1
|
Xing C, Chen P, Zhang L. Computational insight into stability-enhanced systems of anthocyanin with protein/peptide. FOOD CHEMISTRY. MOLECULAR SCIENCES 2023; 6:100168. [PMID: 36923156 PMCID: PMC10009195 DOI: 10.1016/j.fochms.2023.100168] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/24/2022] [Accepted: 02/18/2023] [Indexed: 02/24/2023]
Abstract
Anthocyanins, which belong to the flavonoid group, are commonly found in the organs of plants native to South and Central America. However, these pigments are unstable under conditions of varying pH, heat, etc., which limits their potential applications. One method for preserving the stability of anthocyanins is through encapsulation using proteins or peptides. Nevertheless, the complex and diverse structure of these molecules, as well as the limitation of experimental technologies, have hindered a comprehensive understanding of the encapsulation processes and the mechanisms by which stability is enhanced. To address these challenges, computational methods, such as molecular docking and molecular dynamics simulation have been used to study the binding affinity and dynamics of interactions between proteins/peptides and anthocyanins. This review summarizes the mechanisms of interaction between these systems, based on computational approaches, and highlights the role of proteins and peptides in the stability enhancement of anthocyanins. It also discusses the current limitations of these methods and suggests possible solutions.
Collapse
Affiliation(s)
- Cheng Xing
- Department of Chemical Engineering and Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L3G1, Canada
- School of Science, Beijing Jiaotong University, 100044 Beijing, China
| | - P. Chen
- Department of Chemical Engineering and Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L3G1, Canada
| | - Lei Zhang
- Department of Chemical Engineering and Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L3G1, Canada
| |
Collapse
|
2
|
Lozada-Ramírez JD, Guerrero-Moras MC, González-Peña MA, Silva-Pereira TS, Anaya de Parrodi C, Ortega-Regules AE. Stabilization of Anthocyanins from Coffee ( Coffea arabica L.) Husks and In Vivo Evaluation of Their Antioxidant Activity. Molecules 2023; 28:molecules28031353. [PMID: 36771019 PMCID: PMC9921765 DOI: 10.3390/molecules28031353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/24/2022] [Accepted: 12/26/2022] [Indexed: 02/04/2023] Open
Abstract
Coffee (Coffea arabica L.) is one of the most popular and widely consumed products throughout the world, mainly due to its taste, aroma, caffeine content, and natural antioxidants. Among those antioxidants, anthocyanins are one of the most important natural pigments, which can be found in coffee husks. It is widely known that anthocyanins have multiple health benefits partially linked to their antioxidant properties. However, anthocyanins have low stability and are sensitive to all types of changes. In order to prevent its degradation, anthocyanins can be stabilized with nanoparticles. Thus, the main objective of this study was to evaluate the stability of the anthocyanins extracted from coffee husks, using three different extracting agents (ethanol, methanol, and water) and stabilizing them through conjugation with zinc oxide nanoparticles. The anthocyanins extracts were mainly composed of cyanidin-3-rutinoside (97%) and the total phenolic compounds of the fresh extracts were 458.97 ± 11.32 (methanol), 373.53 ± 12.74 (ethanol), and 369.85 ± 15.93 (water) mg GAE/g. On the other hand, the total phenolic compounds of the nanoparticle-anthocyanin conjugates underwent no significant changes after stabilization as the major loss was less than 3%. Furthermore, the percentage of anthocyanins' degradation was less than 5% after 12 weeks of storage. On top of that, fresh anthocyanin extracts and anthocyanin-nanoparticle conjugates exhibited a strong protective effect against oxidative stress and increased the survival rate of Caenorhabditis elegans.
Collapse
Affiliation(s)
- José Daniel Lozada-Ramírez
- Department of Chemical and Biological Sciences, Universidad de las Américas Puebla, 72810 San Andrés Cholula, Puebla, Mexico
- Correspondence: (J.D.L.-R.); (C.A.d.P.); (A.E.O.-R.)
| | | | - Marco Antonio González-Peña
- Department of Chemical, Food and Environmental Engineering, Universidad de las Américas Puebla, 72810 San Andrés Cholula, Puebla, Mexico
| | | | - Cecilia Anaya de Parrodi
- Department of Chemical and Biological Sciences, Universidad de las Américas Puebla, 72810 San Andrés Cholula, Puebla, Mexico
- Correspondence: (J.D.L.-R.); (C.A.d.P.); (A.E.O.-R.)
