1
|
Wu Y, Xu R, Wang J, Luo Z. Precision molecular insights for prostate cancer prognosis: tumor immune microenvironment and cell death analysis of senescence-related genes by machine learning and single-cell analysis. Discov Oncol 2024; 15:487. [PMID: 39331250 PMCID: PMC11436555 DOI: 10.1007/s12672-024-01277-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 08/26/2024] [Indexed: 09/28/2024] Open
Abstract
BACKGROUND Prostate cancer (PCa) is a prevalent malignancy among men, primarily originating from the prostate epithelium. It ranks first in global cancer incidence and second in mortality rates, with a rising trend in China. PCa's subtle initial symptoms, such as urinary issues, necessitate diagnostic measures like digital rectal examination, prostate-specific antigen (PSA) testing, and tissue biopsy. Advanced PCa management typically involves a multifaceted approach encompassing surgery, radiation, chemotherapy, and hormonal therapy. The involvement of aging genes in PCa development and progression, particularly through the mTOR pathway, has garnered increasing attention. METHODS This study aimed to explore the association between aging genes and biochemical PCa recurrence and construct predictive models. Utilizing public gene expression datasets (GSE70768, GSE116918, and TCGA), we conducted extensive analyses, including Cox regression, functional enrichment, immune cell infiltration estimation, and drug sensitivity assessments. The constructed risk score model, based on aging-related genes (ARGs), demonstrated superior predictive capability for PCa prognosis compared to conventional clinical features. High-risk genes positively correlated with risk, while low-risk genes displayed a negative correlation. RESULTS An ARGs-based risk score model was developed and validated for predicting prognosis in prostate adenocarcinoma (PRAD) patients. LASSO regression analysis and cross-validation plots were employed to select ARGs with prognostic significance. The risk score outperformed traditional clinicopathological features in predicting PRAD prognosis, as evidenced by its high AUC (0.787). The model demonstrated good sensitivity and specificity, with AUC values of 0.67, 0.675, 0.696, and 0.696 at 1, 3, 5, and 8 years, respectively, in the GEO cohort. Similar AUC values were observed in the TCGA cohort at 1, 3, and 5 years (0.67, 0.659, 0.667, and 0.743). The model included 12 genes, with high-risk genes positively correlated with risk and low-risk genes negatively correlated. CONCLUSIONS This study presents a robust ARGs-based risk score model for predicting biochemical recurrence in PCa patients, highlighting the potential significance of aging genes in PCa prognosis and offering enhanced predictive accuracy compared to traditional clinical parameters. These findings open new avenues for research on PCa recurrence prediction and therapeutic strategies.
Collapse
Affiliation(s)
- Yuni Wu
- Department of Oncology, Chongqing General Hospital, Chongqing University, Chongqing, 401147, China
| | - Ran Xu
- School of Clinical Medicine, North Sichuan Medical College, Nanchong, 637100, China
| | - Jing Wang
- Department of Oncology, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, 400021, China.
| | - Zhibin Luo
- Department of Oncology, Chongqing General Hospital, Chongqing University, Chongqing, 401147, China.
| |
Collapse
|
2
|
Niu D, Zhang X, Zhang S, Fan T, Zhou X, Wang H, Zhang X, Nan F, Jiang S, Liu F, Wang Y, Wang B. Human Cytomegalovirus IE2 Disrupts Neural Progenitor Development and Induces Microcephaly in Transgenic Mouse. Mol Neurobiol 2023; 60:3883-3897. [PMID: 36991278 DOI: 10.1007/s12035-023-03310-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 02/25/2023] [Indexed: 03/31/2023]
Abstract
Human cytomegalovirus (HCMV) is a significant contributor to congenital birth defects. Limited by the lack of animal models, the pathogenesis of neurological damage in vivo caused by HCMV infection and the role of individual viral genes remain to be elucidated. Immediate early (IE2) protein may play a function in neurodevelopmental problems caused by HCMV infection. Here, this study intended to investigate IE2's long-term effects on development of the brain in IE2-expressing transgenic mice (Rosa26-LSL-IE2+/-, Camk2α-Cre) aimed to observe the phenotype of postnatal mice. The expression of IE2 in transgenic mice was confirmed by PCR and Western blot technology. We collected mouse brain tissue at 2, 4, 6, 8, and 10 days postpartum to analyze the developmental process of neural stem cells by immunofluorescence. We discovered that transgenic mice (Rosa26-LSL-IE2+/-, Camk2α-Cre) can reliably produce IE2 in the brain at various postpartum phases. Furthermore, we also observed the symptoms of microcephaly in postnatal transgenic mice, and IE2 can damage the amount of neural stem cells, prevent them from proliferating and differentiating, and activate microglia and astrocytes, creating an unbalanced environment in the brain's neurons. In conclusion, we demonstrate that long-term expression of HCMV-IE2 can cause microcephaly through molecular mechanisms affecting the differentiation and development of neural stem cells in vivo. This work establishes a theoretical and experimental foundation for elucidating the molecular mechanism of fetal microcephaly brought by HCMV infection in throughout the period of neural development of pregnancy.
