1
|
Tay C, Grundy L. Animal models of interstitial cystitis/bladder pain syndrome. Front Physiol 2023; 14:1232017. [PMID: 37731545 PMCID: PMC10507411 DOI: 10.3389/fphys.2023.1232017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 08/01/2023] [Indexed: 09/22/2023] Open
Abstract
Interstitial Cystitis/Bladder Pain Syndrome (IC/BPS) is a chronic disorder characterized by pelvic and/or bladder pain, along with lower urinary tract symptoms that have a significant impact on an individual's quality of life. The diverse range of symptoms and underlying causes in IC/BPS patients pose a significant challenge for effective disease management and the development of new and effective treatments. To facilitate the development of innovative therapies for IC/BPS, numerous preclinical animal models have been developed, each focusing on distinct pathophysiological components such as localized urothelial permeability or inflammation, psychological stress, autoimmunity, and central sensitization. However, since the precise etiopathophysiology of IC/BPS remains undefined, these animal models have primarily aimed to replicate the key clinical symptoms of bladder hypersensitivity and pain to enhance the translatability of potential therapeutics. Several animal models have now been characterized to mimic the major symptoms of IC/BPS, and significant progress has been made in refining these models to induce chronic symptomatology that more closely resembles the IC/BPS phenotype. Nevertheless, it's important to note that no single model can fully replicate all aspects of the human disease. When selecting an appropriate model for preclinical therapeutic evaluation, consideration must be given to the specific pathology believed to underlie the development of IC/BPS symptoms in a particular patient group, as well as the type and severity of the model, its duration, and the proposed intervention's mechanism of action. Therefore, it is likely that different models will continue to be necessary for preclinical drug development, depending on the unique etiology of IC/BPS being investigated.
Collapse
Affiliation(s)
- Cindy Tay
- Neurourology Research Group, College of Medicine and Public Health, Flinders Health and Medical Research Institute, Flinders University, Adelaide, SA, Australia
| | - Luke Grundy
- Neurourology Research Group, College of Medicine and Public Health, Flinders Health and Medical Research Institute, Flinders University, Adelaide, SA, Australia
| |
Collapse
|
2
|
Qiu H, Li J, Huang Y, Shen C, Dai L, Su Q, Zhi Y, Fang Q, Shi C, Li W. Sulfhydryl functionalized hyaluronic acid hydrogels attenuate cyclophosphamide-induced bladder injury. Biomed Mater 2022; 18. [PMID: 36542863 DOI: 10.1088/1748-605x/acadc2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 12/21/2022] [Indexed: 12/24/2022]
Abstract
Clinical management of cyclophosphamide (CYP) results in numerous side effects including hemorrhagic cystitis (HC), which is characterized by inflammation and oxidative stress damage. Intravesical hyaluronic acid (HA) supplementation, a therapeutic method to restore barrier function of bladder, avoid the stimulation of metabolic toxicants on bladder and reduce inflammatory response, has shown good results in acute or chronic bladder diseases. However, there are unmet medical needs for the treatment of HC to temporarily restore bladder barrier and reduce inflammation. Herein, sulfhydryl functionalized HA (HA-SH) and dimethyl sulfoxide (DMSO) were used to prepared a hydrogel system for optimizing the treatment of HC. We systematically evaluated the physicochemical of hydrogels and their roles in a rat model of CYP-induced HC. The prepared hydrogels exhibited outstanding gel forming properties, injectability, and biosafety. Swelling and retention studies showed that hydrogels were stable and could prolong the residence time of HA in the bladder. Histopathology and vascular permeability studies indicated that the hydrogels significantly attenuated bladder injury caused by CYP administration. Moreover, the hydrogels also showed excellent anti-inflammation and anti-oxidation properties. In conclusion, these data suggest that intravesical instillation of HA-SH/DMSO hydrogels reduces CYP-induced bladder toxicity and this work provides a new strategy for the prevention and early treatment of HC.
Collapse
Affiliation(s)
- Heping Qiu
- Department of Urology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing 401120, People's Republic of China
| | - Jinjin Li
- Department of Urology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing 401120, People's Republic of China
| | - Yuandi Huang
- Department of Urology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing 401120, People's Republic of China
| | - Chongxing Shen
- Department of Urology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing 401120, People's Republic of China
| | - Linyong Dai
- Department of Urology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing 401120, People's Republic of China
| | - Qiaoling Su
- Department of Urology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing 401120, People's Republic of China
| | - Yi Zhi
- Department of Urology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing 401120, People's Republic of China
| | - Qiang Fang
- Department of Urology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing 401120, People's Republic of China
| | - Chunmeng Shi
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Army Medical University (Third Military Medical University), Chongqing 400038, People's Republic of China
| | - Weibing Li
- Department of Urology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing 401120, People's Republic of China
| |
Collapse
|
3
|
Molecular Mechanisms and Key Processes in Interstitial, Hemorrhagic and Radiation Cystitis. BIOLOGY 2022; 11:biology11070972. [PMID: 36101353 PMCID: PMC9311586 DOI: 10.3390/biology11070972] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/17/2022] [Accepted: 06/23/2022] [Indexed: 11/22/2022]
Abstract
Simple Summary Pathologies of the bladder are called cystitis. They cause discomfort for the patient. Due to persistent pain, bleeding, urinary incontinence, and uncontrolled urination, the chronic forms cause considerable degradation to patient quality of life. Currently, there is no curative treatment for the most severe forms. This is both an economic and a societal problem. Although the different forms of cystitis have different causes, they share common mechanisms. We propose to describe in detail the key processes and the associated mechanisms involved in abacterial cystitis. Abstract Cystitis is a bladder disease with a high rate of prevalence in the world population. This report focuses on Interstitial Cystitis (IC), Hemorrhagic Cystitis (HC) and Chronic Radiation Cystitis. These pathologies have different etiologies, but they share common symptoms, for instance, pain, bleeding, and a contracted bladder. Overall, treatments are quite similar for abacterial cystitis, and include bladder epithelium protective or anti-inflammatory agents, alleviating pain and reducing bleeding. This review summarizes the mechanisms that the pathologies have in common, for instance, bladder dysfunction and inflammation. Conversely, some mechanisms have been described as present in only one pathology, such as neural regulation. Based on these specificities, we propose identifying a mechanism that could be common to all the above-mentioned pathologies.
