID: 37508353 PMCID: PMC10376116 DOI: 10.3390/biology12070922] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/22/2023] [Accepted: 06/26/2023] [Indexed: 07/30/2023]
Abstract
MicroRNA (miR) are a class of small non-coding RNA that are involved in post-transcriptional gene regulation. Altered expression of miR has been associated with several pathological conditions. MicroRNA-124 (miR-124) is an abundantly expressed miR in the brain as well as the thymus, lymph nodes, bone marrow, and peripheral blood mono-nuclear cells. It plays a key role in the regulation of the host immune system. Emerging studies show that dysregulated expression of miR-124 is a hallmark in several cancer types and it has been attributed to the progression of these malignancies. In this review, we present a comprehensive summary of the role of miR-124 as a promising therapeutic gateway in oncology.
Collapse
Affiliation(s)
- Karthik Gourishetti
- Biotherapeutics Laboratory, School of Medicine Columbia, University of South Carolina, Columbia, SC 29209, USA
- Department of Pathology, Microbiology, and Immunology, School of Medicine Columbia, University of South Carolina, Columbia, SC 29209, USA
| | - Vignesh Balaji Easwaran
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, India
| | - Youssef Mostakim
- Biotherapeutics Laboratory, School of Medicine Columbia, University of South Carolina, Columbia, SC 29209, USA
- Department of Pathology, Microbiology, and Immunology, School of Medicine Columbia, University of South Carolina, Columbia, SC 29209, USA
- College of Arts and Sciences, University of South Carolina, Columbia, SC 29208, USA
| | - K. Sreedhara Ranganath Pai
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, India
| | - Deepak Bhere
- Biotherapeutics Laboratory, School of Medicine Columbia, University of South Carolina, Columbia, SC 29209, USA
- Department of Pathology, Microbiology, and Immunology, School of Medicine Columbia, University of South Carolina, Columbia, SC 29209, USA
| |
Collapse
|
2
|
Shen Y, Liu JX, Yin MM, Zheng CH, Gao YL. BMPMDA: Prediction of MiRNA-Disease Associations Using a Space Projection Model Based on Block Matrix. Interdiscip Sci 2023; 15:88-99. [PMID: 36335274 DOI: 10.1007/s12539-022-00542-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 10/13/2022] [Accepted: 10/14/2022] [Indexed: 11/07/2022]
Abstract
With the high-quality development of bioinformatics technology, miRNA-disease associations (MDAs) are gradually being uncovered. At present, convenient and efficient prediction methods, which solve the problem of resource-consuming in traditional wet experiments, need to be further put forward. In this study, a space projection model based on block matrix is presented for predicting MDAs (BMPMDA). Specifically, two block matrices are first composed of the known association matrix and similarity to increase comprehensiveness. For the integrity of information in the heterogeneous network, matrix completion (MC) is utilized to mine potential MDAs. Considering the neighborhood information of data points, linear neighborhood similarity (LNS) is regarded as a measure of similarity. Next, LNS is projected onto the corresponding completed association matrix to derive the projection score. Finally, the AUC and AUPR values for BMPMDA reach 0.9691 and 0.6231, respectively. Additionally, the majority of novel MDAs in three disease cases are identified in existing databases and literature. It suggests that BMPMDA can serve as a reliable prediction model for biological research.
Collapse
Affiliation(s)
- Yi Shen
- Qufu Normal University, Rizhao, 276800, China
| | | | | | - Chun-Hou Zheng
- Co-Innovation Center for Information Supply and Assurance Technology, Anhui University, Hefei, 230000, China
| | - Ying-Lian Gao
- Library of Qufu Normal University, Qufu Normal University, Rizhao, 276800, China.
| |
Collapse
|
3
|
Wang T, Mao P, Zhang Y, Cui B, Wang MD, Li Y, Gao K. LncRNA MYMLR promotes pituitary adenoma development by upregulating carbonyl reductase 1 via sponging miR-197-3p. Anticancer Drugs 2022; 33:1058-1068. [DOI: 10.1097/cad.0000000000001385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
4
|
Portovedo S, Neto LV, Soares P, Carvalho DPD, Takiya CM, Miranda-Alves L. Aggressive nonfunctioning pituitary neuroendocrine tumors. Brain Tumor Pathol 2022; 39:183-199. [PMID: 35725837 DOI: 10.1007/s10014-022-00441-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Accepted: 05/31/2022] [Indexed: 11/29/2022]
Abstract
Nonfunctioning pituitary neuroendocrine tumors (NF-PitNETs) are tumors that are not associated with clinical evidence of hormonal hypersecretion. According to the World Health Organization (WHO), there are some subtypes of PitNETs that exhibit more aggressive behavior than others. Among the types of potentially aggressive PitNETs, three are nonfunctional: silent sparsely granulated somatotropinomas, silent corticotropinomas, and poorly differentiated PIT-1 lineage tumors. Several biological markers have been investigated in NF-PitNETs. However, there is no single biomarker able to independently predict aggressive behavior in NF-PitNETs. Thus, a more complex and multidisciplinary proposal of a comprehensive definition of aggressive NF-PitNETs is necessary. Here, we suggest a combined and more complete criterion for the NF-PitNETs classification. We propose that aggressiveness is due to a multifactorial combination, and we emphasize the need to include new emerging markers that are involved in the aggressiveness of NF-PitNETs and the need to identify.