Collapse
Affiliation(s)
- Delei Niu
- Department of Pathogenic Biology, College of Basic Medicine, Qingdao University, Qingdao, 266000, Shandong, China
| | - Xianjuan Zhang
- Department of Pathogenic Biology, College of Basic Medicine, Qingdao University, Qingdao, 266000, Shandong, China
| | - Shuyun Zhang
- Department of Pathogenic Biology, College of Basic Medicine, Qingdao University, Qingdao, 266000, Shandong, China
| | - Tianyu Fan
- Department of Immunology, College of Basic Medicine, Qingdao University, Qingdao, 266000, Shandong, China
| | - Xiaoqiong Zhou
- Department of Pathogenic Biology, College of Basic Medicine, Qingdao University, Qingdao, 266000, Shandong, China
| | - Hui Wang
- Department of Special Medicine, College of Basic Medicine, Qingdao University, Qingdao, 266000, Shandong, China
| | - Xueming Zhang
- Department of Pathogenic Biology, College of Basic Medicine, Qingdao University, Qingdao, 266000, Shandong, China
| | - Fulong Nan
- Department of Special Medicine, College of Basic Medicine, Qingdao University, Qingdao, 266000, Shandong, China
| | - Shasha Jiang
- Department of Pathogenic Biology, College of Basic Medicine, Qingdao University, Qingdao, 266000, Shandong, China
| | - Fengjun Liu
- Department of Special Medicine, College of Basic Medicine, Qingdao University, Qingdao, 266000, Shandong, China
| | - Yunyang Wang
- Department of Endocrinology and Metabolism, the Affiliated Hospital of Qingdao University, Qingdao, 266000, Shandong, China.
| | - Bin Wang
- Department of Pathogenic Biology, College of Basic Medicine, Qingdao University, Qingdao, 266000, Shandong, China.
- Department of Special Medicine, College of Basic Medicine, Qingdao University, Qingdao, 266000, Shandong, China.
| |
Collapse
|
3
|
Liu S, Won H, Clarke D, Matoba N, Khullar S, Mu Y, Wang D, Gerstein M. Illuminating links between cis-regulators and trans-acting variants in the human prefrontal cortex. Genome Med 2022; 14:133. [PMID: 36424644 PMCID: PMC9685876 DOI: 10.1186/s13073-022-01133-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 10/25/2022] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Neuropsychiatric disorders afflict a large portion of the global population and constitute a significant source of disability worldwide. Although Genome-wide Association Studies (GWAS) have identified many disorder-associated variants, the underlying regulatory mechanisms linking them to disorders remain elusive, especially those involving distant genomic elements. Expression quantitative trait loci (eQTLs) constitute a powerful means of providing this missing link. However, most eQTL studies in human brains have focused exclusively on cis-eQTLs, which link variants to nearby genes (i.e., those within 1 Mb of a variant). A complete understanding of disease etiology requires a clearer understanding of trans-regulatory mechanisms, which, in turn, entails a detailed analysis of the relationships between variants and expression changes in distant genes. METHODS By leveraging large datasets from the PsychENCODE consortium, we conducted a genome-wide survey of trans-eQTLs in the human dorsolateral prefrontal cortex. We also performed colocalization and mediation analyses to identify mediators in trans-regulation and use trans-eQTLs to link GWAS loci to schizophrenia risk genes. RESULTS We identified ~80,000 candidate trans-eQTLs (at FDR<0.25) that influence the expression of ~10K target genes (i.e., "trans-eGenes"). We found that many variants associated with these candidate trans-eQTLs overlap with known cis-eQTLs. Moreover, for >60% of these variants (by colocalization), the cis-eQTL's target gene acts as a mediator for the trans-eQTL SNP's effect on the trans-eGene, highlighting examples of cis-mediation as essential for trans-regulation. Furthermore, many of these colocalized variants fall into a discernable pattern wherein cis-eQTL's target is a transcription factor or RNA-binding protein, which, in turn, targets the gene associated with the candidate trans-eQTL. Finally, we show that trans-regulatory mechanisms provide valuable insights into psychiatric disorders: beyond what had been possible using only cis-eQTLs, we link an additional 23 GWAS loci and 90 risk genes (using colocalization between candidate trans-eQTLs and schizophrenia GWAS loci). CONCLUSIONS We demonstrate that the transcriptional architecture of the human brain is orchestrated by both cis- and trans-regulatory variants and found that trans-eQTLs provide insights into brain-disease biology.
Collapse
Affiliation(s)
- Shuang Liu
- Waisman Center, University of Wisconsin - Madison, Madison, WI, 53705, USA
| | - Hyejung Won
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.,Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Declan Clarke
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06520, USA
| | - Nana Matoba
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.,Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Saniya Khullar
- Waisman Center, University of Wisconsin - Madison, Madison, WI, 53705, USA.,Department of Biostatistics and Medical Informatics, University of Wisconsin - Madison, Madison, WI, 53706, USA
| | - Yudi Mu
- Department of Statistics, University of Wisconsin - Madison, Madison, WI, 53706, USA
| | - Daifeng Wang
- Waisman Center, University of Wisconsin - Madison, Madison, WI, 53705, USA. .,Department of Biostatistics and Medical Informatics, University of Wisconsin - Madison, Madison, WI, 53706, USA. .,Department of Computer Sciences, University of Wisconsin - Madison, Madison, WI, 53706, USA.