Collapse
|
4
|
Zeber-Lubecka N, Kulecka M, Załęska-Oracka K, Dąbrowska M, Bałabas A, Hennig EE, Szymanek-Szwed M, Mikula M, Jurkiewicz B, Ostrowski J. Gene Expression-Based Functional Differences between the Bladder Body and Trigonal Urothelium in Adolescent Female Patients with Micturition Dysfunction. Biomedicines 2022; 10:biomedicines10061435. [PMID: 35740457 PMCID: PMC9220714 DOI: 10.3390/biomedicines10061435] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/10/2022] [Accepted: 06/14/2022] [Indexed: 12/03/2022] Open
Abstract
The aim of this study is to determine the molecular differences between the urothelial transcriptomes of the bladder body and trigone. The transcriptomes of the bladder body and trigonal epithelia were analyzed by massive sequencing of total epithelial RNA. The profiles of urothelial and urinal microbiomes were assessed by amplicon sequencing of bacterial 16S rRNA genes in 17 adolescent females with pain and micturition dysfunction and control female subjects. The RNA sequencing identified 10,261 differentially expressed genes (DEGs) in the urothelia of the bladder body and trigone, with the top 1000 DEGs at these locations annotated to 36 and 77 of the Reactome-related pathways in the bladder body and trigone, respectively. These pathways represented 11 categories enriched in the bladder body urothelium, including extracellular matrix organization, the neuronal system, and 15 categories enriched in the trigonal epithelium, including RHO GTPase effectors, cornified envelope formation, and neutrophil degranulation. Five bacterial taxa in urine differed significantly in patients and healthy adolescent controls. The evaluation of their transcriptomes indicated that the bladder body and trigonal urothelia were functionally different tissues. The molecular differences between the body and trigonal urothelia responsible for clinical symptoms in adolescents with bladder pain syndrome/interstitial cystitis remain unclear.
Collapse
Affiliation(s)
- Natalia Zeber-Lubecka
- Department of Gastroenterology, Hepatology and Clinical Oncology, Centre of Postgraduate Medical Education, Roentgena 5, 02-781 Warsaw, Poland; (N.Z.-L.); (M.K.); (E.E.H.)
- Department of Genetics, Maria Sklodowska-Curie National Institute of Oncology, Roentgena 5, 02-781 Warsaw, Poland; (M.D.); (A.B.); (M.M.)
| | - Maria Kulecka
- Department of Gastroenterology, Hepatology and Clinical Oncology, Centre of Postgraduate Medical Education, Roentgena 5, 02-781 Warsaw, Poland; (N.Z.-L.); (M.K.); (E.E.H.)
- Department of Genetics, Maria Sklodowska-Curie National Institute of Oncology, Roentgena 5, 02-781 Warsaw, Poland; (M.D.); (A.B.); (M.M.)
| | - Katarzyna Załęska-Oracka
- Department of Pediatric Surgery, Children’s Hospital, Centre of Postgraduate Medical Education, Marii Konopnickiej 65, 05-092 Dziekanow Lesny, Poland; (K.Z.-O.); (M.S.-S.)
| | - Michalina Dąbrowska
- Department of Genetics, Maria Sklodowska-Curie National Institute of Oncology, Roentgena 5, 02-781 Warsaw, Poland; (M.D.); (A.B.); (M.M.)
| | - Aneta Bałabas
- Department of Genetics, Maria Sklodowska-Curie National Institute of Oncology, Roentgena 5, 02-781 Warsaw, Poland; (M.D.); (A.B.); (M.M.)
| | - Ewa E. Hennig
- Department of Gastroenterology, Hepatology and Clinical Oncology, Centre of Postgraduate Medical Education, Roentgena 5, 02-781 Warsaw, Poland; (N.Z.-L.); (M.K.); (E.E.H.)
- Department of Genetics, Maria Sklodowska-Curie National Institute of Oncology, Roentgena 5, 02-781 Warsaw, Poland; (M.D.); (A.B.); (M.M.)
| | - Magdalena Szymanek-Szwed
- Department of Pediatric Surgery, Children’s Hospital, Centre of Postgraduate Medical Education, Marii Konopnickiej 65, 05-092 Dziekanow Lesny, Poland; (K.Z.-O.); (M.S.-S.)
| | - Michał Mikula
- Department of Genetics, Maria Sklodowska-Curie National Institute of Oncology, Roentgena 5, 02-781 Warsaw, Poland; (M.D.); (A.B.); (M.M.)
| | - Beata Jurkiewicz
- Department of Pediatric Surgery, Children’s Hospital, Centre of Postgraduate Medical Education, Marii Konopnickiej 65, 05-092 Dziekanow Lesny, Poland; (K.Z.-O.); (M.S.-S.)
- Correspondence: (B.J.); (J.O.); Tel.: +48-22-765-7154 (B.J.); +48-22-546-25-75 (J.O.)
| | - Jerzy Ostrowski
- Department of Gastroenterology, Hepatology and Clinical Oncology, Centre of Postgraduate Medical Education, Roentgena 5, 02-781 Warsaw, Poland; (N.Z.-L.); (M.K.); (E.E.H.)