Collapse
Affiliation(s)
- Sérgio Portovedo
- Laboratório de Endocrinologia Experimental-LEEx, Centro de Ciências da Saúde, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373, Bloco F - Sala F1-015 - Ilha do Fundão, Rio de Janeiro, RJ, 21941-912, Brazil.,Programa de Pós-Graduação em Endocrinologia, Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Leonardo Vieira Neto
- Programa de Pós-Graduação em Endocrinologia, Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Serviço de Endocrinologia, Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Paula Soares
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, Porto, Portugal.,Instituto de Patologia e Imunologia Molecular da Universidade do Porto (IPATIMUP), Porto, Portugal.,Departamento de Patologia, Faculdade de Medicina da Universidade do Porto (FMUP), Porto, Portugal
| | - Denise Pires de Carvalho
- Programa de Pós-Graduação em Endocrinologia, Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Laboratório de Fisiologia Endócrina Doris Rosenthal, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Christina Maeda Takiya
- Laboratório de Imunopatologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Leandro Miranda-Alves
- Laboratório de Endocrinologia Experimental-LEEx, Centro de Ciências da Saúde, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373, Bloco F - Sala F1-015 - Ilha do Fundão, Rio de Janeiro, RJ, 21941-912, Brazil. .,Programa de Pós-Graduação em Endocrinologia, Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil. .,Programa de Pós-Graduação em Farmacologia e Química Medicinal, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil. .,Programa de Pós-Graduação em Ciências Morfológicas, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
5
|
Marine Anthraquinones: Pharmacological and Toxicological Issues. Mar Drugs 2021; 19:md19050272. [PMID: 34068184 PMCID: PMC8152984 DOI: 10.3390/md19050272] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/09/2021] [Accepted: 05/11/2021] [Indexed: 12/12/2022] Open
Abstract
The marine ecosystem, populated by a myriad of animals, plants, and microorganisms, is an inexhaustible reservoir of pharmacologically active molecules. Among the multiple secondary metabolites produced by marine sources, there are anthraquinones and their derivatives. Besides being mainly known to be produced by terrestrial species, even marine organisms and the uncountable kingdom of marine microorganisms biosynthesize anthraquinones. Anthraquinones possess many different biological activities, including a remarkable antitumor activity. However, due to their peculiar chemical structures, anthraquinones are often associated with toxicological issues, even relevant, such as genotoxicity and mutagenicity. The aim of this review is to critically describe the anticancer potential of anthraquinones derived from marine sources and their genotoxic and mutagenic potential. Marine-derived anthraquinones show a promising anticancer potential, although clinical studies are missing. Additionally, an in-depth investigation of their toxicological profile is needed before advocating anthraquinones as a therapeutic armamentarium in the oncological area.
Collapse
|
6
|
Ma L, Liu Z, Fan Z. Potential Mechanisms of miR-143/Krupple Like Factor 5 Axis in Impeding the Proliferation of Michigan Cancer Foundation-7 Breast Cancer Cell Line. J BIOMATER TISS ENG 2021. [DOI: 10.1166/jbt.2021.2545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Breast cancer is one of the most prevailing cancers in females, while the cancerous heterogeneity hinders its early diagnosis and subsequent therapy. miR-143-3p is a critical mediator in malignancy development and tumorigenesis as a tumor suppressor. Its role in various tumor entities
has been investigated, such as colon cancer and breast cancer. Using MCF-7 breast cancer cell model, we planned to explore the underlying mechanisms of miR-143/KLF-5 axis in retarding breast cancer cells growth. Bioinformatics analysis searched the target KLF5 of miR-143, and the miR-143-targeted
mimic and inhibitor were employed to detect the changes of KLF5. After transfection of mimic miR-143, the CCK-8 reagent assessed cell proliferation. Based on optimal stimulation time, miR-143 stimulation model was established, followed by determining expression of KLF5, EGFR and PCNA via western
blot and qPCR. Eventually, siRNA-KLF5 was applied to silencing KLF5 level to evaluate its role in MCF-7 cells. The transcription and translation levels of KLF5 were diminished in miR-143-mimic transfected MCF-7 cells, while enhanced in miR-143-inhibitor transfected MCF-7 cells. When MCF-7
cells were transfected with miR-143-mimic at different time points, 48 hours was found to be the optimal transfection time, with reduced transcription and translation levels of KLF5, EGFR and PCNA. The transcription and translation levels of PNCA and EGFR were declined after silencing KLF5
by siRNA. miR-143/KLF5 axis could retard the proliferation of MCF-7 breast cancer cells.
Collapse
Affiliation(s)
- Le Ma
- Department of Breast Surgery, The First Hospital of Jilin University, Changchun, Jilin, 130021, China
| | - Zhenyu Liu
- Department of Breast Surgery, The First Hospital of Jilin University, Changchun, Jilin, 130021, China
| | - Zhimin Fan
- Department of Breast Surgery, The First Hospital of Jilin University, Changchun, Jilin, 130021, China
| |
Collapse
|
7
|
Genetics of Pituitary Tumours. EXPERIENTIA. SUPPLEMENTUM 2019. [PMID: 31588533 DOI: 10.1007/978-3-030-25905-1_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2023]
Abstract
Pituitary tumours are relatively common in the general population. Most often they occur sporadically, with somatic mutations accounting for a significant minority of somatotroph and corticotroph adenomas. Pituitary tumours can also develop secondary to germline mutations as part of a complex syndrome or as familial isolated pituitary adenomas. Tumours occurring in a familial setting may present at a younger age and can behave more aggressively with resistance to treatment. This chapter will focus on the genetics and molecular pathogenesis of pituitary tumours.
