1
|
Lizano AM, Smolina I, Choquet M, Kopp M, Hoarau G. Insights into the species evolution of Calanus copepods in the northern seas revealed by de novo transcriptome sequencing. Ecol Evol 2022; 12:e8606. [PMID: 35228861 PMCID: PMC8861592 DOI: 10.1002/ece3.8606] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 01/14/2022] [Accepted: 01/19/2022] [Indexed: 01/07/2023] Open
Abstract
Copepods of the zooplankton genus Calanus play a key role in marine ecosystems in the northern seas. Although being among the most studied organisms on Earth, due to their ecological importance, genomic resources for Calanus spp. remain scarce, mostly due to their large genome size (from 6 to 12 Gbps). As an alternative to whole-genome sequencing in Calanus spp., we sequenced and de novo assembled transcriptomes of five Calanus species: Calanus glacialis, C. hyperboreus, C. marshallae, C. pacificus, and C. helgolandicus. Functional assignment of protein families based on clusters of orthologous genes (COG) and gene ontology (GO) annotations showed analogous patterns of protein functions across species. Phylogenetic analyses using maximum likelihood (ML) of 191 protein-coding genes mined from RNA-seq data fully resolved evolutionary relationships among seven Calanus species investigated (five species sequenced for this study and two species with published datasets), with gene and site concordance factors showing that 109 out of 191 protein-coding genes support a separation between three groups: the C. finmarchicus group (including C. finmarchicus, C. glacialis, and C. marshallae), the C. helgolandicus group (including C. helgolandicus, C. sinicus, and C. pacificus) and the monophyletic C. hyperboreus group. The tree topology obtained in ML analyses was similar to a previously proposed phylogeny based on morphological criteria and cleared certain ambiguities from past studies on evolutionary relationships among Calanus species.
Collapse
Affiliation(s)
| | - Irina Smolina
- Faculty of Biosciences and AquacultureNord UniversityBodøNorway
| | - Marvin Choquet
- Faculty of Biosciences and AquacultureNord UniversityBodøNorway
- Department of Medical Biochemistry and MicrobiologyUppsala UniversityUppsalaSweden
| | - Martina Kopp
- Faculty of Biosciences and AquacultureNord UniversityBodøNorway
| | - Galice Hoarau
- Faculty of Biosciences and AquacultureNord UniversityBodøNorway
| |
Collapse
|
2
|
Asai S, Sanges R, Lauritano C, Lindeque PK, Esposito F, Ianora A, Carotenuto Y. De Novo Transcriptome Assembly and Gene Expression Profiling of the Copepod Calanus helgolandicus Feeding on the PUA-Producing Diatom Skeletonema marinoi. Mar Drugs 2020; 18:md18080392. [PMID: 32727111 PMCID: PMC7460014 DOI: 10.3390/md18080392] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 07/21/2020] [Accepted: 07/23/2020] [Indexed: 12/13/2022] Open
Abstract
Diatoms are the dominant component of the marine phytoplankton. Several diatoms produce secondary metabolites, namely oxylipins, with teratogenic effects on their main predators, crustacean copepods. Our study reports the de novo assembled transcriptome of the calanoid copepod Calanus helgolandicus feeding on the oxylipin-producing diatom Skeletonema marinoi. Differential expression analysis was also performed between copepod females exposed to the diatom and the control flagellate Prorocentrum minimum, which does not produce oxylipins. Our results showed that transcripts involved in carbohydrate, amino acid, folate and methionine metabolism, embryogenesis, and response to stimulus were differentially expressed in the two conditions. Expression of 27 selected genes belonging to these functional categories was also analyzed by RT-qPCR in C. helgolandicus females exposed to a mixed solution of the oxylipins heptadienal and octadienal at the concentration of 10 µM, 15 µM, and 20 µM. The results confirmed differential expression analysis, with up-regulation of genes involved in stress response and down-regulation of genes associated with folate and methionine metabolism, embryogenesis, and signaling. Overall, we offer new insights on the mechanism of action of oxylipins on maternally-induced embryo abnormality. Our results may also help identify biomarker genes associated with diatom-related reproductive failure in the natural copepod population at sea.
Collapse
Affiliation(s)
- Sneha Asai
- Integrative Marine Ecology Department, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy; (S.A.); (R.S.)
| | - Remo Sanges
- Integrative Marine Ecology Department, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy; (S.A.); (R.S.)