- Department of Genetics, Maria Sklodowska-Curie National Institute of Oncology, Roentgena 5, 02-781 Warsaw, Poland; (M.D.); (A.B.); (M.M.)
- Correspondence: (B.J.); (J.O.); Tel.: +48-22-765-7154 (B.J.); +48-22-546-25-75 (J.O.)
| |
Collapse
|
5
|
Zupančič D, Romih R. Immunohistochemistry as a paramount tool in research of normal urothelium, bladder cancer and bladder pain syndrome. Eur J Histochem 2021; 65. [PMID: 33764020 PMCID: PMC8033529 DOI: 10.4081/ejh.2021.3242] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 03/19/2021] [Indexed: 12/14/2022] Open
Abstract
The urothelium, an epithelium of the urinary bladder, primarily functions as blood-urine permeability barrier. The urothelium has a very slow turnover under normal conditions but is capable of extremely fast response to injury. During regeneration urothelium either restores normal function or undergoes altered differentiation pathways, the latter being the cause of several bladder diseases. In this review, we describe the structure of the apical plasma membrane that enables barrier function, the role of urothelium specific proteins uroplakins and the machinery for polarized membrane transports in terminally differentiated superficial umbrella cells. We address key markers, such as keratins, cancer stem cell markers, retinoic acid signalling pathway proteins and transient receptor potential channels and purinergic receptors that drive normal and altered differentiation in bladder cancer and bladder pain syndrome. Finally, we discuss uncertainties regarding research, diagnosis and treatment of bladder pain syndrome. Throughout the review, we emphasise the contribution of immunohistochemistry in advancing our understanding of processes in normal and diseased bladder as well as the most promising possibilities for improved bladder cancer and bladder pain syndrome management.
Collapse
Affiliation(s)
- Daša Zupančič
- Institute of Cell Biology, Faculty of Medicine, University of Ljubljana.
| | - Rok Romih
- Institute of Cell Biology, Faculty of Medicine, University of Ljubljana.
| |
Collapse
|
6
|
Huang CP, Yang CY, Shyr CR. Utilizing Xenogeneic Cells As a Therapeutic Agent for Treating Diseases. Cell Transplant 2021; 30:9636897211011995. [PMID: 33975464 PMCID: PMC8120531 DOI: 10.1177/09636897211011995] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 03/19/2021] [Accepted: 04/05/2021] [Indexed: 12/27/2022] Open
Abstract
The utilization of biologically produced cells to treat diseases is a revolutionary invention in modern medicine after chemically synthesized small molecule drugs and biochemically made protein drugs. Cells are basic units of life with diverse functions in mature and developing organs, which biological properties could be utilized as a promising therapeutic approach for currently intractable and incurable diseases. Xenogeneic cell therapy utilizing animal cells other than human for medicinal purpose has been studied as a new way of treating diseases. Xenogeneic cell therapy is considered as a potential regenerative approach to fulfill current unmet medical needs because xenogeneic cells could be isolated from different animal organs and expanded ex vivo as well as maintain the characteristics of original organs, providing a versatile and plenty cell source for cell-based therapeutics beside autologous and allogeneic sources. The swine species is considered the most suitable source because of the similarity with humans in size and physiology of many organs in addition to the economic and ethical reasons plus the possibility of genetic modification. This review discusses the old proposed uses of xenogeneic cells such as xenogeneic pancreatic islet cells, hepatocytes and neuronal cells as a living drug for the treatment of degenerative and organ failure diseases. Novel applications of xenogeneic mesenchymal stroma cells and urothelial cells are also discussed. There are formidable immunological barriers toward successful cellular xenotransplantation in clinic despite major progress in the development of novel immunosuppression regimens and genetically multimodified donor pigs. However, immunological barriers could be turn into immune boosters by using xenogeneic cells of specific tissue types as a novel immunotherapeutic agent to elicit bystander antitumor immunity due to rejection immune responses. Xenogeneic cells have the potential to become a safe and efficacious option for intractable diseases and hard-to-treat cancers, adding a new class of cellular medicine in our drug armamentarium.
Collapse
Affiliation(s)
- Chi-Ping Huang
- Department of Urology, School of Medicine, China Medical University and Hospital, Taichung, Taiwan
| | - Chi-Yu Yang
- Animal Technology Research Center/Division of Animal Technology, Agriculture Technology Research Institute, Miaoli, Taiwan
| | - Chih-Rong Shyr
- Sex Hormone Research Center, Department of Medical Laboratory Science and Biotechnology, China Medical University and Hospital, Taichung, Taiwan
| |
Collapse
|
7
|
Dobrek L, Nalik-Iwaniak K, Fic K, Arent Z. The Effect of Acetylcysteine on Renal Function in Experimental Models of Cyclophosphamide-and Ifosfamide-Induced Cystitis. Curr Urol 2020; 14:150-162. [PMID: 33224008 DOI: 10.1159/000499245] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 12/12/2019] [Indexed: 01/17/2023] Open
Abstract
Introduction Urotoxicity is a characteristic attribute of cy-clophosphamide and ifosfamide. Acetylcysteine is perceived as a uroprotective and possible nephroprotective compound. The purpose of the study was to assess the effect of acetylcysteine treatment on the morphology of the kidneys and the urinary bladder, and renal function in rats with cystitis induced by cyclophosphamide or ifosfamide. Methods Cystitis was induced in rats belonging to groups 2 and 3, as well as 4 and 5, by five administrations of cyclophosphamide (75 mg/kg) or ifosfamide (80 mg/kg) respectively. Additionally, groups 3 and 5 received acetylcysteine (200 mg/kg). Group 1 was "sham treated" as a control. Upon conclusion of the experiment, the animals were euthanized and their kidneys and urinary bladders were collected for histopathological analysis. The assessment of renal function was based on classic nitrogen blood parameters (urea, creatinine, and uric acid), as well as proteinuria and cystatin C (CysC) and kidney injury molecule-1 (KIM-1) urinary concentrations, and their 24-hour elimination with urine. Results Reduction of blood urea nitrogen and uric acid, and urinary pH with a significant increase of CysC and KIM-1 urinary concentrations, and their 24-hour elimination with urine were observed in groups 2 and 4. The acetylcysteine treatment did not cause a significant change of blood parameters, but significantly decreased 24-hour elimination of CysC and KIM-1 with urine, and accounted for alleviation of the histopathological abnormalities of urinary bladders, with no significant effects on the structure of the kidneys. Conclusions Acetylcysteine used in the experimental model of cyclophosphamide- and ifosfamide-induced cystitis had a uroprotective effect and also reduced renal dysfunction, which suggests its potential use as a nephroprotective compound in cyclophosphamide/ifosfamide therapy.