Collapse
|
8
|
Grzywa TM, Klicka K, Rak B, Mehlich D, Garbicz F, Zieliński G, Maksymowicz M, Sajjad E, Włodarski PK. Lineage-dependent role of miR-410-3p as oncomiR in gonadotroph and corticotroph pituitary adenomas or tumor suppressor miR in somatotroph adenomas via MAPK, PTEN/AKT, and STAT3 signaling pathways. Endocrine 2019; 65:646-655. [PMID: 31165412 PMCID: PMC6717603 DOI: 10.1007/s12020-019-01960-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Accepted: 04/16/2019] [Indexed: 12/15/2022]
Abstract
PURPOSE miR-410-3p plays opposite roles in different cancers and may act as an oncomiR or tumor suppressor miR. The purpose of this study was to assess the role of miR-410-3p in somatotroph, gonadotroph, and corticotroph pituitary adenomas. METHODS Tissue samples were obtained from 75 patients with pituitary adenoma. miR-410-3p expression was assessed using qRT-PCR performed on RNA isolated from fresh frozen samples. In vitro experiments were performed on cell lines derived from somatotroph (GH3), gonadotroph (RC-4B/C), and corticotroph (AtT-20) pituitary tumors. Cells were transfected with synthetic mimic of miR-410-3p or non-targeting scrambled-miR control. Subsequently, proliferation assays and transwell invasion assays were performed. The expression of cyclin D1, E1, and B1 in cells after transfection was determined using qRT-PCR. The activation of MAPK, PTEN/AKT and STAT3 signaling pathways were assessed using western blot. RESULTS We have found that the level of expression of miR-410-3p differs in particular types of pituitary adenomas. miR-410-3p significantly upregulates proliferation and invasiveness of RC-4B/C and AtT-20 cells, while inhibiting GH3 cells. We observed that the levels of cyclin B1 upon transfection with miR-410-3p mimic were increased in RC-4B/C and AtT-20, yet decreased in GH3 cells. We have shown that miR-410-3p promoted the activation of MAPK, PTEN/AKT, and STAT3 signaling pathways in RC-4B/C and AtT-20 cells, but suppressed their activity in GH3 cells. CONCLUSIONS miR-410-3p acts as an oncomiR in gonadotroph and corticotroph adenoma cells, while as a tumor suppressor miR in somatotroph adenoma cells.
Collapse
Affiliation(s)
- Tomasz M Grzywa
- Center for Preclinical Research, The Department of Methodology, Medical University of Warsaw, 1B Banacha Str., 02-097, Warsaw, Poland
- Center for Preclinical Research, The Department of Histology and Embryology, Medical University of Warsaw, 1B Banacha Str., 02-097, Warsaw, Poland
| | - Klaudia Klicka
- Center for Preclinical Research, The Department of Methodology, Medical University of Warsaw, 1B Banacha Str., 02-097, Warsaw, Poland
- Center for Preclinical Research, The Department of Histology and Embryology, Medical University of Warsaw, 1B Banacha Str., 02-097, Warsaw, Poland
| | - Beata Rak
- Center for Preclinical Research, The Department of Methodology, Medical University of Warsaw, 1B Banacha Str., 02-097, Warsaw, Poland.
- Center for Preclinical Research, The Department of Histology and Embryology, Medical University of Warsaw, 1B Banacha Str., 02-097, Warsaw, Poland.
- Postgraduate School of Molecular Medicine, Warsaw, Poland.
- The Department of Internal Diseases and Endocrinology, Public Central Teaching Hospital, Medical University of Warsaw, 1A Banacha Str., 02-097, Warsaw, Poland.
| | - Dawid Mehlich
- Center for Preclinical Research, The Department of Methodology, Medical University of Warsaw, 1B Banacha Str., 02-097, Warsaw, Poland
- Center for Preclinical Research, The Department of Histology and Embryology, Medical University of Warsaw, 1B Banacha Str., 02-097, Warsaw, Poland
- Laboratory of Experimental Medicine, Centre of New Technologies, University of Warsaw, 2C Banacha Str., 02-097, Warsaw, Poland
| | - Filip Garbicz
- Center for Preclinical Research, The Department of Methodology, Medical University of Warsaw, 1B Banacha Str., 02-097, Warsaw, Poland
- Center for Preclinical Research, The Department of Histology and Embryology, Medical University of Warsaw, 1B Banacha Str., 02-097, Warsaw, Poland
- Postgraduate School of Molecular Medicine, Warsaw, Poland
- Department of Experimental Hematology, Institute of Hematology and Transfusion Medicine, 14 Indiry Gandhi Str., 02-776, Warsaw, Poland
| | - Grzegorz Zieliński
- The Department of Neurosurgery, Military Institute of Medicine, 128 Szaserów Str., 04-141, Warsaw, Poland
| | - Maria Maksymowicz
- The Department of Pathology and Laboratory Diagnostics, M. Skłodowska-Curie Memorial Cancer Centre and Institute of Oncology, 5 Roentgena Str., 02-781, Warsaw, Poland
| | - Emir Sajjad
- Center for Preclinical Research, The Department of Histology and Embryology, Medical University of Warsaw, 1B Banacha Str., 02-097, Warsaw, Poland
- The Department of Neurosurgery, Military Institute of Medicine, 128 Szaserów Str., 04-141, Warsaw, Poland
| | - Paweł K Włodarski
- Center for Preclinical Research, The Department of Methodology, Medical University of Warsaw, 1B Banacha Str., 02-097, Warsaw, Poland
- Center for Preclinical Research, The Department of Histology and Embryology, Medical University of Warsaw, 1B Banacha Str., 02-097, Warsaw, Poland
| |
Collapse
|
9
|
Ye J, Yao Z, Si W, Gao X, Yang C, Liu Y, Ding J, Huang W, Fang F, Zhou J. Identification and characterization of microRNAs in the pituitary of pubescent goats. Reprod Biol Endocrinol 2018; 16:51. [PMID: 29801455 PMCID: PMC5970454 DOI: 10.1186/s12958-018-0370-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Accepted: 05/15/2018] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Puberty is the period during a female mammal's life when it enters estrus and ovulates for the first time; this indicates that a mammal is capable of reproduction. The onset of puberty is a complex and tightly coordinated biological event; it has been reported that microRNAs (miRNAs) are involved in regulating the initiation of puberty. METHODS We performed miRNA sequencing on pituitary tissue from prepubescent and pubescent goats to investigate differences in miRNA expression during the onset of puberty in female goats. The target genes of these miRNAs were evaluated by GO enrichment and KEGG pathway analysis to identify critical pathways regulated by these miRNAs during puberty in goats. Finally, we selected four known miRNA and one novel miRNAs to evaluate expression patterns in two samples via qRT-PCR to validate the RNA-seq data. RESULTS In this study, 476 miRNAs were detected in goat pituitary tissue; 13 of these were specifically expressed in the pituitary of prepubescent goats, and 17 were unique to the pituitary of pubescent goats. Additionally, 73 novel miRNAs were predicted in these two libraries. 