| | - Mark Gerstein
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06520, USA. .,Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT, 06520, USA. .,Department of Computer Science, Yale University, New Haven, CT, 06520, USA. .,Department of Statistics and Data Science, Yale University, New Haven, CT, 06520, USA.
| |
Collapse
|
4
|
Peres A, Branchini G, Marmett B, Nunes FB, Romão PRT, Olean-Oliveira T, Minuzzi L, Cavalcante M, Elsner V, Lira FS, Dorneles GP. Potential Anticarcinogenic Effects From Plasma of Older Adults After Exercise Training: An Exploratory Study. Front Physiol 2022; 13:855133. [PMID: 35874516 PMCID: PMC9298496 DOI: 10.3389/fphys.2022.855133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 05/23/2022] [Indexed: 11/28/2022] Open
Abstract
Aim: To evaluate the impact of exercise training plasma on in vitro prostate cancer cell viability and proliferation. Methods: PC3 prostate cancer cells were incubated with plasma obtained from young men with high and low physical fitness (PF) (high PF, n = 5; low PF, n = 5) and with the plasma collected from institutionalized older adults (n = 8) before and after multimodal exercise training. Cell viability and proliferation, mitochondria membrane polarization, reactive oxygen species (ROS) generation, and apoptosis were evaluated after the cell treatment with plasma. Systemic cytokines were evaluated in the plasma of institutionalized older adults submitted to an exercise training protocol. Results: Plasma from high-PF men lowers both cell viability and proliferation after the incubation time. PC3 cells also presented lower cell viability and diminished rates of cell proliferation after the incubation with post-training plasma samples of the older adults. The incubation of PC3 cells with post-training plasma of older adults depolarized the mitochondrial membrane potential and increased mitochondrial reactive oxygen species production. Post-training plasma did not change apoptosis or necrosis rates in the PC3 cell line. Multimodal exercise training increased the plasma levels of IL-2, IL-10, IFN-α, and FGF-1 and decreased TNF-α concentrations in institutionalized older adults. Conclusion: Adaptations in blood factors of institutionalized older adults may alter cell viability and proliferation by targeting mitochondrial ROS in a prostate cancer cell line.
Collapse
Affiliation(s)
- Alessandra Peres
- Laboratório de Imunologia Celular e Molecular, Departamento de Ciências Básicas da Saúde, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Brazil
| | - Gisele Branchini
- Programa de Pós-graduação em Patologia, Universidade Federal de Ciências da Saúde de Porto Alegre-UFCSPA, Porto Alegre, Brazil
| | - Bruna Marmett
- Laboratório de Imunologia Celular e Molecular, Departamento de Ciências Básicas da Saúde, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Brazil
| | - Fernanda Bordignon Nunes
- Programa de Pós-graduação em Patologia, Universidade Federal de Ciências da Saúde de Porto Alegre-UFCSPA, Porto Alegre, Brazil
| | - Pedro R T Romão
- Laboratório de Imunologia Celular e Molecular, Departamento de Ciências Básicas da Saúde, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Brazil
| | - Tiago Olean-Oliveira
- Exercise and Immunometabolism Research Group, Postgraduation Program in Movement Sciences, Department of Physical Education, Universidade Estadual Paulista (UNESP), Presidente Prudente, Brazil.,Faculty of Sports Science and Physical Education, Research Center for Sports and Physical Activity, University of Coimbra, Coimbra, Portugal
| | - Luciele Minuzzi
- Exercise and Immunometabolism Research Group, Postgraduation Program in Movement Sciences, Department of Physical Education, Universidade Estadual Paulista (UNESP), Presidente Prudente, Brazil
| | - Mateus Cavalcante
- Programa de Pós-graduação em Fisiologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Viviane Elsner
- Laboratório de Imunologia Celular e Molecular, Departamento de Ciências Básicas da Saúde, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Brazil
| | - Fabio Santos Lira
- Exercise and Immunometabolism Research Group, Postgraduation Program in Movement Sciences, Department of Physical Education, Universidade Estadual Paulista (UNESP), Presidente Prudente, Brazil.,Faculty of Sports Science and Physical Education, Research Center for Sports and Physical Activity, University of Coimbra, Coimbra, Portugal
| | - Gilson Pires Dorneles
- Laboratório de Imunologia Celular e Molecular, Departamento de Ciências Básicas da Saúde, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Brazil
| |
Collapse
|
5
|
Ebersole JL, Nagarajan R, Kirakodu SS, Gonzalez OA. Immunoglobulin gene expression profiles and microbiome characteristics in periodontitis in nonhuman primates. Mol Immunol 2022; 148:18-33. [PMID: 35665658 DOI: 10.1016/j.molimm.2022.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 04/20/2022] [Accepted: 05/16/2022] [Indexed: 11/19/2022]
Abstract
Colonization of mucosal tissues throughout the body occurs by a wide array of bacteria in the microbiome that stimulate the cells and tissues, as well as respond to changes in the local milieu. A feature of periodontitis is the detection of adaptive immune responses to members of the oral microbiome that show specificity and changes with disease and treatment. Thus, variations in antibody responses are noted across the population and affected by aging, albeit, data are still unclear as to how these differences relate to disease risk and expression. This study used a nonhuman primate model of experimental periodontitis to track local microbiome changes as they related to the use and expression of a repertoire of immunoglobulin genes in gingival tissues. Gingival tissue biopsies from healthy tissues and following ligature-placement for disease initiation and progression provided gene expression