Collapse
Affiliation(s)
- Lukasz Dobrek
- Department of Clinical Pharmacology, Wroclaw Medical University, Wroclaw, Poland
| | - Klaudia Nalik-Iwaniak
- Experimental and Innovative Medicine Centre, University Centre of Veterinary Medicine UJ-UR, University of Agriculture in Krakow, Krakow, Poland
| | - Kinga Fic
- Experimental and Innovative Medicine Centre, University Centre of Veterinary Medicine UJ-UR, University of Agriculture in Krakow, Krakow, Poland
| | - Zbigniew Arent
- Experimental and Innovative Medicine Centre, University Centre of Veterinary Medicine UJ-UR, University of Agriculture in Krakow, Krakow, Poland
| |
Collapse
|
8
|
Dalghi MG, Montalbetti N, Carattino MD, Apodaca G. The Urothelium: Life in a Liquid Environment. Physiol Rev 2020; 100:1621-1705. [PMID: 32191559 PMCID: PMC7717127 DOI: 10.1152/physrev.00041.2019] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 03/02/2020] [Accepted: 03/14/2020] [Indexed: 02/08/2023] Open
Abstract
The urothelium, which lines the renal pelvis, ureters, urinary bladder, and proximal urethra, forms a high-resistance but adaptable barrier that surveils its mechanochemical environment and communicates changes to underlying tissues including afferent nerve fibers and the smooth muscle. The goal of this review is to summarize new insights into urothelial biology and function that have occurred in the past decade. After familiarizing the reader with key aspects of urothelial histology, we describe new insights into urothelial development and regeneration. This is followed by an extended discussion of urothelial barrier function, including information about the roles of the glycocalyx, ion and water transport, tight junctions, and the cellular and tissue shape changes and other adaptations that accompany expansion and contraction of the lower urinary tract. We also explore evidence that the urothelium can alter the water and solute composition of urine during normal physiology and in response to overdistension. We complete the review by providing an overview of our current knowledge about the urothelial environment, discussing the sensor and transducer functions of the urothelium, exploring the role of circadian rhythms in urothelial gene expression, and describing novel research tools that are likely to further advance our understanding of urothelial biology.
Collapse
Affiliation(s)
- Marianela G Dalghi
- Department of Medicine, Renal-Electrolyte Division, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Nicolas Montalbetti
- Department of Medicine, Renal-Electrolyte Division, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Marcelo D Carattino
- Department of Medicine, Renal-Electrolyte Division, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Gerard Apodaca
- Department of Medicine, Renal-Electrolyte Division, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| |
Collapse
|
9
|
Dekaboruah E, Suryavanshi MV, Chettri D, Verma AK. Human microbiome: an academic update on human body site specific surveillance and its possible role. Arch Microbiol 2020; 202:2147-2167. [PMID: 32524177 PMCID: PMC7284171 DOI: 10.1007/s00203-020-01931-x] [Citation(s) in RCA: 139] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 05/26/2020] [Accepted: 05/28/2020] [Indexed: 12/21/2022]
Abstract
Human body is inhabited by vast number of microorganisms which form a complex ecological community and influence the human physiology, in the aspect of both health and diseases. These microbes show a relationship with the human immune system based on coevolution and, therefore, have a tremendous potential to contribute to the metabolic function, protection against the pathogen and in providing nutrients and energy. However, of these microbes, many carry out some functions that play a crucial role in the host physiology and may even cause diseases. The introduction of new molecular technologies such as transcriptomics, metagenomics and metabolomics has contributed to the upliftment on the findings of the microbiome linked to the humans in the recent past. These rapidly developing technologies are boosting our capacity to understand about the human body-associated microbiome and its association with the human health. The highlights of this review are inclusion of how to derive microbiome data and the interaction between human and associated microbiome to provide an insight on the role played by the microbiome in biological processes of the human body as well as the development of major human diseases.
Collapse
Affiliation(s)
- Elakshi Dekaboruah
- Department of Microbiology, Sikkim University, Gangtok, Sikkim, 737102, India
| | | | - Dixita Chettri
- Department of Microbiology, Sikkim University, Gangtok, Sikkim, 737102, India
| | - Anil Kumar Verma
- Department of Microbiology, Sikkim University, Gangtok, Sikkim, 737102, India.
| |
Collapse
|
10
|
The pathogenesis and management of renal scarring in children with vesicoureteric reflux and pyelonephritis. Pediatr Nephrol 2020; 35:349-357. [PMID: 30847554 DOI: 10.1007/s00467-018-4187-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 12/11/2018] [Accepted: 12/20/2018] [Indexed: 10/27/2022]
Abstract
Bacterial urinary tract infections (UTIs) are one of the most common reasons for children to be admitted to hospital. Bacteria infect and invade the bladder (the lower urinary tract) and if the infection disseminates to the upper urinary tract, significant inflammation in the kidneys may arise. Inflammation is a double-edged sword: it is needed to clear bacteria, but if excessive, kidney tissue is injured. During injury, nephrons are destroyed and replaced with deposition of extracellular matrix and a renal scar. In this review, we explore the pathogenesis of UTIs and discuss the risk factors that result in dissemination of bladder infection to the kidneys. Three major risk factors predispose to kidney infections: the presence of vesicoureteric reflux, the presence of bladder and bowel dysfunction, and defects in the ability of the host immune response to clear bacteria. In this review, we will discuss these factors, their relationship to renal scarring, and potential treatments that might be beneficial to prevent renal scar formation in children.