20 differentially expressed miRNAs were identified in this study. KEGG pathway enrichment analysis revealed that the differentially expressed miRNA target genes were enriched in pathways related to ovary development during puberty, including the GABAergic synapse, oxytocin signaling pathway, the cAMP signaling pathway, progesterone-mediated oocyte maturation. In this study, differential miRNA expression in the pituitary tissue of prepubescent and pubescent goats were identified and characterized. CONCLUSION These results provide important information regarding the potential regulation of the onset of goat puberty by miRNAs, and contribute to the elucidation of miRNA regulated processes during maturation and reproduction.
Collapse
Affiliation(s)
- Jing Ye
- Anhui Provincial Laboratory of Animal Genetic Resources Protection and Breeding, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, Anhui, China
- Department of Animal Veterinary Science, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, Anhui, China
| | - Zhiqiu Yao
- Anhui Provincial Laboratory of Animal Genetic Resources Protection and Breeding, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, Anhui, China
- Department of Animal Veterinary Science, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, Anhui, China
| | - Wenyu Si
- Anhui Provincial Laboratory of Animal Genetic Resources Protection and Breeding, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, Anhui, China
- Department of Animal Veterinary Science, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, Anhui, China
| | - Xiaoxiao Gao
- Anhui Provincial Laboratory of Animal Genetic Resources Protection and Breeding, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, Anhui, China
| | - Chen Yang
- Anhui Provincial Laboratory of Animal Genetic Resources Protection and Breeding, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, Anhui, China
| | - Ya Liu
- Anhui Provincial Laboratory of Animal Genetic Resources Protection and Breeding, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, Anhui, China
- Anhui Provincial Laboratory for Local Livestock and Poultry Genetic Resource Conservation and Bio-Breeding, 130 Changjiang West Road, Hefei, 230036, Anhui, China
- Department of Animal Veterinary Science, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, Anhui, China
| | - Jianping Ding
- Anhui Provincial Laboratory of Animal Genetic Resources Protection and Breeding, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, Anhui, China
- Anhui Provincial Laboratory for Local Livestock and Poultry Genetic Resource Conservation and Bio-Breeding, 130 Changjiang West Road, Hefei, 230036, Anhui, China
- Department of Animal Veterinary Science, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, Anhui, China
| | - Weiping Huang
- Anhui Provincial Laboratory of Animal Genetic Resources Protection and Breeding, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, Anhui, China
- Anhui Provincial Laboratory for Local Livestock and Poultry Genetic Resource Conservation and Bio-Breeding, 130 Changjiang West Road, Hefei, 230036, Anhui, China
- Department of Animal Veterinary Science, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, Anhui, China
| | - Fugui Fang
- Anhui Provincial Laboratory of Animal Genetic Resources Protection and Breeding, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, Anhui, China.
- Anhui Provincial Laboratory for Local Livestock and Poultry Genetic Resource Conservation and Bio-Breeding, 130 Changjiang West Road, Hefei, 230036, Anhui, China.
- Department of Animal Veterinary Science, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, Anhui, China.
| | - Jie Zhou
- Anhui Provincial Laboratory of Animal Genetic Resources Protection and Breeding, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, Anhui, China
- Department of Animal Veterinary Science, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, Anhui, China
| |
Collapse
|
10
|
Darvasi O, Szabo PM, Nemeth K, Szabo K, Spisak S, Liko I, Czirjak S, Racz K, Igaz P, Patocs A, Butz H. Limitations of high throughput methods for miRNA expression profiles in non-functioning pituitary adenomas. Pathol Oncol Res 2017; 25:169-182. [PMID: 29043608 DOI: 10.1007/s12253-017-0330-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 10/02/2017] [Indexed: 12/24/2022]
Abstract
Microarray, RT-qPCR based arrays and next-generation-sequencing (NGS) are available high-throughput methods for miRNA profiling (miRNome). Analytical and biological performance of these methods were tested in identification of biologically relevant miRNAs in non-functioning pituitary adenomas (NFPA). miRNome of 4 normal pituitary (NP) and 8 NFPA samples was determined by these platforms and expression of 21 individual miRNAs was measured on 30 (20 NFPA and 10 NP) independent samples. Complex bioinformatics was used. 132 and 137 miRNAs were detected by all three platforms in NP and NFPA, respectively, of which 25 were differentially expressed (fold change > 2). The strongest correlation was observed between microarray and TaqMan-array, while the data obtained by NGS were the most discordant despite of various bioinformatics settings. As a technical validation we measured the expression of 21 selected miRNAs by individual RT-qPCR and we were able to validate 35.1%, 76.2% and 71.4% of the miRNAs revealed by SOLiD, TLDA and microarray result, respectively. We performed biological validation using an extended number of samples (20 NFPAs and 8 NPs). Technical and biological validation showed high correlation (p < 0.001; R = 0.96). Pathway and network analysis revealed several common pathways but no pathway showed the same activation score. Using the 25 platform-independent miRNAs developmental pathways were the top functional categories relevant for NFPA genesis. The difference among high-throughput platforms is of great importance and selection of screening method can influence experimental results. Validation by another platform is essential in order to avoid or to minimalize the platform specific errors.
