1
|
Shi T, Gao Z, Zhang Y, Rausher MD, Chen J. A Strategy of Assessing Gene Copy Number Differentiation Between Populations Using Ultra-Fast De Novo Assembly of Next-Generation Sequencing Data. Mol Ecol Resour 2025:e14080. [PMID: 39925235 DOI: 10.1111/1755-0998.14080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 01/10/2025] [Accepted: 01/27/2025] [Indexed: 02/11/2025]
Abstract
Gene duplication and loss play pivotal roles in the evolutionary dynamics of genomes, contributing to species phenotypic diversity and adaptation. However, detecting copy number variations (CNVs) in homoploid populations and newly-diverged species using short reads from next-generation sequencing (NGS) with traditional methods can often be challenging due to uneven read coverage caused by variations in GC content and the presence of repetitive sequences. To address these challenges, we developed a novel pipeline, ST4gCNV, which leverages ultra-fast de novo assemblies of NGS data to detect gene-specific CNVs between populations. The pipeline effectively reduces the variance of read coverage due to technical factors such as GC bias, providing a reliable CNV detection with a minimum sequencing depth of 10. We successfully apply ST4gCNV to the resequencing analysis of homoploid species Nelumbo nucifera and Nelumbo lutea (lotus). We reveal significant CNV-driven differentiation between these species, particularly in genes related to petal colour diversity such as those involved in the anthocyanin pathway. By highlighting the extensive gene duplication and loss events in Nelumbo, our study demonstrates the utility of ST4gCNV in population genomics and underscores its potential of integrating genomic CNV analysis with traditional SNP-based resequencing analysis.
Collapse
Affiliation(s)
- Tao Shi
- State Key Laboratory of Plant Diversity and Specialty Crops, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- Hubei Key Laboratory of Wetland Evolution & Ecological Restoration, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
| | - Zhiyan Gao
- State Key Laboratory of Plant Diversity and Specialty Crops, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- Hubei Key Laboratory of Wetland Evolution & Ecological Restoration, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
| | - Yue Zhang
- State Key Laboratory of Plant Diversity and Specialty Crops, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- Hubei Key Laboratory of Wetland Evolution & Ecological Restoration, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- Aquatic Plant Research Center, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
| | - Mark D Rausher
- Department of Biology, Duke University, Durham, North Carolina, USA
| | - Jinming Chen
- State Key Laboratory of Plant Diversity and Specialty Crops, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- Hubei Key Laboratory of Wetland Evolution & Ecological Restoration, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- Aquatic Plant Research Center, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
2
|
Mielczarek M, Frąszczak M, Zielak-Steciwko AE, Nowak B, Hofman B, Pierścińska J, Kruszyński W, Szyda J. An effect of large-scale deletions and duplications on transcript expression. Funct Integr Genomics 2022; 23:19. [PMID: 36564645 PMCID: PMC9789009 DOI: 10.1007/s10142-022-00946-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 12/14/2022] [Accepted: 12/15/2022] [Indexed: 12/25/2022]
Abstract
Since copy number variants (CNVs) have been recognized as an important source of genetic and transcriptomic variation, we aimed to characterize the impact of CNVs located within coding, intergenic, upstream, and downstream gene regions on the expression of transcripts. Regions in which deletions occurred most often were introns, while duplications in coding regions. The transcript expression was lower for deleted coding (P = 0.008) and intronic regions (P = 1.355 × 10-10), but it was not changed in the case of upstream and downstream gene regions (P = 0.085). Moreover, the expression was decreased if duplication occurred in the coding region (P = 8.318 × 10-5). Furthermore, a negative correlation (r = - 0.27) between transcript length and its expression was observed. The correlation between the percent of deleted/duplicated transcript and transcript expression level was not significant for all concerned genomic regions in five out of six animals. The exceptions were deletions in coding regions (P = 0.004) and duplications in introns (P = 0.01) in one individual. CNVs in coding (deletions, duplications) and intronic (deletions) regions are important modulators of transcripts by reducing their expression level. We hypothesize that deletions imply severe consequences by interrupting genes. The negative correlation between the size of the transcript and its expression level found in this study is consistent with the hypothesis that selection favours shorter introns and a moderate number of exons in highly expressed genes. This may explain the transcript expression reduction by duplications. We did not find the correlation between the size of deletions/duplications and transcript expression level suggesting that expression is modulated by CNVs regardless of their size.