Collapse
|
11
|
Urinary microbiome in uncomplicated and interstitial cystitis: is there any similarity? World J Urol 2020; 38:2721-2731. [PMID: 32006175 DOI: 10.1007/s00345-020-03099-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 01/19/2020] [Indexed: 01/12/2023] Open
Abstract
PURPOSE Acute/uncomplicated cystitis is the most common bacterial infection causing inflammation in the bladder tissues and predominantly diagnosed in women. Interstitial cystitis may too, cause inflammation in the bladder but its etiology has been elusive. Even though the site and symptoms of both diseases are largely shared, state of the urinary microbiome in these disorders have not been comparatively evaluated before. The purpose of this review is to assess and qualitatively compare structure and composition of the urinary microbiome in acute/uncomplicated cystitis and interstitial cystitis. METHODS AND RESULTS The available literature in MEDLINE are extensively searched using keywords and screened. Pertinent evidence is carefully assessed and synthesized. We included the original studies with a cohort of medically stable, non-pregnant women with otherwise functionally normal urinary tract and excluded the original articles if the infection in a patient's cohort is accompanied by urinary syndromes such as incontinence and overactive bladder syndrome. A total of six original papers reporting on the urinary microbiome in acute cystitis and nine papers on the interstitial cystitis met the selection criteria. CONCLUSION The evidence we have gleaned from the literature on the urinary microbiome associated with the acute and interstitial cystitis does not point to convergence of microbiome similarities between the two diseases. More studies with direct sampling of the bladder tissues besides sampling bladder surfaces are warranted for accurate comparison of microbiome similarity between the two conditions. The future research on interstitial cystitis microbiome should include stratified cohorts with prospective design.
Collapse
|
12
|
Yu Z, Liao J, Chen Y, Zou C, Zhang H, Cheng J, Liu D, Li T, Zhang Q, Li J, Yang X, Ye Y, Huang Z, Long X, Yang R, Mo Z. Single-Cell Transcriptomic Map of the Human and Mouse Bladders. J Am Soc Nephrol 2019; 30:2159-2176. [PMID: 31462402 DOI: 10.1681/asn.2019040335] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 07/21/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Having a comprehensive map of the cellular anatomy of the normal human bladder is vital to understanding the cellular origins of benign bladder disease and bladder cancer. METHODS We used single-cell RNA sequencing (scRNA-seq) of 12,423 cells from healthy human bladder tissue samples taken from patients with bladder cancer and 12,884 cells from mouse bladders to classify bladder cell types and their underlying functions. RESULTS We created a single-cell transcriptomic map of human and mouse bladders, including 16 clusters of human bladder cells and 15 clusters of mouse bladder cells. The homology and heterogeneity of human and mouse bladder cell types were compared and both conservative and heterogeneous aspects of human and mouse bladder evolution were identified. We also discovered two novel types of human bladder cells. One type is ADRA2A + and HRH2 + interstitial cells which may be associated with nerve conduction and allergic reactions. The other type is TNNT1 + epithelial cells that may be involved with bladder emptying. We verify these TNNT1 + epithelial cells also occur in rat and mouse bladders. CONCLUSIONS This transcriptomic map provides a resource for studying bladder cell types, specific cell markers, signaling receptors, and genes that will help us to learn more about the relationship between bladder cell types and diseases.
Collapse
Affiliation(s)
- Zhenyuan Yu
- Institute of Urology and Nephrology.,Center for Genomic and Personalized Medicine.,Departments of Urology and.,Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Nanning, China.,Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Key Laboratory of Colleges and Universities, Nanning, China
| | - Jinling Liao
- Center for Genomic and Personalized Medicine.,Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Nanning, China.,Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Key Laboratory of Colleges and Universities, Nanning, China
| | - Yang Chen
- Institute of Urology and Nephrology.,Center for Genomic and Personalized Medicine.,Departments of Urology and.,Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Nanning, China.,Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Key Laboratory of Colleges and Universities, Nanning, China
| | - Chunlin Zou
- Key Laboratory of Longevity and Ageing-related Diseases, Ministry of Education, Nanning, China.,Center for Translational Medicine, Guangxi Medical University, Nanning, China
| | - Haiying Zhang
- Center for Genomic and Personalized Medicine.,Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Nanning, China.,Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Key Laboratory of Colleges and Universities, Nanning, China
| | - Jiwen Cheng
- Institute of Urology and Nephrology.,Center for Genomic and Personalized Medicine.,Departments of Urology and.,Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Nanning, China.,Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Key Laboratory of Colleges and Universities, Nanning, China
| | - Deyun Liu
- Institute of Urology and Nephrology.,Departments of Urology and
| | - Tianyu Li
- Institute of Urology and Nephrology.,Departments of Urology and
| | - Qingyun Zhang
- Institute of Urology and Nephrology.,Center for Genomic and Personalized Medicine.,Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Nanning, China.,Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Key Laboratory of Colleges and Universities, Nanning, China.,Department of Urology, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, China
| | - Jiaping Li
- Cardiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China.,Guangxi Key Laboratory of Precision Medicine in Cardio-cerebrovascular Diseases Control and Prevention, Nanning, China.,Guangxi Clinical Research Center for Cardio-cerebrovascular Diseases, Nanning, China; and
| | - Xiaobo Yang
- Center for Genomic and Personalized Medicine.,Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Nanning, China.,Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Key Laboratory of Colleges and Universities, Nanning, China