Collapse
Affiliation(s)
- O Darvasi
- Hereditary Endocrine Tumors Research Group, Hungarian Academy of Sciences and Semmelweis University, Budapest, Hungary
| | - P M Szabo
- Molecular Medicine Research Group, Hungarian Academy of Sciences and Semmelweis University, Budapest, Hungary
| | - K Nemeth
- 2nd Department of Medicine, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - K Szabo
- 2nd Department of Medicine, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - S Spisak
- Molecular Medicine Research Group, Hungarian Academy of Sciences and Semmelweis University, Budapest, Hungary
| | - I Liko
- Hereditary Endocrine Tumors Research Group, Hungarian Academy of Sciences and Semmelweis University, Budapest, Hungary
| | - S Czirjak
- National Institute of Neurosurgery, Budapest, Hungary
| | - K Racz
- Molecular Medicine Research Group, Hungarian Academy of Sciences and Semmelweis University, Budapest, Hungary
- 2nd Department of Medicine, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - P Igaz
- Molecular Medicine Research Group, Hungarian Academy of Sciences and Semmelweis University, Budapest, Hungary
- 2nd Department of Medicine, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - A Patocs
- Hereditary Endocrine Tumors Research Group, Hungarian Academy of Sciences and Semmelweis University, Budapest, Hungary
- Semmelweis University, Department of Laboratory Medicine, 46 Szentkirályi Str, Budapest, H-1088, Hungary
| | - Henriett Butz
- Molecular Medicine Research Group, Hungarian Academy of Sciences and Semmelweis University, Budapest, Hungary.
- Semmelweis University, Department of Laboratory Medicine, 46 Szentkirályi Str, Budapest, H-1088, Hungary.
| |
Collapse
|
11
|
Lee YJ, Cho JM, Moon JH, Ku CR, Kim J, Kim SH, Lee EJ. Increased miR-338-3p expression correlates with invasiveness of GH-producing pituitary adenomas. Endocrine 2017; 58:184-189. [PMID: 28808880 DOI: 10.1007/s12020-017-1390-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 07/29/2017] [Indexed: 10/19/2022]
Affiliation(s)
- Yang Jong Lee
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University, Seoul, South Korea
| | - Jin Mo Cho
- Department of Neurosurgery, Catholic Kwandong University, International St. Mary's Hospital, Incheon, South Korea
| | - Ju Hyung Moon
- Neurosurgery, Institute of Endocrine Research, Yonsei University College of Medicine, Seoul, South Korea
| | - Cheol Ryong Ku
- Endocrinology, Institute of Endocrine Research, Yonsei University College of Medicine, Seoul, South Korea
| | - Jean Kim
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University, Seoul, South Korea
| | - Sun Ho Kim
- Neurosurgery, Institute of Endocrine Research, Yonsei University College of Medicine, Seoul, South Korea.
| | - Eun Jig Lee
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University, Seoul, South Korea.
- Endocrinology, Institute of Endocrine Research, Yonsei University College of Medicine, Seoul, South Korea.
| |
Collapse
|
12
|
Wang Y, Yin X, Zhao L, Li S, Duan J, Kuang R, Duan J. MicroRNA-200b inhibits pituitary tumor cell proliferation and invasion by targeting PKCα. Exp Ther Med 2017; 14:1706-1714. [PMID: 28810639 DOI: 10.3892/etm.2017.4681] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 01/13/2017] [Indexed: 12/27/2022] Open
Abstract
The present study aimed to investigate the expression of miR-200b and protein kinase Cα (PKCα) in pituitary tumors and to determine whether miR-200b may inhibit proliferation and invasion of pituitary tumor cells. The regulation of PKCα expression was targeted in order to find novel targets for the treatment of pituitary tumors. In total, 53 pituitary tumor tissue samples were collected; these included 28 cases of invasive pituitary tumors and 25 cases of non-invasive tumors, in addition to 5 normal pituitaries. The expression level of miR-200b in the pituitary tumor tissue was detected by quantitative polymerase chain reaction (qPCR) and the expression of PKCα protein was detected by immunohistochemistry. A PKCα 3'untranslated region (UTR) luciferase vector was constructed and a dual luciferase reporter gene assay was employed in order to examine the effect of miR-200b on the PKCα 3'UTR luciferase activity. AtT-20 cells were transfected with miR-200b mimics, PKCα siRNA and miR-200b mimics + PKCα, and the changes in cellular proliferation, invasion and apoptosis were observed via MTT, Transwell assay and flow cytometric analysis. Furthermore, PKCα mRNA expression was determined by qPCR, and Western blotting was performed to detect the expression of PKCα protein. miR-200b revealed downregulation in invasive pituitary tumor tissue, and the expression level was significantly down-regulated compared with normal and non-invasive pituitary tumor tissue (P<0.01). In addition, the positive rate of PKCα protein expression in invasive pituitary tumor tissues was significantly higher than in normal and non-invasive tissues (P<0.01). PKCα protein levels are inversely correlated with miR-200b levels in invasive pituitary tumor tissues (r=-0.436, P=0.021). The dual luciferase reporter gene assay revealed that miR-200b could specifically bind to the 3'UTR of PKCα and significantly inhibit the luciferase activity by 39% (P<0.01). Upregulation of miR-200b or downregulation of PKCα could suppress cell proliferation and invasion, and increase apoptosis of AtT-20 cells. It was revealed that PKCα siRNA could suppress both proliferation and invasion of AtT-20 cells and partially simulate the function of miR-200b. Expression of PKCα mRNA and protein decreased significantly in AtT-20 cells overexpressing miR-200b. Additionally, miR-200b was significantly down-regulated in invasive pituitary tumor tissue and inversely correlated with PKCα protein levels. In conclusion, miR-200b inhibited proliferation and invasiveness and promoted the apoptosis of pituitary tumor cells by targeting PKCα. The observations of the present study indicate that miR-200b and PKCα may serve as promising therapeutic targets for invasive pituitary tumors.