analysis. Additionally, following removal of the ligatures, clinical healing occurs with gene expression in disease resolved tissues. Groups of 9 animals (young: <3 yrs., adolescent: 3-7 yrs., adult -12 to 15 yrs.; aged: 17-22 yrs) were used in the investigation. In healthy tissues, young and adolescent animals showed levels of expression of 78 Ig genes that were uniformly less than adults. In contrast, ⅔ of the Ig genes were elevated by > 2-fold in the aged samples. Specific increases in an array of the Ig gene transcripts were detected in adults at disease initiation and throughout progression, while increases in young and adolescent animals were observed only with disease progression, and in aged samples primarily late in disease progression. Resolved lesions continued to demonstrate elevated levels of Ig gene expression in only young, adolescent and adult animals. The array of Ig genes significantly correlated with inflammatory, tissue biology and hypoxia genes in the gingival tissues, with variations associated with age. In the young group of animals, specific members of the oral microbiome positively correlated with Ig gene expression, while in the older animals, many of these correlations were negative. Significant correlations were observed with a select assortment of bacterial OTUs and multiple Ig genes in both younger and older animal samples, albeit the genera/species showed little overlap. Incorporating this array of microbes and host responses clearly discriminated the various time points in transition from health to disease and resolution in both the young and adult animals. The results support a major importance of adaptive immune responses in the kinetics of periodontal lesion formation, and support aging effects on the repertoire of Ig genes that may relate to the increased prevalence and severity of periodontitis with age.
Collapse
Affiliation(s)
- Jeffrey L Ebersole
- Department of Biomedical Sciences, School of Dental Medicine, University of Nevada Las Vegas, USA; Center for Oral Health Research, College of Dentistry, University of Kentucky, USA
| | - Radhakrishnan Nagarajan
- Center for Oral and Systemic Health, Marshfield Clinic Research Institute, Marshfield Clinic Health System, USA
| | - Sreenatha S Kirakodu
- Center for Oral Health Research, College of Dentistry, University of Kentucky, USA
| | - Octavio A Gonzalez
- Center for Oral Health Research, College of Dentistry, University of Kentucky, USA; Division of Periodontology, College of Dentistry, University of Kentucky, USA
| |
Collapse
|
6
|
Systemic Effects Reflected in Specific Biomarker Patterns Are Instrumental for the Paradigm Change in Prostate Cancer Management: A Strategic Paper. Cancers (Basel) 2022; 14:cancers14030675. [PMID: 35158943 PMCID: PMC8833369 DOI: 10.3390/cancers14030675] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/19/2022] [Accepted: 01/24/2022] [Indexed: 12/11/2022] Open
Abstract
Prostate cancer (PCa) is reported as the most common malignancy and second leading cause of death in America. In Europe, PCa is considered the leading type of tumour in 28 European countries. The costs of treating PCa are currently increasing more rapidly than those of any other cancer. Corresponding economic burden is enormous, due to an overtreatment of slowly developing disease on one hand and underestimation/therapy resistance of particularly aggressive PCa subtypes on the other hand. The incidence of metastatic PCa is rapidly increasing that is particularly characteristic for young adults. PCa is a systemic multi-factorial disease resulting from an imbalanced interplay between risks and protective factors. Sub-optimal behavioural patterns, abnormal stress reactions, imbalanced antioxidant defence, systemic ischemia and inflammation, mitochondriopathies, aberrant metabolic pathways, gene methylation and damage to DNA, amongst others, are synergistically involved in pathomechanisms of PCa development and progression. To this end, PCa-relevant systemic effects are reflected in liquid biopsies such as blood patterns which are instrumental for predictive diagnostics, targeted prevention and personalisation of medical services (PPPM/3P medicine) as a new paradigm in the overall PCa management. This strategic review article highlights systemic effects in prostate cancer development and progression, demonstrates evident challenges in PCa management and provides expert recommendations in the framework of 3P medicine.
Collapse
|
7
|
Shah A, Shah AA, K N, Lobo R. Mechanistic targets for BPH and prostate cancer-a review. REVIEWS ON ENVIRONMENTAL HEALTH 2021; 36:261-270. [PMID: 32960781 DOI: 10.1515/reveh-2020-0051] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 09/02/2020] [Indexed: 05/26/2023]
Abstract
All men, almost, suffer from prostatic disorders in average life expectancy. In the year of 1950s, the first autopsy of prostate gland discovered the link between Benign prostatic hyperplasia (BPH) and Prostate Cancer (PCa). After that, many histology, biochemistry, epidemiology studies explained the association and associated risk factor for the same. From the various scientific evidence, it is proved that both diseases share some common transcription factors and signalling pathways. Still, BPH cannot be considered as the first step of PCa progression. To define, the relationship between both of the diseases, a well-defined large epidemiological study is needed. Along with androgen signalling, imbalanced apoptosis, oxidative stress, and microbial infection also crucial factors that significantly affect the pathogenesis of BPH. Various signalling pathways are involved in the progression of BPH. Androgen signalling is the driving force for the progress of PCa. In PCa androgen signalling is upregulated as compared to a healthy prostate. Some dominant Androgen-regulated genes and their functions have been discussed in this work.