| | - Ana E. Ortega-Regules
- Department of Health Sciences, Universidad de las Américas Puebla, 72810 San Andrés Cholula, Puebla, Mexico
- Correspondence: (J.D.L.-R.); (C.A.d.P.); (A.E.O.-R.)
| |
Collapse
|
3
|
Kumar G, Upadhyay S, Yadav DK, Malakar S, Dhurve P, Suri S. Application of ultrasound technology for extraction of color pigments from plant sources and their potential bio‐functional properties: A review. J FOOD PROCESS ENG 2022. [DOI: 10.1111/jfpe.14238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Gaurav Kumar
- Department of Food Engineering National Institute of Food Technology Entrepreneurship and Management Sonipat India
| | - Srishti Upadhyay
- Department of Food Engineering National Institute of Food Technology Entrepreneurship and Management Sonipat India
| | - Dhiraj Kumar Yadav
- Department of Food Engineering National Institute of Food Technology Entrepreneurship and Management Sonipat India
| | - Santanu Malakar
- Department of Food Engineering National Institute of Food Technology Entrepreneurship and Management Sonipat India
- Department of Food Technology Rajiv Gandhi University Doimukh India
| | - Priyanka Dhurve
- Department of Food Engineering National Institute of Food Technology Entrepreneurship and Management Sonipat India
| | - Shweta Suri
- Department of Food Engineering National Institute of Food Technology Entrepreneurship and Management Sonipat India
- Amity Institute of Food Technology (AIFT) Amity University Uttar Pradesh Noida India
| |
Collapse
|
4
|
Natural compounds modulate the autophagy with potential implication of stroke. Acta Pharm Sin B 2021; 11:1708-1720. [PMID: 34386317 PMCID: PMC8343111 DOI: 10.1016/j.apsb.2020.10.018] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 08/12/2020] [Accepted: 08/21/2020] [Indexed: 12/12/2022] Open
Abstract
Stroke is considered a leading cause of mortality and neurological disability, which puts a huge burden on individuals and the community. To date, effective therapy for stroke has been limited by its complex pathological mechanisms. Autophagy refers to an intracellular degrading process with the involvement of lysosomes. Autophagy plays a critical role in maintaining the homeostasis and survival of cells by eliminating damaged or non-essential cellular constituents. Increasing evidence support that autophagy protects neuronal cells from ischemic injury. However, under certain circumstances, autophagy activation induces cell death and aggravates ischemic brain injury. Diverse naturally derived compounds have been found to modulate autophagy and exert neuroprotection against stroke. In the present work, we have reviewed recent advances in naturally derived compounds that regulate autophagy and discussed their potential application in stroke treatment.
Collapse
Key Words
- AD, Alzheimer's disease
- ALS, amyotrophic lateral sclerosis
- AMPK, 5′-adenosine monophosphate-activated protein kinase
- ATF6, activating transcription factor 6
- ATG, autophagy related genes
- Autophagy
- BCL-2, B-cell lymphoma 2
- BNIP3L, BCL2/adenovirus
- COPII, coat protein complex II
- Cerebral ischemia
- ER, endoplasmic reticulum
- FOXO, forkhead box O
- FUNDC1, FUN14 domain containing 1
- GPCR, G-protein coupled receptor
- HD, Huntington's disease
- IPC, ischemic preconditioning
- IRE1, inositol-requiring enzyme 1
- JNK, c-Jun N-terminal kinase
- LAMP, lysosomal-associated membrane protein
- LC3, light chain 3
- LKB1, liver kinase B1
- Lysosomal activation
- Mitochondria
- Mitophagy
- Natural compounds
- Neurological disorders
- Neuroprotection
- OGD/R, oxygen and glucose deprivation-reperfusion
- PD, Parkinson's disease
- PERK, protein kinase R (PKR)-like endoplasmic reticulum kinase
- PI3K, phosphatidylinositol 3-kinase
- ROS, reactive oxygen species
- SQSTM1, sequestosome 1
- TFEB, transcription factor EB