Collapse
Affiliation(s)
- Yuanchuan Wang
- Department of Neurosurgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
| | - Xiaohong Yin
- Department of Neurosurgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
| | - Long Zhao
- Department of Neurosurgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
| | - Shun Li
- Department of Neurosurgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
| | - Jie Duan
- Department of Neurosurgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
| | - Renzhao Kuang
- Department of Neurosurgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
| | - Junwei Duan
- Department of Neurosurgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
| |
Collapse
|
13
|
Abstract
Although most of pituitary adenomas are benign, they may cause significant burden to patients. Sporadic adenomas represent the vast majority of the cases, where recognized somatic mutations (eg, GNAS or USP8), as well as altered gene-expression profile often affecting cell cycle proteins have been identified. More rarely, germline mutations predisposing to pituitary adenomas -as part of a syndrome (eg, MEN1 or Carney complex), or isolated to the pituitary (AIP or GPR101) can be identified. These alterations influence the biological behavior, clinical presentations and therapeutic responses, and their full understanding helps to provide appropriate care for these patients.
Collapse
Affiliation(s)
- Pedro Marques
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Márta Korbonits
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK.
| |
Collapse
|
14
|
Butz H, Németh K, Czenke D, Likó I, Czirják S, Zivkovic V, Baghy K, Korbonits M, Kovalszky I, Igaz P, Rácz K, Patócs A. Systematic Investigation of Expression of G2/M Transition Genes Reveals CDC25 Alteration in Nonfunctioning Pituitary Adenomas. Pathol Oncol Res 2016; 23:633-641. [PMID: 28004354 DOI: 10.1007/s12253-016-0163-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 12/14/2016] [Indexed: 01/28/2023]
Abstract
Dysregulation of G1/S checkpoint of cell cycle has been reported in pituitary adenomas. In addition, our previous finding showing that deregulation of Wee1 kinase by microRNAs together with other studies demonstrating alteration of G2/M transition in nonfunctioning pituitary adenomas (NFPAs) suggest that G2/M transition may also be important in pituitary tumorigenesis. To systematically study the expression of members of the G2/M transition in NFPAs and to investigate potential microRNA (miRNA) involvement. Totally, 80 NFPA and 14 normal pituitary (NP) tissues were examined. Expression of 46 genes encoding members of the G2/M transition was profiled on 34 NFPA and 10 NP samples on TaqMan Low Density Array. Expression of CDC25A and two miRNAs targeting CDC25A were validated by individual quantitative real time PCR using TaqMan assays. Protein expression of CDC25A, CDC25C, CDK1 and phospho-CDK1 (Tyr-15) was investigated on tissue microarray and immunohistochemistry. Several genes' expression alteration were observed in NFPA compared to normal tissues by transcription profiling. On protein level CDC25A and both the total and the phospho-CDK1 were overexpressed in adenoma tissues. CDC25A correlated with nuclear localized CDK1 (nCDK1) and with tumor size and nCDK1 with Ki-67 index. Comparing primary vs. recurrent adenomas we found that Ki-67 proliferation index was higher and phospho-CDK1 (inactive form) was downregulated in recurrent tumors compared to primary adenomas. Investigating the potential causes behind CDC25A overexpression we could not find copy number variation at the coding region nor expression alteration of CDC25A regulating transcription factors however CDC25A targeting miRNAs were downregulated in NFPA and negatively correlated with CDC25A expression. Our results suggest that among alterations of G2/M transition of the cell cycle, overexpression of the CDK1 and CDC25A may have a role in the pathogenesis of the NFPA and that CDC25A is potentially regulated by miRNAs.