| | - Yu Ye
- Institute of Urology and Nephrology.,Center for Genomic and Personalized Medicine.,Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Nanning, China.,Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Key Laboratory of Colleges and Universities, Nanning, China.,Scientific Research Department, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Zhiguang Huang
- Center for Genomic and Personalized Medicine.,Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Nanning, China.,Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Key Laboratory of Colleges and Universities, Nanning, China
| | - Xinyang Long
- Center for Genomic and Personalized Medicine.,Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Nanning, China.,Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Key Laboratory of Colleges and Universities, Nanning, China
| | - Rirong Yang
- Center for Genomic and Personalized Medicine, .,Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Nanning, China.,Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Key Laboratory of Colleges and Universities, Nanning, China.,Department of Immunology, School of Preclinical Medicine, Guangxi Medical University, Nanning, China
| | - Zengnan Mo
- Institute of Urology and Nephrology, .,Center for Genomic and Personalized Medicine.,Departments of Urology and.,Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Nanning, China.,Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Key Laboratory of Colleges and Universities, Nanning, China
| |
Collapse
|
13
|
Dobrek Ł, Arent Z, Nalik-Iwaniak K, Fic K, Kopańska M. Osteopontin and Fatty Acid Binding Protein in Ifosfamide-treated Rats. Open Med (Wars) 2019; 14:561-571. [PMID: 31410367 PMCID: PMC6689207 DOI: 10.1515/med-2019-0063] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 06/07/2019] [Indexed: 01/04/2023] Open
Abstract
Introduction Ifosfamide (IF) is a cytostatic that exhibits adverse nephrotoxic properties. Clinically, IF-induced nephrotoxicity takes various forms, depending on applied dose and length of treatment. Objectives The aim of the study was to evaluate the two proteins: osteopontin (OP) and fatty acid binding protein (FABP), as markers of kidney function in rats treated with ifosfamide. Material and Methods Rats receiving a single IF dose (250 mg/kg b.w.; group 1) or treated with five consecutive IF doses administrated on following days (50mg/kg b.w.; group 3), compared with control groups 2 and 4, respectively, were studied. Kidney function was assessed using classical (urea, creatinine) and novel (FABP, OP) laboratory parameters and by histopathology. Results Single IF dose administration resulted in significant total proteinuria with urinary concentrations and 24-hour excretions of both FABP and OP comparable to the appropriate control. In rats treated with five consecutive IF doses, the urinary concentrations and 24-hour excretion of both FABP and OP were significantly higher compared to the appropriate control. The development of cystitis was revealed in groups 1 and 3, which was not accompanied by significant histopathological kidney damage. Conclusions Both OP and FABP may be useful laboratory markers of tubulopathy in the early stage of chronic nephrotoxicity of ifosfamide.
Collapse
Affiliation(s)
- Łukasz Dobrek
- Independent Researcher cooperating with Experimental and Innovative Medicine Centre, University Centre of Veterinary Medicine UJ-UR, University of Agriculture in Krakow, Krakow Poland
| | - Zbigniew Arent
- Independent Researcher cooperating with Experimental and Innovative Medicine Centre, University Centre of Veterinary Medicine UJ-UR, University of Agriculture in Krakow, Krakow Poland
| | - Klaudia Nalik-Iwaniak
- Independent Researcher cooperating with Experimental and Innovative Medicine Centre, University Centre of Veterinary Medicine UJ-UR, University of Agriculture in Krakow, Krakow Poland
| | - Kinga Fic
- Independent Researcher cooperating with Experimental and Innovative Medicine Centre, University Centre of Veterinary Medicine UJ-UR, University of Agriculture in Krakow, Krakow Poland
| | - Marta Kopańska
- Department of Human Physiology, Faculty of Medicine, University of Rzeszow, Rzeszow Poland
| |
Collapse
|
14
|
Huang CP, Chen CC, Tsai YT, Wu CC, Shyr CR. Intravesical Administration of Xenogeneic Porcine Urothelial Cells Attenuates Cyclophosphamide-Induced Cystitis in Mice. Cell Transplant 2019; 28:296-305. [PMID: 30675801 PMCID: PMC6425110 DOI: 10.1177/0963689718822773] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The urothelium of the bladder, renal pelvis, ureter and urethra is maintained through the regulated proliferation and differentiation of urothelial stem and progenitor cells. These cells provide a rich source of a novel urothelial cell therapy approach that could be used to protect, regenerate, repair and restore a damaged urothelium. Urothelial injury caused by physical, chemical and microbial stress is the pathological basis of cystitis (bladder inflammation). The loss of urothelial integrity triggers a series of inflammatory events, resulting in pain and hematuria such as hemorrhage cystitis and interstitial cystitis. Here we investigate a novel cell therapy strategy to treat cystitis by protecting the urothelium from detrimental stresses through intravesically instilling porcine urothelial cells (PUCs) into the bladder. Using a chemical-induced urothelial injury mouse model of cyclophosphamide (CPP)-induced hemorrhagic cystitis, we determined how the intravesical instillation of PUCs could protect the urothelium from toxic attack from CPP metabolites. We show that intravesical PUC instillation protected the bladder from toxic chemical attack in mice receiving CPP with reduced inflammation and edema. Compared with the vehicle control mice, the proliferative response to chemical injury and apoptotic cells within the bladder tissues were reduced by intravesical PUC treatment. Furthermore, the urothelium integrity was maintained in the intravesical PUC-treated group. After xenogeneic PUCs were introduced and adhered to the mouse urothelium, immunological rejection responses were observed with increased neutrophil infiltration in the lamina propria and higher immune-related gene expression. Our findings provide an innovative and promising intravesical PUC cell therapy for cystitis with urothelial injury by protecting the urothelium from noxious agents.