- Area of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati (SISSA), 34136 Trieste, Italy
| | - Chiara Lauritano
- Marine Biotechnology Department, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy; (C.L.); (F.E.); (A.I.)
| | | | - Francesco Esposito
- Marine Biotechnology Department, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy; (C.L.); (F.E.); (A.I.)
| | - Adrianna Ianora
- Marine Biotechnology Department, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy; (C.L.); (F.E.); (A.I.)
| | - Ylenia Carotenuto
- Integrative Marine Ecology Department, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy; (S.A.); (R.S.)
- Correspondence:
| |
Collapse
|
3
|
Zhao Y, Feng Y, Chen L, Niu Z, Liu S. Genome-centered omics insight into the competition and niche differentiation of Ca. Jettenia and Ca. Brocadia affiliated to anammox bacteria. Appl Microbiol Biotechnol 2019; 103:8191-8202. [DOI: 10.1007/s00253-019-10040-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 06/21/2019] [Accepted: 07/23/2019] [Indexed: 10/26/2022]
|
4
|
Zhao H, Yan B, Mo X, Li P, Li B, Li Q, Li N, Mo S, Ou Q, Shen P, Wu B, Jiang C. Prevalence and proliferation of antibiotic resistance genes in the subtropical mangrove wetland ecosystem of South China Sea. Microbiologyopen 2019; 8:e871. [PMID: 31251470 PMCID: PMC6855136 DOI: 10.1002/mbo3.871] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 04/28/2019] [Accepted: 04/30/2019] [Indexed: 12/14/2022] Open
Abstract
The emerging pollutants antibiotic resistance genes (ARGs) are prevalent in aquatic environments such as estuary. Coastal mangrove ecosystems always serve as natural wetlands for receiving sewage which always carry ARGs. Currently, the research considering ARG distribution in mangrove ecosystems gains more interest. In this work, we investigated the diversity of ARGs in an urban estuary containing mangrove and nonmangrove areas of the South China Sea. A total of 163 ARGs that classified into 22 resistance types and six resistance mechanisms were found. ARG abundance of the samples in the estuary is between 0.144 and 0.203. This is within the general range of Chinese estuaries. The difference analysis showed that abundances of total ARGs, six most abundant ARGs (mtrA, rpoB, rpoC, rpsL, ef‐Tu, and parY), the most abundant resistance types (elfamycin, multidrug, and peptide), and the most abundant resistance mechanism (target alteration) were significantly lower in mangrove sediment than that in nonmangrove sediment (p < 0.05). Network and partial redundancy analysis showed that sediment properties and mobile genetic elements were the most influential factors impacting ARG distribution rather than microbial community. The two factors collectively explain 51.22% of the differences of ARG distribution. Our study indicated that mangrove sediments have the capacity to remove ARGs. This work provides a research paradigm for analysis of ARG prevalence and proliferation in the subtropical marine coastal mangrove ecosystem.
Collapse
Affiliation(s)
- Huaxian Zhao
- Guangxi Key Lab of Mangrove Conservation and Utilization, Guangxi Mangrove Research Center, Guangxi Academy of Sciences, Beihai, China.,Guangxi Key Laboratory of Marine Natural Products and Combinatorial Biosynthesis Chemistry, Guangxi Academy of Sciences, Nanning, China.,State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Science and Technology, Guangxi University, Nanning, China
| | - Bing Yan
- Guangxi Key Lab of Mangrove Conservation and Utilization, Guangxi Mangrove Research Center, Guangxi Academy of Sciences, Beihai, China.,Guangxi Key Laboratory of Marine Natural Products and Combinatorial Biosynthesis Chemistry, Guangxi Academy of Sciences, Nanning, China
| | - Xueyan Mo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Science and Technology, Guangxi University, Nanning, China
| | - Pu Li
- PFOMIC Bioinformatics Company, Nanning, China
| | - Baoqin Li