Collapse
Affiliation(s)
- Abhishek Shah
- Department of Pharmacognosy, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Aarti Abhishek Shah
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Nandakumar K
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Richard Lobo
- Department of Pharmacognosy, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| |
Collapse
|
8
|
Kucera R, Pecen L, Topolcan O, Dahal AR, Costigliola V, Giordano FA, Golubnitschaja O. Prostate cancer management: long-term beliefs, epidemic developments in the early twenty-first century and 3PM dimensional solutions. EPMA J 2020; 11:399-418. [PMID: 32843909 PMCID: PMC7429585 DOI: 10.1007/s13167-020-00214-1] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 06/05/2020] [Indexed: 12/20/2022]
Abstract
In the early twenty-first century, societies around the world are facing the paradoxal epidemic development of PCa as a non-communicable disease. PCa is the most frequently diagnosed cancer for men in several countries such as the USA. Permanently improving diagnostics and treatments in the PCa management causes an impressive divergence between, on one hand, permanently increasing numbers of diagnosed PCa cases and, on the other hand, stable or even slightly decreasing mortality rates. Still, aspects listed below are waiting for innovate solutions in the context of predictive approaches, targeted prevention and personalisation of medical care (PPPM / 3PM).A.PCa belongs to the cancer types with the highest incidence worldwide. Corresponding economic burden is enormous. Moreover, the costs of treating PCa are currently increasing more quickly than those of any other cancer. Implementing individualised patient profiles and adapted treatment algorithms would make currently too heterogeneous landscape of PCa treatment costs more transparent providing clear "road map" for the cost saving.B.PCa is a systemic multi-factorial disease. Consequently, predictive diagnostics by liquid biopsy analysis is instrumental for the disease prediction, targeted prevention and curative treatments at early stages.C.The incidence of metastasising PCa is rapidly increasing particularly in younger populations. Exemplified by trends observed in the USA, prognosis is that the annual burden will increase by over 40% in 2025. To this end, one of the evident deficits is the reactive character of medical services currently provided to populations. Innovative screening programmes might be useful to identify persons in suboptimal health conditions before the clinical onset of metastasising PCa. Strong predisposition to systemic hypoxic conditions and ischemic lesions (e.g. characteristic for individuals with Flammer syndrome phenotype) and low-grade inflammation might be indicative for specific phenotyping and genotyping in metastasising PCa screening and disease management. Predictive liquid biopsy tests for CTC enumeration and their molecular characterisation are considered to be useful for secondary prevention of metastatic disease in PCa patients.D.Particular rapidly increasing PCa incidence rates are characteristic for adolescents and young adults aged 15-40 years. Patients with early onset prostate cancer pose unique challenges; multi-factorial risks for these trends are proposed. Consequently, multi-level diagnostics including phenotyping and multi-omics are considered to be the most appropriate tool for the risk assessment, prediction and prognosis. Accumulating evidence suggests that early onset prostate cancer is a distinct phenotype from both aetiological and clinical perspectives deserving particular attention from view point of 3P medical approaches.
Collapse
Affiliation(s)
- Radek Kucera
- Department of Immunochemistry Diagnostics, University Hospital and Faculty of Medicine, Pilsen, Czech Republic
| | - Ladislav Pecen
- Department of Immunochemistry Diagnostics, University Hospital and Faculty of Medicine, Pilsen, Czech Republic
| | - Ondrej Topolcan
- Department of Immunochemistry Diagnostics, University Hospital and Faculty of Medicine, Pilsen, Czech Republic
| | - Anshu Raj Dahal
- Center of Molecular Biotechnology, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | | | - Frank A. Giordano
- Department of Radiation Oncology, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Olga Golubnitschaja
- Predictive, Preventive and Personalised (3P) Medicine, Department of Radiation Oncology, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, Sigmund-Freud-Str. 25, 53105 Bonn, Germany
| |
Collapse
|
9
|
Ebersole JL, Dawson DA, Emecen Huja P, Pandruvada S, Basu A, Nguyen L, Zhang Y, Gonzalez OA. Age and Periodontal Health - Immunological View. CURRENT ORAL HEALTH REPORTS 2018; 5:229-241. [PMID: 30555774 PMCID: PMC6291006 DOI: 10.1007/s40496-018-0202-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
PURPOSE OF THE REVIEW Aging clearly impacts a wide array of systems, in particular the breadth of the immune system leading to immunosenescence, altered immunoactivation, and coincident inflammaging processes. The net result of these changes leads to increased susceptibility to infections, increased neoplastic occurrences, and elevated frequency of autoimmune diseases with aging. However, as the bacteria in the oral microbiome that contribute to the chronic infection of periodontitis is acquired earlier in life, the characteristics of the innate and adaptive immune systems to regulate these members of the autochthonous microbiota across the lifespan remains ill defined. RECENT FINDINGS Clear data demonstrate that both cells and molecules of the innate and adaptive immune response are adversely impacted by aging, including in the oral cavity, yielding a reasonable tenet that the increased periodontitis noted in aging populations is reflective of the age-associated immune dysregulation. Additionally, this facet of host-microbe interactions and disease needs to accommodate the population variation in disease onset and progression, which may also reflect an accumulation of environmental stressors and/or decreased protective nutrients that could function at the gene level (ie. epigenetic) or translational level for production and secretion of immune system molecules. SUMMARY Finally, the majority of studies of aging and periodontitis have emphasized the increased prevalence/severity of disease with aging, all based upon chronological age. However, evolving areas of study focusing on "biological aging" to help account for population variation in disease expression, may suggest that chronic periodontitis represents a co-morbidity that contributes to "gerovulnerability" within the population.