Collapse
Affiliation(s)
- Chi-Ping Huang
- Departments of Medical Laboratory Science and Biotechnology and Urology, Sex Hormone Research Center, China Medical University and Hospital, Taichung
| | - Chi-Cheng Chen
- Department of Urology, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung
| | - Yi-Tung Tsai
- Departments of Medical Laboratory Science and Biotechnology and Urology, Sex Hormone Research Center, China Medical University and Hospital, Taichung
| | - Chun-Chie Wu
- Departments of Medical Laboratory Science and Biotechnology and Urology, Sex Hormone Research Center, China Medical University and Hospital, Taichung
| | - Chih-Rong Shyr
- Departments of Medical Laboratory Science and Biotechnology and Urology, Sex Hormone Research Center, China Medical University and Hospital, Taichung
- Chih-Rong Shyr, Sex Hormone Research Center, Departments of Medical Laboratory Science and Biotechnology, China Medical University and Hospital, No. 9, Hsiuh-Shih Rd, Taichung 404.
| |
Collapse
|
15
|
Furukawa R, Homma H, Inoue T, Horiuchi H, Usui K. Cytomegalovirus Hemorrhagic Cystitis in a Malignant Glioma Patient Treated with Temozolomide. Intern Med 2018; 57:3047-3050. [PMID: 29780148 PMCID: PMC6232021 DOI: 10.2169/internalmedicine.1005-18] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Temozolomide, a key drug in the treatment of malignant glioma, can cause profound lymphopenia and various opportunistic infectious diseases. A 79-year-old woman with anaplastic oligodendroglioma developed a fever and gross hematuria after 8 weeks of standard radiotherapy with concomitant temozolomide treatment. A cytomegalovirus (CMV) antigen test for pp65 antigenemia was positive (137 cells per 75,800 leukocytes), and the findings from a urine cytology test were consistent with CMV-induced hemorrhagic cystitis. She was treated with ganciclovir, and her condition improved. CMV monitoring is needed when patients develop symptoms related to opportunistic infections during temozolomide treatment for malignant glioma.
Collapse
Affiliation(s)
| | - Hirokuni Homma
- Department of Neurosurgery, NTT Medical Center Tokyo, Japan
| | - Tomohiro Inoue
- Department of Neurosurgery, NTT Medical Center Tokyo, Japan
| | - Hajime Horiuchi
- Department of Diagnostic Pathology, NTT Medical Center Tokyo, Japan
| | - Kazuhiro Usui
- Division of Respirology, NTT Medical Center Tokyo, Japan
| |
Collapse
|
16
|
Increased Piezo1 channel activity in interstitial Cajal-like cells induces bladder hyperactivity by functionally interacting with NCX1 in rats with cyclophosphamide-induced cystitis. Exp Mol Med 2018; 50:1-16. [PMID: 29735991 PMCID: PMC5938236 DOI: 10.1038/s12276-018-0088-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 01/31/2018] [Accepted: 02/14/2018] [Indexed: 12/21/2022] Open
Abstract
The Piezo1 channel is a mechanotransduction mediator, and Piezo1 abnormalities have been linked to several clinical disorders. However, the role of the Piezo1 channel in cystitis-associated bladder dysfunction has not been documented. The current study aimed to discover the functional role of this channel in regulating bladder activity during cyclophosphamide (CYP)-induced cystitis. One hundred four female rats were randomly assigned to the control, CYP-4h, CYP-48h and CYP-8d groups. CYP successfully induced acute or chronic cystitis in these rats. CYP treatment for 48h or 8d significantly increased Piezo1 channel expression in bladder interstitial Cajal-like cells (ICC-LCs), and the increase in CYP-8d rats was more prominent. In addition, 2.5 μM Grammostola spatulata mechanotoxin 4 (GsMTx4) significantly attenuated bladder hyperactivity in CYP-8d rats by inhibiting the Piezo1 channel in bladder ICC-LCs. Furthermore, by using GsMTx4 and siRNA targeting the Piezo1 channel, we demonstrated that hypotonic stress-induced Piezo1 channel activation significantly triggered Ca2+ and Na+ influx into bladder ICC-LCs during CYP-induced chronic cystitis. In addition, the Piezo1 channel functionally interacted with the relatively activated reverse mode of Na+/Ca2+ exchanger 1 (NCX1) in bladder ICC-LCs from CYP-8d rats. In conclusion, we suggest that the functional role of the Piezo1 channel in CYP-induced chronic cystitis is based on its synergistic effects with NCX1, which can significantly enhance [Ca2+]i and result in Ca2+ overload in bladder ICC-LCs, indicating that the Piezo1 channel and NCX1 are potential novel therapeutic targets for chronic cystitis-associated bladder hyperactivity. A protein that controls the passage of ions through cell membranes is implicated in interstitial cystitis/painful bladder syndrome (IC/PBS). This condition causes chronic pelvic pain and increased urinary frequency and urgency. Current treatment options are unsatisfactory. Researchers led by Longkun Li at the Third Military Medical University in Chongqing, China, and Mingjia Tan at the University of Michigan, Ann Arbor, USA, studied the role of this membrane channel protein, called Piezo1. Increased activity of Piezo1 was linked to bladder hyperactivity in rats with drug-induced cystitis. The research also identified a synergistic interaction between Piezo1 and a second membrane channel protein. A drug that inhibits Piezo1 activity reduced bladder hyperactivity in the rats. Drugs targeting these two proteins might help to treat the chronic cystitis of patients with IC/PBS.