- Guangdong Key Laboratory of Integrated Agro-Environmental Pollution Control and Management, Guangdong Institute of Eco-Environmental Science & Technology, Guangzhou, China
| | - Quanwen Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Science and Technology, Guangxi University, Nanning, China
| | - Nan Li
- Key Laboratory of Environment Change and Resources Use in Beibu Gulf, Ministry of Education (Nanning Normal University), Nanning, China
| | - Shuming Mo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Science and Technology, Guangxi University, Nanning, China
| | - Qian Ou
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Science and Technology, Guangxi University, Nanning, China
| | - Peihong Shen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Science and Technology, Guangxi University, Nanning, China
| | - Bo Wu
- Department of chemical and biological engineering, Guangxi Normal University for Nationalities, Chongzuo, China
| | - Chengjian Jiang
- Guangxi Key Lab of Mangrove Conservation and Utilization, Guangxi Mangrove Research Center, Guangxi Academy of Sciences, Beihai, China.,Guangxi Key Laboratory of Marine Natural Products and Combinatorial Biosynthesis Chemistry, Guangxi Academy of Sciences, Nanning, China.,State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Science and Technology, Guangxi University, Nanning, China
| |
Collapse
|
5
|
Roncalli V, Christie AE, Sommer SA, Cieslak MC, Hartline DK, Lenz PH. A deep transcriptomic resource for the copepod crustacean Labidocera madurae: A potential indicator species for assessing near shore ecosystem health. PLoS One 2017; 12:e0186794. [PMID: 29065152 PMCID: PMC5655441 DOI: 10.1371/journal.pone.0186794] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2017] [Accepted: 10/07/2017] [Indexed: 11/19/2022] Open
Abstract
Coral reef ecosystems of many sub-tropical and tropical marine coastal environments have suffered significant degradation from anthropogenic sources. Research to inform management strategies that mitigate stressors and promote a healthy ecosystem has focused on the ecology and physiology of coral reefs and associated organisms. Few studies focus on the surrounding pelagic communities, which are equally important to ecosystem function. Zooplankton, often dominated by small crustaceans such as copepods, is an important food source for invertebrates and fishes, especially larval fishes. The reef-associated zooplankton includes a sub-neustonic copepod family that could serve as an indicator species for the community. Here, we describe the generation of a de novo transcriptome for one such copepod, Labidocera madurae, a pontellid from an intensively-studied coral reef ecosystem, Kāne'ohe Bay, Oahu, Hawai'i. The transcriptome was assembled using high-throughput sequence data obtained from whole organisms. It comprised 211,002 unique transcripts, including 72,391 with coding regions. It was assessed for quality and completeness using multiple workflows. Bench-marking-universal-single-copy-orthologs (BUSCO) analysis identified transcripts for 88% of expected eukaryotic core proteins. Targeted gene-discovery analyses included searches for transcripts coding full-length "giant" proteins (>4,000 amino acids), proteins and splice variants of voltage-gated sodium channels, and proteins involved in the circadian signaling pathway. Four different reference transcriptomes were generated and compared for the detection of differential gene expression between copepodites and adult females; 6,229 genes were consistently identified as differentially expressed between the two regardless of reference. Automated bioinformatics analyses and targeted manual gene curation suggest that the de novo assembled L. madurae transcriptome is of high quality and completeness. This transcriptome provides a new resource for assessing the global physiological status of a planktonic species inhabiting a coral reef ecosystem that is subjected to multiple anthropogenic stressors. The workflows provide a template for generating and assessing transcriptomes in other non-model species.