- TIGAR, TP53-induced glycolysis and apoptosis regulator
- ULK, Unc-51- like kinase
- Uro-A, urolithin A
- eIF2a, eukaryotic translation-initiation factor 2
- mTOR, mechanistic target of rapamycin
- ΔΨm, mitochondrial membrane potential
Collapse
|
5
|
Meng X, Li Y, Lu C, Zhao M, Li M, Wang S, Zhao C, Lin B, Shang L, Chu Z, Ding X. Purification and antioxidant capacity analysis of anthocyanin glucoside cinnamic ester isomers from
Solanum nigrum
fruits. J Sep Sci 2020; 43:2311-2320. [DOI: 10.1002/jssc.201901289] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 03/10/2020] [Accepted: 03/14/2020] [Indexed: 01/30/2023]
Affiliation(s)
- XuanLin Meng
- State Key Laboratory of Crop BiologyCollege of Plant ProtectionShandong Agricultural University Taian Shandong 271018 P.R. China
| | - Yang Li
- State Key Laboratory of Crop BiologyCollege of Plant ProtectionShandong Agricultural University Taian Shandong 271018 P.R. China
| | - Chongchong Lu
- State Key Laboratory of Crop BiologyCollege of Plant ProtectionShandong Agricultural University Taian Shandong 271018 P.R. China
| | - Man Zhao
- State Key Laboratory of Crop BiologyCollege of Plant ProtectionShandong Agricultural University Taian Shandong 271018 P.R. China
| | - Ming Li
- State Key Laboratory of Crop BiologyCollege of Plant ProtectionShandong Agricultural University Taian Shandong 271018 P.R. China
| | - ShaoLi Wang
- State Key Laboratory of Crop BiologyCollege of Plant ProtectionShandong Agricultural University Taian Shandong 271018 P.R. China
| | - ChangBao Zhao
- State Key Laboratory of Crop BiologyCollege of Plant ProtectionShandong Agricultural University Taian Shandong 271018 P.R. China
| | - Bao Lin
- State Key Laboratory of Crop BiologyCollege of Plant ProtectionShandong Agricultural University Taian Shandong 271018 P.R. China
| | - LuYue Shang
- State Key Laboratory of Crop BiologyCollege of Plant ProtectionShandong Agricultural University Taian Shandong 271018 P.R. China
| | - Zhaohui Chu
- State Key Laboratory of Crop BiologyCollege of Plant ProtectionShandong Agricultural University Taian Shandong 271018 P.R. China
| | - Xinhua Ding
- State Key Laboratory of Crop BiologyCollege of Plant ProtectionShandong Agricultural University Taian Shandong 271018 P.R. China
| |
Collapse
|
6
|
Bensalem J, Dal-Pan A, Gillard E, Calon F, Pallet V. Protective effects of berry polyphenols against age-related cognitive impairment. ACTA ACUST UNITED AC 2016. [DOI: 10.3233/nua-150051] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Julien Bensalem
- Univ. de Bordeaux, Nutrition et neurobiologie intégrée, UMR 1286, 33000 Bordeaux, France
- INRA, Nutrition et neurobiologie intégrée, UMR 1286, 33000 Bordeaux, France
- Activ’Inside, 33500 Libourne, France
| | - Alexandre Dal-Pan
- Faculté de Pharmacie, Université Laval, Centre de Recherche du CHU de Québec, Québec, Canada
- Institut des Nutraceutiques et des Aliments Fonctionnels, Université Laval, Québec, Canada
- OptiNutriBrain International Associated Laboratory (NutriNeuro France-INAF Canada), 33000 Bordeaux, France
| | - Elodie Gillard
- Faculté de Pharmacie, Université Laval, Centre de Recherche du CHU de Québec, Québec, Canada
| | - Frédéric Calon
- Faculté de Pharmacie, Université Laval, Centre de Recherche du CHU de Québec, Québec, Canada
- Institut des Nutraceutiques et des Aliments Fonctionnels, Université Laval, Québec, Canada
- OptiNutriBrain International Associated Laboratory (NutriNeuro France-INAF Canada), 33000 Bordeaux, France
| | - Véronique Pallet
- Univ. de Bordeaux, Nutrition et neurobiologie intégrée, UMR 1286, 33000 Bordeaux, France
- INRA, Nutrition et neurobiologie intégrée, UMR 1286, 33000 Bordeaux, France
- Bordeaux INP, NutriNeuro, UMR 1286, F-33000, Bordeaux, France
- OptiNutriBrain International Associated Laboratory (NutriNeuro France-INAF Canada), 33000 Bordeaux, France
| |
Collapse
|