Collapse
Affiliation(s)
- Henriett Butz
- Molecular Medicine Research Group, Hungarian Academy of Sciences and Semmelweis University, 46 Szentkirályi str, Budapest, H-1088, Hungary.
| | - Kinga Németh
- 2nd Department of Medicine, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Dóra Czenke
- 2nd Department of Medicine, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - István Likó
- MTA-SE "Lendulet" Hereditary Endocrine Tumors Research Group, Hungarian Academy of Sciences and Semmelweis University, Budapest, Hungary
| | | | - Vladimir Zivkovic
- Institute of Forensic Medicine, University of Belgrade - School of Medicine, Belgrade, Serbia
| | - Kornélia Baghy
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Márta Korbonits
- Department of Endocrinology, Barts and the London School of Medicine, Queen Mary University of London, London, UK
| | - Ilona Kovalszky
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Péter Igaz
- 2nd Department of Medicine, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Károly Rácz
- Molecular Medicine Research Group, Hungarian Academy of Sciences and Semmelweis University, 46 Szentkirályi str, Budapest, H-1088, Hungary.,2nd Department of Medicine, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Attila Patócs
- 2nd Department of Medicine, Faculty of Medicine, Semmelweis University, Budapest, Hungary.,MTA-SE "Lendulet" Hereditary Endocrine Tumors Research Group, Hungarian Academy of Sciences and Semmelweis University, Budapest, Hungary
| |
Collapse
|
15
|
The significance of microRNAs in the course of rDD. Pharmacol Rep 2016; 69:206-212. [PMID: 28073061 DOI: 10.1016/j.pharep.2016.10.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2016] [Revised: 10/10/2016] [Accepted: 10/12/2016] [Indexed: 12/13/2022]
Abstract
BACKGROUND In recent years, special attention in genetic studies dedicated to the development of various diseases, including mental disorders, has been paid to micro ribonucleic acids (miRNA, microRNA). As an object of our analysis we have selected the miRNAs which - due to the profile of their activity - may be significant in the aetiology and course of recurrent depressive disorders, i.e. miRNA-370, miRNA-411, miRNA-433, miRNA-487b and miRNA-539. METHODS The examined population included 138 patients suffering from depression and 95 individuals from the control group (CG). The subjects suffering from depression were divided into two sub-groups: ED-I group (46 patients), rDD group (92 patients). RESULTS No significant statistical differences were observed between the ED-I and rDD group for all the variables included in the analysis. No significant interrelation was noticed between the number of depression episodes, the severity of depressive disorders and the expression of miRNA selected. Results of the analysis indicate statistically significant differences between the control subjects and the patients with symptoms of depression in terms of all the variables analysed. CONCLUSIONS 1. There is no significant difference in miRNAs expression between patients with recurrent depressive disorders and those in the first episode of depression. 2. The differences in terms of expression of the analysed variables between the subjects with symptoms of depression and healthy individuals were confirmed.
Collapse
|
16
|
MicroRNA-106b promotes pituitary tumor cell proliferation and invasion through PI3K/AKT signaling pathway by targeting PTEN. Tumour Biol 2016; 37:13469-13477. [PMID: 27465551 DOI: 10.1007/s13277-016-5155-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 07/12/2016] [Indexed: 12/19/2022] Open
Abstract
The purpose of this study was to investigate the expression of microRNA-106b (miR-106b) and phosphatase and tensin homolog deleted on chromosome 10 (PTEN) in pituitary tumor and to confirm whether miR-106b promotes proliferation and invasion of pituitary tumor cells through the PI3K/AKT signaling pathway by targeted regulation of PTEN expression, and thereby to find new targets for the treatment of pituitary tumor. Fifty-five cases of pituitary tumor tissue samples were collected, including 29 cases of invasive pituitary tumor, non-invasive 26 cases, and 8 normal pituitaries. The expression level of miR-106b in pituitary tumor tissue was detected by quantitative real-time PCR, and the expression of PTEN protein was detected by immunohistochemistry. PTEN 3'-untranslated region (UTR) luciferase vector was constructed, and dual-luciferase reporter gene assay was employed to examine the effect of miR-106b on PTEN 3'-UTR luciferase activity. AtT-20 cells were transfected with miR-106b mimics, miR-106b inhibitor, PTEN expression plasmid, and miR-106b mimics + PTEN expression plasmid respectively, and the changes in cellular proliferation and invasion were observed via MTT method and transwell assay respectively. PTEN messenger RNA (mRNA) expression was determined by quantitative real-time PCR, and western blotting was performed to detect the expression of PTEN, PI3K, AKT, and pAKT. miR-106b showed up-regulation in invasive pituitary tumor tissue: the expression level was significantly up-regulated compared with normal tissues and the non-invasive pituitary tumor tissue (P < 0.05). The positive rate of PTEN protein expression in invasive pituitary tumor tissues was significantly lower than in normal and non-invasive tissues (P < 0.01). Dual-luciferase reporter gene assay showed that miR-106b could bind to the 3'-UTR of PTEN specifically and significantly inhibited the luciferase activity, cutting the 46 % (P < 0.01). Down-regulation of miR-106b or up-regulation of PTEN could suppress cell proliferation and invasion of AtT-20 cells, and PTEN expression plasmid could partially simulate the function of miR-106b. Expression of PTEN mRNA and protein decreased significantly in AtT-20 cells overexpressing miR-106b. The expression levels of PI3K and p-AKT were significantly inhibited by miR-106b inhibitor and increased by miR-106b mimics. The expression of miR-106b showed up-regulation in pituitary tumor tissues, while the protein expression of PTEN presented opposite results. The findings of this study further demonstrated that miR-106b as an oncogene regulated the pituitary tumor cell proliferation and invasion in vitro by directly targeting PTEN through the PI3K/AKT signaling pathway. Our study suggests that miR-106b and PTEN are likely to serve as potential diagnostic biomarkers or therapeutic targets for pituitary tumor treatment in the future.