Collapse
Affiliation(s)
- J L Ebersole
- Department of Biomedical Sciences, School of Dental Medicine, University of Nevada Las Vegas, Las Vegas, NV
| | - D A Dawson
- Division of Periodontology, College of Dentistry, University of Kentucky, Lexington, KY
| | - P Emecen Huja
- Department of Periodontics, JBE College of Dental Medicine, Medical University of South Carolina, Charleston, SC
| | - S Pandruvada
- Department of Oral Health Sciences, JBE College of Dental Medicine, Medical University of South Carolina, Charleston, SC
| | - A Basu
- Department of Kinesiology and Nutrition, School of Allied Health Sciences, University of Nevada Las Vegas, Las Vegas, NV
| | - L Nguyen
- Department of Biomedical Sciences, School of Dental Medicine, University of Nevada Las Vegas, Las Vegas, NV
| | - Y Zhang
- Southern Nevada Health District, Las Vegas, NV
| | - O A Gonzalez
- Department of Biomedical Sciences, School of Dental Medicine, University of Nevada Las Vegas, Las Vegas, NV
- Center for Oral Health Research, College of Dentistry, University of Kentucky, Lexington, KY, USA
| |
Collapse
|
10
|
Disruption of glial cell development by Zika virus contributes to severe microcephalic newborn mice. Cell Discov 2018; 4:43. [PMID: 30083387 PMCID: PMC6066496 DOI: 10.1038/s41421-018-0042-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 05/08/2018] [Accepted: 05/19/2018] [Indexed: 12/27/2022] Open
Abstract
The causal link between Zika virus (ZIKV) infection and microcephaly has raised alarm worldwide. Microglial hyperplasia, reactive gliosis, and myelination delay have been reported in ZIKV-infected microcephalic fetuses. However, whether and how ZIKV infection affects glial cell development remain unclear. Here we show that ZIKV infection of embryos at the later stage of development causes severe microcephaly after birth. ZIKV infects the glial progenitors during brain development. Specifically, ZIKV infection disturbs the proliferation and differentiation of the oligodendrocyte progenitor cells and leads to the abolishment of oligodendrocyte development. More importantly, a single intraperitoneal injection of pregnant mice with a human monoclonal neutralizing antibody provides full protection against ZIKV infection and its associated damages in the developing fetuses. Our results not only provide more insights into the pathogenesis of ZIKV infection, but also present a new model for the preclinical test of prophylactic and therapeutic agents against ZIKV infection.
Collapse
|
11
|
Ebersole JL, Al-Sabbagh M, Gonzalez OA, Dawson DR. Ageing effects on humoral immune responses in chronic periodontitis. J Clin Periodontol 2018; 45:680-692. [PMID: 29476652 PMCID: PMC5992058 DOI: 10.1111/jcpe.12881] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/18/2018] [Indexed: 12/16/2022]
Abstract
Periodontal disease is a dominant global bacterial infection that increases with ageing. AIM This report focuses on host adaptive immune responses in periodontitis. While experimental models and humans diagnosed with periodontitis demonstrate an antigenic specificity for particular oral bacteria, we have a limited understanding of (i) how ageing affects the adaptive immune responses to these bacteria that chronically colonize the oral cavity for decades prior to disease expression and (ii) how the magnitude and specificity of the response interface with pathogens that emerge within the bacterial ecology during exacerbations of disease. MATERIALS AND METHODS Serum antibody levels to a group of pathogenic and commensal oral bacteria were measured in a population of individuals from 21 to 74 years of age, stratified based on clinical status of the periodontium, smoking and sex. RESULTS Clinical parameters were not significantly different within health, gingivitis or periodontitis groups related to age. Antibody to oral pathogens and commensals was similar in different age groups in each of the clinical categories, with no age correlation noted in the periodontitis patients. CONCLUSIONS The adaptive immune responses to oral bacteria that chronically colonize the oral cavity appear generally unaffected by age, but clearly are linked to the extent of disease.