Collapse
|
17
|
Seo Y, Lee G. New Bacterial Infection in the Prostate after Transrectal Prostate Biopsy. J Korean Med Sci 2018; 33:e126. [PMID: 29686597 PMCID: PMC5909103 DOI: 10.3346/jkms.2018.33.e126] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 02/27/2018] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND The prostate is prone to infections. Hypothetically, bacteria can be inoculated into the prostate during a transrectal prostate biopsy (TRPB) and progress into chronic bacterial prostatitis. Therefore, we examined new bacterial infections in biopsied prostates after TRPB and whether they affect clinical characteristics in the biopsied patients. METHODS Of men whose prostate cultures have been taken prior to TRPB, 105 men with bacteria-free benign prostate pathology underwent an additional repeated prostate culture within a year after TRPB. RESULTS Twenty out of 105 men (19.05%) acquired new bacteria in their naïve prostates after TRPB. Except for one single case of Escherichia coli infection, 19 men had acquired gram-positive bacteria species. Between the culture-positive and negative groups, there were no significant differences in age, serum prostate-specific antigen (PSA) level, white blood cell (WBC) counts in expressed prostatic secretion (EPS), prostate volume, symptom severities in Korean version of the National Institutes of Health-Chronic Prostatitis Symptom Index (NIH-CPSI) questionnaire, and patient-specific risk factors for biopsy associated infectious complications. Additionally, the TRPB procedure increased the WBC counts in post-biopsy EPS (P = 0.031, McNemar test), but did not increase the serum PSA level and symptoms of NIH-CPSI in 20 men who acquired new bacteria after TRPB. CONCLUSION The TRPB procedure was significantly associated with acquiring new bacterial infections in the biopsied prostate, but these localized bacteria did not affect patients' serum PSA level and symptoms after biopsy.
Collapse
Affiliation(s)
- Yumi Seo
- Department of Urology, Dankook University College of Medicine, Cheonan, Korea
| | - Gilho Lee
- Department of Urology, Dankook University College of Medicine, Cheonan, Korea
| |
Collapse
|
18
|
Wróbel A, Doboszewska U, Rechberger E, Rojek K, Serefko A, Poleszak E, Skalicka-Woźniak K, Dudka J, Wlaź P. Rho kinase inhibition ameliorates cyclophosphamide-induced cystitis in rats. Naunyn Schmiedebergs Arch Pharmacol 2017; 390:613-619. [PMID: 28220212 PMCID: PMC5411406 DOI: 10.1007/s00210-017-1361-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 02/07/2017] [Indexed: 11/22/2022]
Abstract
Hemorrhagic cystitis often develops in patients treated with cyclophosphamide (CYP). Studies have indicated that Rho kinase (ROCK) inhibitors may suppress detrusor overactivity symptoms and possess anti-inflammatory properties. The aim of the present study was to investigate whether inhibition of ROCK reduces cystometric and histopathological changes associated with CYP-induced cystitis. The rats received GSK 269962, a ROCK inhibitor, at a dose of 30 mg/kg daily, or vehicle for 7 days. Then, acute chemical cystitis leading to bladder overactivity was induced by CYP injection (200 mg/kg i.p.). Following CYP injection, cystometric studies with physiological saline were performed. Moreover, bladder edema (by the Evans Blue dye leakage technique) and urothelium thickness were measured. CYP injection resulted in a significant increase in cystometric parameters: basal pressure, threshold pressure, bladder contraction duration, relaxation time, detrusor overactivity index, non-voiding contractions amplitude, and non-voiding contractions frequency as well as increased Evans Blue extravasation into bladder tissue, whereas micturition voiding pressure, voided volume, post-void residual, volume threshold, intercontraction interval, bladder compliance, and volume threshold to elicit non-voiding contractions as well as urothelium thickness were significantly decreased in CYP-injected rats. Administration of GSK 269962 normalized the abovementioned CYP injection-induced changes. Inhibition of ROCK was found to ameliorate CYP-induced detrusor overactivity and bladder inflammation. Our data indicate uroprotective effects following ROCK inhibition, which further suggests that this strategy may become an interesting pharmacological tool to prevent urinary adverse effects in patients treated with chemotherapy using CYP.
Collapse
Affiliation(s)
- Andrzej Wróbel
- Second Department of Gynecology, Medical University of Lublin, Jaczewskiego 8, 20-090, Lublin, Poland.
| | - Urszula Doboszewska
- Department of Animal Physiology, Institute of Biology and Biochemistry, Faculty of Biology and Biotechnology, Maria Curie-Sklodowska University, Akademicka 19, 20-033, Lublin, Poland
| | - Ewa Rechberger
- Second Department of Gynecology, Medical University of Lublin, Jaczewskiego 8, 20-090, Lublin, Poland
| | - Karol Rojek
- Department of Applied Pharmacy, Medical University of Lublin, Chodźki 1, 20-093, Lublin, Poland
| | - Anna Serefko
- Department of Applied Pharmacy, Medical University of Lublin, Chodźki 1, 20-093, Lublin, Poland
| | - Ewa Poleszak
- Department of Applied Pharmacy, Medical University of Lublin, Chodźki 1, 20-093, Lublin, Poland
| | - Krystyna Skalicka-Woźniak
- Department of Pharmacognosy with Medicinal Plant Unit, Medical University of Lublin, Chodźki 1, 20-093, Lublin, Poland
| | - Jarosław Dudka
- Department of Toxicology, Medical University of Lublin, Jaczewskiego 8b, 20-093, Lublin, Poland
| | - Piotr Wlaź
- Department of Animal Physiology, Institute of Biology and Biochemistry, Faculty of Biology and Biotechnology, Maria Curie-Sklodowska University, Akademicka 19, 20-033, Lublin, Poland
| |
Collapse
|