Collapse
|
17
|
Abstract
Pituitary carcinoma is a rare tumor originating from adenohypophyseal cells. Currently, diverse pathogenetic mechanisms, i.e. de novo versus malignant transformation from pituitary adenoma, remain obscure and require further investigation. During the last two decades, scientific research added new horizons not only in regards to general tumor concepts but also in next generation biomarker armamentarium that sheds light on alternate pathways in carcinogenesis. Areas covered: In this review, the impact of apoptotic and proliferative markers, angiogenesis, telomerase activity, H-ras, HIF-1, HER-2/neu, Rb gene, and microRNAs in pathogenetic mechanisms of pituitary carcinomas were revised. Expert commentary: It is becoming increasingly important for the need of standardization of new biomarkers but also for better comprehension of the diverse pathways in tumorigenesis. This can only be accomplished by tapping into the continuously expanding spectrum of new biomarkers.
Collapse
Affiliation(s)
- Aydin Sav
- a Division of Neuropathology, Nisantasi Pathology Group , Istanbul , Turkey
| | - Fabio Rotondo
- b Department of Laboratory Medicine, Division of Pathology, St Michael's Hospital , University of Toronto , Toronto , Canada
| | - Luis V Syro
- c Department of Neurosurgery , Hospital Pablo Tobon Uribe and Clinica Medellin , Medellin , Colombia
| | - Antonio Di Ieva
- d Neurosurgery Unit, Faculty of Medicine and Health Science , Macquarie University , Sydney , Australia
| | - Michael D Cusimano
- e Department of Surgery, Division of Neurosurgery, St. Michael's Hospital , University of Toronto , Toronto , Canada
| | - Kalman Kovacs
- b Department of Laboratory Medicine, Division of Pathology, St Michael's Hospital , University of Toronto , Toronto , Canada
| |
Collapse
|
18
|
Abstract
INTRODUCTION Prolactinomas are the most common functional pituitary adenomas. Current classification systems rely on phenotypic elements and have few molecular markers for complementary classification. Treatment protocols for prolactinomas are also devoid of molecular targets, leaving those refractory to standard treatments without many options. METHODS A systematic literature review was performed utilizing the PRISMA guidelines. We aimed to summarize prior research exploring gene and protein expression in prolactinomas in order to highlight molecular variations associated with tumor development, growth, and prolactin secretion. A PubMed search of select MeSH terms was performed to identify all studies reporting gene and protein expression findings in prolactinomas from 1990 to 2014. RESULTS 1392 abstracts were screened and 51 manuscripts were included in the analysis, yielding 54 upregulated and 95 downregulated genes measured by various direct and indirect analytical methods. Of the many genes identified, three upregulated (HMGA2, HST, SNAP25), and three downregulated (UGT2B7, Let7, miR-493) genes were selected for further analysis based on our subjective identification of strong potential targets. CONCLUSIONS Many significant genes have been identified and validated in prolactinomas and most have not been fully analyzed for therapeutic and diagnostic potential. These genes could become candidate molecular targets for biomarker development and precision drug targeting as well as catalyze deeper research efforts utilizing next generation profiling/sequencing techniques, particularly genome scale expression and epigenomic analyses.
Collapse
Affiliation(s)
- Justin Seltzer
- Department of Neurosurgery, Keck School of Medicine of USC, 1200 North State St., Los Angeles, CA, 90033, USA.
| | - Thomas C Scotton
- Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Keiko Kang
- Department of Neurosurgery, Keck School of Medicine of USC, 1200 North State St., Los Angeles, CA, 90033, USA
| | - Gabriel Zada
- Department of Neurosurgery, Keck School of Medicine of USC, 1200 North State St., Los Angeles, CA, 90033, USA
- USC Pituitary Center, Keck School of Medicine of USC, Los Angeles, CA, USA
- Zilka Neurogenetics Institute, Keck School of Medicine of USC, Los Angeles, CA, USA
| | - John D Carmichael
- Division of Endocrinology, Department of Medicine, Keck School of Medicine of USC, Los Angeles, CA, USA
- USC Pituitary Center, Keck School of Medicine of USC, Los Angeles, CA, USA
| |
Collapse
|
19
|
Grizzi F, Borroni EM, Vacchini A, Qehajaj D, Liguori M, Stifter S, Chiriva-Internati M, Di Ieva A. Pituitary Adenoma and the Chemokine Network: A Systemic View. Front Endocrinol (Lausanne) 2015; 6:141. [PMID: 26441831 PMCID: PMC4566033 DOI: 10.3389/fendo.2015.00141] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Accepted: 08/28/2015] [Indexed: 12/19/2022] Open
Affiliation(s)
- Fabio Grizzi
- Department of Inflammation and Immunology, Humanitas Clinical and Research Center, Milan, Italy
- *Correspondence: Fabio Grizzi,
| | - Elena Monica Borroni
- Department of Medical Biotechnologies and Translational Medicine, University of Milan, Milan, Italy
| | - Alessandro Vacchini
- Department of Medical Biotechnologies and Translational Medicine, University of Milan, Milan, Italy
| | - Dorina Qehajaj
- Department of Inflammation and Immunology, Humanitas Clinical and Research Center, Milan, Italy
| | - Manuela Liguori
- Department of Inflammation and Immunology, Humanitas Clinical and Research Center, Milan, Italy
| | - Sanja Stifter
- Department of Pathology, University of Rijeka, Rijeka, Croatia
| | | | - Antonio Di Ieva
- Department of Neurosurgery, Australian School of Advanced Medicine, Macquarie University Hospital, Sydney, NSW, Australia
- Garvan Institute of Medical Research, Sydney, NSW, Australia
| |
Collapse
|