Collapse
Affiliation(s)
- Jeffrey L Ebersole
- Department of Biomedical Sciences, School of Dental Medicine, University of Nevada Las Vegas, Las Vegas, NV, USA
- Center for Oral Health Research, College of Dentistry, University of Kentucky, Lexington, KY, USA
| | - Mohanad Al-Sabbagh
- Division of Periodontology, College of Dentistry, University of Kentucky, Lexington, KY, USA
| | - Octavio A Gonzalez
- Center for Oral Health Research, College of Dentistry, University of Kentucky, Lexington, KY, USA
- Division of Periodontology, College of Dentistry, University of Kentucky, Lexington, KY, USA
| | - Dolph R Dawson
- Center for Oral Health Research, College of Dentistry, University of Kentucky, Lexington, KY, USA
- Division of Periodontology, College of Dentistry, University of Kentucky, Lexington, KY, USA
| |
Collapse
|
12
|
Vatandoust S, Kichenadasse G, O'Callaghan M, Vincent AD, Kopsaftis T, Walsh S, Borg M, Karapetis CS, Moretti K. Localised prostate cancer in elderly men aged 80-89 years, findings from a population-based registry. BJU Int 2018; 121 Suppl 3:48-54. [PMID: 29603585 DOI: 10.1111/bju.14228] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Sina Vatandoust
- Flinders Centre for Innovation in Cancer; Flinders University; Adelaide SA Australia
- The South Australian Prostate Cancer Clinical Outcomes Collaborative; Adelaide SA Australia
- Department of Medical Oncology; Flinders Medical Centre; Bedford Park SA Australia
| | - Ganessan Kichenadasse
- Flinders Centre for Innovation in Cancer; Flinders University; Adelaide SA Australia
- The South Australian Prostate Cancer Clinical Outcomes Collaborative; Adelaide SA Australia
- Department of Medical Oncology; Flinders Medical Centre; Bedford Park SA Australia
| | - Michael O'Callaghan
- Flinders Centre for Innovation in Cancer; Flinders University; Adelaide SA Australia
- The South Australian Prostate Cancer Clinical Outcomes Collaborative; Adelaide SA Australia
- Urology Unit; Repatriation General Hospital, Daw Park; Adelaide SA Australia
- Freemasons Foundation Centre for Men's Health; Adelaide SA Australia
- University of Adelaide; Adelaide SA Australia
| | - Andrew D. Vincent
- Freemasons Foundation Centre for Men's Health; Adelaide SA Australia
- University of Adelaide; Adelaide SA Australia
| | - Tina Kopsaftis
- The South Australian Prostate Cancer Clinical Outcomes Collaborative; Adelaide SA Australia
- Urology Unit; Repatriation General Hospital, Daw Park; Adelaide SA Australia
| | - Scott Walsh
- The South Australian Prostate Cancer Clinical Outcomes Collaborative; Adelaide SA Australia
- Urology Unit; Repatriation General Hospital, Daw Park; Adelaide SA Australia
| | - Martin Borg
- The South Australian Prostate Cancer Clinical Outcomes Collaborative; Adelaide SA Australia
- University of Adelaide; Adelaide SA Australia
- Adelaide Radiotherapy Centre; Adelaide SA Australia
| | - Christos S. Karapetis
- Flinders Centre for Innovation in Cancer; Flinders University; Adelaide SA Australia
- Department of Medical Oncology; Flinders Medical Centre; Bedford Park SA Australia
| | - Kim Moretti
- Flinders Centre for Innovation in Cancer; Flinders University; Adelaide SA Australia
- The South Australian Prostate Cancer Clinical Outcomes Collaborative; Adelaide SA Australia
- Freemasons Foundation Centre for Men's Health; Adelaide SA Australia
- University of Adelaide; Adelaide SA Australia
- University of South Australia; Adelaide SA Australia
| |
Collapse
|
13
|
Ebersole JL, Graves CL, Gonzalez OA, Dawson D, Morford LA, Huja PE, Hartsfield JK, Huja SS, Pandruvada S, Wallet SM. Aging, inflammation, immunity and periodontal disease. Periodontol 2000 2018; 72:54-75. [PMID: 27501491 DOI: 10.1111/prd.12135] [Citation(s) in RCA: 145] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/30/2015] [Indexed: 12/29/2022]
Abstract
The increased prevalence and severity of periodontal disease have long been associated with aging, such that this oral condition affects the majority of the adult population over 50 years of age. Although the immune system is a critical component for maintaining health, aging can be characterized by quantitative and qualitative modifications of the immune system. This process, termed 'immunosenescence', is a progressive modification of the immune system that leads to greater susceptibility to infections, neoplasia and autoimmunity, presumably reflecting the prolonged antigenic stimulation and/or stress responses that occur across the lifespan. Interestingly, the global reduction in the host capability to respond effectively to these challenges is coupled with a progressive increase in the general proinflammatory status, termed 'inflammaging'. Consistent with the definition of immunosenescence, it has been suggested that the cumulative effect of prolonged exposure of the periodontium to microbial challenge is, at least in part, a contributor to the effects of aging on these tissues. Thus, it has also been hypothesized that alterations in the function of resident immune and nonimmune cells of the periodontium contribute to the expression of inflammaging in periodontal disease. Although the majority of aging research has focused on the adaptive immune response, it is becoming increasingly clear that the innate immune compartment is also highly affected by aging. Thus, the phenomenon of immunosenescence and inflammaging, expressed as age-associated changes within the periodontium, needs to be more fully understood in this era of precision and personalized medicine and dentistry.