Collapse
Affiliation(s)
- Vittoria Roncalli
- Békésy Laboratory of Neurobiology, University of Hawai‘i at Mānoa, Honolulu, HI, United States of America
| | - Andrew E. Christie
- Békésy Laboratory of Neurobiology, University of Hawai‘i at Mānoa, Honolulu, HI, United States of America
| | - Stephanie A. Sommer
- Békésy Laboratory of Neurobiology, University of Hawai‘i at Mānoa, Honolulu, HI, United States of America
| | - Matthew C. Cieslak
- Békésy Laboratory of Neurobiology, University of Hawai‘i at Mānoa, Honolulu, HI, United States of America
| | - Daniel K. Hartline
- Békésy Laboratory of Neurobiology, University of Hawai‘i at Mānoa, Honolulu, HI, United States of America
| | - Petra H. Lenz
- Békésy Laboratory of Neurobiology, University of Hawai‘i at Mānoa, Honolulu, HI, United States of America
| |
Collapse
|
6
|
Tollefsen KE, Song Y, Høgåsen T, Øverjordet IB, Altin D, Hansen BH. Mortality and transcriptional effects of inorganic mercury in the marine copepod Calanus finmarchicus. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2017; 80:845-861. [PMID: 28841366 DOI: 10.1080/15287394.2017.1352198] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Inorganic mercury (Hg) is highly toxic to organisms including crustaceans and displays multiple toxic modes of action (MoA). The main aim of this investigation was to assess the acute and sublethal toxicity mediated by mercury chloride (HgCl2) in the marine copepod Calanus finmarchicus. A combination of short-term static studies to determine acute toxicity and a transcriptional investigation to characterize the sublethal MoA of HgCl2 were conducted with an in-house continuous culture of C. finmarchicus. Transcriptional changes were determined by a custom 6.6 k C. finmarchicus Agilent oligonucleotide microarray and quantitative RT-PCR analysis. Data demonstrate that HgCl2 produced a concentration- and time-dependent reduction in survival (NOEC48 h = 6.9 μg/L [Hg2+] and LC50 of 279, 73, 48, and 34 µg/L [Hg2+] after 24, 48, 72, and 96 h, respectively) and that exposure to sublethal concentrations of HgCl2 (5 μg/L [Hg2+]) induced differential expression of 98 features (probes) on the microarray. Gene ontology (GO) and toxicological pathway analyses suggested that the main MOA were (1) uncoupling of mitochondrial oxidative phosphorylation (OXPHOS) and ATP production, (2) oxidative stress and macromolecular damage, (3) inactivation of cellular enzymes, (4) induction of cellular apoptosis and autophagocytosis, (5) over-excitation of glutamate receptors (neurotoxicity), (6) disruption of calcium homeostasis and signaling, and (7) modulation of nuclear receptor activity involved in vitamin D receptor signaling. Quantitative RT-PCR analysis verified that oligoarray performed reliably in terms of specificity and response, thus demonstrating that Hg2+ exerts multiple potential MoA in C. finmarchicus.
Collapse
Affiliation(s)
- Knut Erik Tollefsen
- a Norwegian Institute for Water Research (NIVA) , Oslo , Norway
- b Faculty of Environmental Sciences and Natural Resource Management , Norwegian University of Life Sciences (NMBU) , Ås , Norway
- c Centre for Environmental Radioactivity , Norwegian University of Life Sciences (NMBU) , Ås , Norway
| | - You Song
- a Norwegian Institute for Water Research (NIVA) , Oslo , Norway
- c Centre for Environmental Radioactivity , Norwegian University of Life Sciences (NMBU) , Ås , Norway
| | - Tore Høgåsen
- a Norwegian Institute for Water Research (NIVA) , Oslo , Norway
| | - Ida Beathe Øverjordet
- d Department of Biology , Norwegian University of Science and Technology (NTNU) , Trondheim , Norway
- e SINTEF Ocean AS, Environmental Technology , Trondheim , Norway
| | | | | |
Collapse
|
7
|
Jaramillo ML, Guzman F, Paese CLB, Margis R, Nazari EM, Ammar D, Müller YMR. Exploring developmental gene toolkit and associated pathways in a potential new model crustacean using transcriptomic analysis. Dev Genes Evol 2016; 226:325-37. [PMID: 27278761 DOI: 10.1007/s00427-016-0551-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 05/19/2016] [Indexed: 11/24/2022]
Abstract
The crustaceans are one of the largest, most diverse, and most successful groups of invertebrates. The diversity among the crustaceans is also reflected in embryonic development models. However, the molecular genetics that regulates embryonic development is not known in those crustaceans that have a short germ-band development with superficial cleavage, such as Macrobrachium olfersi. This species is a freshwater decapod and has great potential to become a model for developmental biology, as well as for evolutionary and environmental studies. To obtain sequence data of M. olfersi from an embryonic developmental perspective, we performed de novo assembly and annotation of the embryonic transcriptome. Using a pooling strategy of total RNA, paired-end Illumina sequencing, and assembly with multiple k-mers, a total of 25,636,097 pair reads were generated. In total, 99,751 unigenes were identified, and 20,893 of these returned a Blastx hit. KEGG pathway analysis mapped a total of 6866 unigenes related to 129 metabolic pathways. In general, 21,845 unigenes were assigned to gene ontology (GO) categories: molecular function (19,604), cellular components (10,254), and biological processes (13,841). Of these, 2142 unigenes were assigned to the developmental process category. More specifically, a total of 35 homologs of embryonic development toolkit genes were identified, which included maternal effect (one gene), gap (six), pair-rule (six), segment polarity (seven), Hox (four), Wnt (eight), and dorsoventral patterning genes (three). In addition, genes of developmental pathways were found, including TGF-β, Wnt, Notch, MAPK, Hedgehog, Jak-STAT, VEGF, and ecdysteroid-inducible nuclear receptors. RT-PCR analysis of eight genes related to embryonic development from gastrulation to late morphogenesis/organogenesis confirmed the applicability of the transcriptome analysis.