Collapse
|
14
|
|
15
|
Ebersole JL, Kirakodu SS, Novak MJ, Orraca L, Martinez JG, Cunningham LL, Thomas MV, Stromberg A, Pandruvada SN, Gonzalez OA. Transcriptome Analysis of B Cell Immune Functions in Periodontitis: Mucosal Tissue Responses to the Oral Microbiome in Aging. Front Immunol 2016; 7:272. [PMID: 27486459 PMCID: PMC4947588 DOI: 10.3389/fimmu.2016.00272] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 06/28/2016] [Indexed: 12/18/2022] Open
Abstract
Evidence has shown activation of T and B cells in gingival tissues in experimental models and in humans diagnosed with periodontitis. The results of this adaptive immune response are noted both locally and systemically with antigenic specificity for an array of oral bacteria, including periodontopathic species, e.g., Porphyromonas gingivalis and Aggregatibacter actinomycetemcomitans. It has been recognized through epidemiological studies and clinical observations that the prevalence of periodontitis increases with age. This report describes our studies evaluating gingival tissue transcriptomes in humans and specifically exploiting the use of a non-human primate model of naturally occurring periodontitis to delineate gingival mucosal tissue gene expression profiles focusing on cells/genes critical for the development of humoral adaptive immune responses. Patterns of B cell and plasmacyte genes were altered in aging healthy gingival tissues. Substantial increases in a large number of genes reflecting antigen-dependent activation, B cell activation, B cell proliferation, and B cell differentiation/maturation were observed in periodontitis in adults and aged animals. Finally, evaluation of the relationship of these gene expression patterns with those of various tissue destructive molecules (MMP2, MMP9, CTSK, TNFα, and RANKL) showed a greater frequency of positive correlations in healthy tissues versus periodontitis tissues, with only MMP9 correlations similar between the two tissue types. These results are consistent with B cell response activities in healthy tissues potentially contributing to muting the effects of the tissue destructive biomolecules, whereas with periodontitis this relationship is adversely affected and enabling a progression of tissue destructive events.
Collapse
Affiliation(s)
- Jeffrey L Ebersole
- Center for Oral Health Research, College of Dentistry, University of Kentucky, Lexington, KY, USA; Division of Periodontics, College of Dentistry, University of Kentucky, Lexington, KY, USA
| | - Sreenatha S Kirakodu
- Center for Oral Health Research, College of Dentistry, University of Kentucky , Lexington, KY , USA
| | - M John Novak
- Center for Oral Health Research, College of Dentistry, University of Kentucky , Lexington, KY , USA
| | - Luis Orraca
- Caribbean Primate Research Center , Sabana Seca, PR , USA
| | - Janis Gonzalez Martinez
- Caribbean Primate Research Center, Sabana Seca, PR, USA; Division of Oral and Maxillofacial Surgery, College of Dentistry, University of Kentucky, Lexington, KY, USA
| | - Larry L Cunningham
- Division of Oral and Maxillofacial Surgery, College of Dentistry, University of Kentucky , Lexington, KY , USA
| | - Mark V Thomas
- Division of Periodontics, College of Dentistry, University of Kentucky , Lexington, KY , USA
| | - Arnold Stromberg
- Department of Statistics, College of Arts and Sciences, University of Kentucky , Lexington, KY , USA
| | - Subramanya N Pandruvada
- Division of Orthodontics, College of Dentistry, University of Kentucky , Lexington, KY , USA
| | - Octavio A Gonzalez
- Center for Oral Health Research, College of Dentistry, University of Kentucky , Lexington, KY , USA
| |
Collapse
|
16
|
Taverna G, Cote RJ, Grizzi F. Editorial: Prostate Cancer: What We Know and What We Would Like to Know. Front Oncol 2015; 5:114. [PMID: 26052506 PMCID: PMC4440902 DOI: 10.3389/fonc.2015.00114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 05/05/2015] [Indexed: 11/13/2022] Open
Affiliation(s)
- Gianluigi Taverna
- Department of Urology, Humanitas Clinical and Research Center, Milan, Italy
| | - Richard J. Cote
- Department of Pathology, Dr. John T. Macdonald Foundation Biomedical Nanotechnology Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Fabio Grizzi
- Department of Inflammation and Immunology, Humanitas Clinical and Research Center, Milan, Italy
| |
Collapse
|
17
|
Inflammation and prostate cancer: friends or foe? Inflamm Res 2015; 64:275-86. [PMID: 25788425 DOI: 10.1007/s00011-015-0812-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Revised: 03/02/2015] [Accepted: 03/05/2015] [Indexed: 01/28/2023] Open
Abstract
INTRODUCTION Prostate cancer is the most common non-cutaneous malignancy diagnosed in men. Moving from histological observations since a long time, it has been recognized that innate and adaptive immunity actively participates in the pathogenesis, surveillance, and progression of prostate cancer. MATERIALS AND METHODS A PubMed and Web of Science databases search was performed for studies providing evidence on the roles of the innate and adaptive immunity during the development and progression of prostate cancer. CONCLUSIONS There are growing evidences that chronic inflammation is involved in the regulation of cellular events in prostate carcinogenesis, including disruption of the immune response and regulation of the tumor microenvironment. This review discusses the role played by the innate and adaptive immune system in the local progression of prostate cancer, and the prognostic information that we can currently understand and exploit.
Collapse
|