Collapse
Affiliation(s)
- Michael L Jaramillo
- Departamento de Biologia Celular, Embriologia e Genética, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Frank Guzman
- PPGGBM, Departamento de Genética, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Christian L B Paese
- Departamento de Biologia Celular, Embriologia e Genética, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Rogerio Margis
- Departamento de Biofisica, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Evelise M Nazari
- Departamento de Biologia Celular, Embriologia e Genética, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Dib Ammar
- Departamento de Biologia Celular, Embriologia e Genética, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Yara Maria Rauh Müller
- Departamento de Biologia Celular, Embriologia e Genética, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil.
| |
Collapse
|
8
|
Zhang J, Li H, Qin Y, Ye S, Liu M. Identification of functional genes involved in Cd(2+) response of Chinese surf clam (Mactra chinensis) through transcriptome sequencing. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2016; 41:113-120. [PMID: 26674114 DOI: 10.1016/j.etap.2015.11.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 10/30/2015] [Accepted: 11/04/2015] [Indexed: 06/05/2023]
Abstract
The Chinese surf clam Mactra chinensis is an economically important bivalve species in the coastal waters of Liaoning and Shandong Province, China. In this study, we carried out transcriptome sequencing to develop molecular resources for M. chinensis and conducted an acute test of Cd(2+) stimulation through quantitative real-time PCR (qRT-PCR) to analyze the relative expression of six functional genes. A total of 100,839 transcripts and 56,712 unigenes were obtained from 39.9 million filtered reads and 21,305 unigenes were annotated by hitting against NCBI database. According to the results of qRT-PCR, heat shock protein 22 (Hsp22) and cytochrome P450 (CYP450(2C31)) were inhibited in the low concentration, and induced in the high concentration of Cd(2+); thioredoxin peroxidase (TPx-A) was at normal level in low concentration, but induced in high concentration of Cd(2+); glutathione peroxidase A (GPA), glutathione peroxidase 1 (GPA1) and Mn superoxide dismutase gene (MnSOD) were down-regulated when exposed to any treatment groups. Expression levels of the six functional genes following Cd(2+) exposure indicated that these genes were linked to environmental stress. Moreover, the present work enriched the molecule genetic data of M. chinensis.
Collapse
Affiliation(s)
- Jingjing Zhang
- National Marine Environmental Monitoring Center, Dalian 116023, China; Dalian Ocean University, Dalian 116023, China
| | - Hongjun Li
- National Marine Environmental Monitoring Center, Dalian 116023, China.
| | - Yanjie Qin
- Dalian Ocean University, Dalian 116023, China
| | - Sheng Ye
- Dalian Ocean University, Dalian 116023, China
| | - Min Liu
- Dalian Ocean University, Dalian 116023, China
| |
Collapse
|
9
|
Roncalli V, Cieslak MC, Passamaneck Y, Christie AE, Lenz PH. Glutathione S-Transferase (GST) Gene Diversity in the Crustacean Calanus finmarchicus--Contributors to Cellular Detoxification. PLoS One 2015; 10:e0123322. [PMID: 25945801 PMCID: PMC4422733 DOI: 10.1371/journal.pone.0123322] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 02/23/2015] [Indexed: 11/19/2022] Open
Abstract
Detoxification is a fundamental cellular stress defense mechanism, which allows an organism to survive or even thrive in the presence of environmental toxins and/or pollutants. The glutathione S-transferase (GST) superfamily is a set of enzymes involved in the detoxification process. This highly diverse protein superfamily is characterized by multiple gene duplications, with over 40 GST genes reported in some insects. However, less is known about the GST superfamily in marine organisms, including crustaceans. The availability of two de novo transcriptomes for the copepod, Calanus finmarchicus, provided an opportunity for an in depth study of the GST superfamily in a marine crustacean. The transcriptomes were searched for putative GST-encoding transcripts using known GST proteins from three arthropods as queries. The identified transcripts were then translated into proteins, analyzed for structural domains, and annotated using reciprocal BLAST analysis. Mining the two transcriptomes yielded a total of 41 predicted GST proteins belonging to the cytosolic, mitochondrial or microsomal classes. Phylogenetic analysis of the cytosolic GSTs validated their annotation into six different subclasses. The predicted proteins are likely to represent the products of distinct genes, suggesting that the diversity of GSTs in C. finmarchicus exceeds or rivals that described for insects. Analysis of relative gene expression in different developmental stages indicated low levels of GST expression in embryos, and relatively high expression in late copepodites and adult females for several cytosolic GSTs. A diverse diet and complex life history are factors that might be driving the multiplicity of GSTs in C. finmarchicus, as this copepod is commonly exposed to a variety of natural toxins. Hence, diversity in detoxification pathway proteins may well be key to their survival.
Collapse
Affiliation(s)
- Vittoria Roncalli
- Békésy Laboratory of Neurobiology, Pacific Biosciences Research Center, University of Hawaii at Manoa, Honolulu, Hawaii, United States of America
| | - Matthew C. Cieslak
- Békésy Laboratory of Neurobiology, Pacific Biosciences Research Center, University of Hawaii at Manoa, Honolulu, Hawaii, United States of America
| | - Yale Passamaneck
- Kewalo Marine Laboratory, Pacific Biosciences Research Center, University of Hawaii at Manoa, Honolulu, Hawaii, United States of America
| | - Andrew E. Christie
- Békésy Laboratory of Neurobiology, Pacific Biosciences Research Center, University of Hawaii at Manoa, Honolulu, Hawaii, United States of America
| | - Petra H. Lenz
- Békésy Laboratory of Neurobiology, Pacific Biosciences Research Center, University of Hawaii at Manoa, Honolulu, Hawaii, United States of America
| |
Collapse
|
10
|
Lauritano C, Carotenuto Y, Vitiello V, Buttino I, Romano G, Hwang JS, Ianora A. Effects of the oxylipin-producing diatom Skeletonema marinoi on gene expression levels of the calanoid copepod Calanus sinicus. Mar Genomics 2015; 24 Pt 1:89-94. [PMID: 25666254 DOI: 10.1016/j.margen.2015.01.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 01/28/2015] [Accepted: 01/28/2015] [Indexed: 02/08/2023]
Abstract
Diatoms are eukaryotic unicellular plants that constitute one of the major components of marine phytoplankton, comprising up to 40% of annual productivity at sea and representing 25% of global carbon-fixation. Diatoms have traditionally been considered a preferential food for zooplankton grazers such as copepods, but, in the last two decades, this beneficial role has been challenged after the discovery that many species of diatoms produce toxic metabolites, collectively termed oxylipins, that induce reproductive failure in zooplankton grazers. Diatoms are the dominant natural diet of Calanus sinicus, a cold-temperate calanoid copepod that supports secondary production of important fisheries in the shelf ecosystems of the Northwest Pacific Ocean, Yellow Sea, Sea of Japan and South China Sea. In this study, the effect of the oxylipin-producing diatom Skeletonema marinoi on C. sinicus has been evaluated by analyzing expression level changes of genes involved in defense and detoxification systems. Results show that C. sinicus is more resistant to a diet of this diatom species in terms of gene expression patterns, compared to the congeneric species Calanus helgolandicus which is an important constituent of the temperate waters of the Atlantic Ocean and northern Mediterranean Sea. These findings contribute to the better understanding of genetic and/or phenotypic flexibility of copepod species and their capabilities to cope with stress by identifying molecular markers (such as stress and detoxification genes) as biosensors for environmental perturbations (e.g. toxins and contaminants) affecting marine copepods.
Collapse
Affiliation(s)
- Chiara Lauritano
- Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy
| | | | - Valentina Vitiello
- Italian Institute for Environmental Protection and Research, Piazzale dei marmi 12, 57123 Livorno, Italy
| | - Isabella Buttino
- Italian Institute for Environmental Protection and Research, Piazzale dei marmi 12, 57123 Livorno, Italy
| | - Giovanna Romano
- Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy
| | - Jiang-Shiou Hwang
- Institute of Marine Biology, National Taiwan Ocean University, 2 Pei-Ning Road, Keelung 20224, Taiwan; Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Adrianna Ianora
- Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy.
| |
Collapse
|