Collapse
Affiliation(s)
- Magda Mielczarek
- Wroclaw University of Environmental and Life Sciences, Kozuchowska 7, 51-631, Wroclaw, Poland.
| | - Magdalena Frąszczak
- Wroclaw University of Environmental and Life Sciences, Kozuchowska 7, 51-631, Wroclaw, Poland
| | - Anna E Zielak-Steciwko
- Wroclaw University of Environmental and Life Sciences, Kozuchowska 7, 51-631, Wroclaw, Poland
| | - Błażej Nowak
- Wroclaw University of Environmental and Life Sciences, Kozuchowska 7, 51-631, Wroclaw, Poland
| | - Bartłomiej Hofman
- Wroclaw University of Environmental and Life Sciences, Kozuchowska 7, 51-631, Wroclaw, Poland
| | - Jagoda Pierścińska
- Wroclaw University of Environmental and Life Sciences, Kozuchowska 7, 51-631, Wroclaw, Poland
| | - Wojciech Kruszyński
- Wroclaw University of Environmental and Life Sciences, Kozuchowska 7, 51-631, Wroclaw, Poland
| | - Joanna Szyda
- Wroclaw University of Environmental and Life Sciences, Kozuchowska 7, 51-631, Wroclaw, Poland
| |
Collapse
|
3
|
Begum T, Serrano‐Serrano ML, Robinson‐Rechavi M. Performance of a phylogenetic independent contrast method and an improved pairwise comparison under different scenarios of trait evolution after speciation and duplication. Methods Ecol Evol 2021. [DOI: 10.1111/2041-210x.13680] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Tina Begum
- Department of Ecology and Evolution University of Lausanne Lausanne Switzerland
- SIB Swiss Institute of Bioinformatics Lausanne Switzerland
| | - Martha Liliana Serrano‐Serrano
- Department of Ecology and Evolution University of Lausanne Lausanne Switzerland
- SIB Swiss Institute of Bioinformatics Lausanne Switzerland
| | - Marc Robinson‐Rechavi
- Department of Ecology and Evolution University of Lausanne Lausanne Switzerland
- SIB Swiss Institute of Bioinformatics Lausanne Switzerland
| |
Collapse
|
4
|
Belinky F, Ganguly I, Poliakov E, Yurchenko V, Rogozin IB. Analysis of Stop Codons within Prokaryotic Protein-Coding Genes Suggests Frequent Readthrough Events. Int J Mol Sci 2021; 22:ijms22041876. [PMID: 33672790 PMCID: PMC7918605 DOI: 10.3390/ijms22041876] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 02/05/2021] [Accepted: 02/09/2021] [Indexed: 02/07/2023] Open
Abstract
Nonsense mutations turn a coding (sense) codon into an in-frame stop codon that is assumed to result in a truncated protein product. Thus, nonsense substitutions are the hallmark of pseudogenes and are used to identify them. Here we show that in-frame stop codons within bacterial protein-coding genes are widespread. Their evolutionary conservation suggests that many of them are not pseudogenes, since they maintain dN/dS values (ratios of substitution rates at non-synonymous and synonymous sites) significantly lower than 1 (this is a signature of purifying selection in protein-coding regions). We also found that double substitutions in codons—where an intermediate step is a nonsense substitution—show a higher rate of evolution compared to null models, indicating that a stop codon was introduced and then changed back to sense via positive selection. This further supports the notion that nonsense substitutions in bacteria are relatively common and do not necessarily cause pseudogenization. In-frame stop codons may be an important mechanism of regulation: Such codons are likely to cause a substantial decrease of protein expression levels.
Collapse
Affiliation(s)
- Frida Belinky
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA; (F.B.); (I.G.)
| | - Ishan Ganguly
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA; (F.B.); (I.G.)
| | - Eugenia Poliakov
- National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA;
| | - Vyacheslav Yurchenko
- Life Science Research Centre, Faculty of Science, University of Ostrava, 710 00 Ostrava, Czech Republic
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector Borne Diseases, Sechenov University, 119435 Moscow, Russia
- Correspondence: (V.Y.); (I.B.R.)
| | - Igor B. Rogozin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA; (F.B.); (I.G.)
- Correspondence: (V.Y.); (I.B.R.)
| |
Collapse
|
5
|
Poliakov E, Uppal S, Rogozin IB, Gentleman S, Redmond TM. Evolutionary aspects and enzymology of metazoan carotenoid cleavage oxygenases. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1865:158665. [PMID: 32061750 PMCID: PMC7423639 DOI: 10.1016/j.bbalip.2020.158665] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 01/25/2020] [Accepted: 02/05/2020] [Indexed: 12/18/2022]
Abstract
The carotenoids are terpenoid fat-soluble pigments produced by plants, algae, and several bacteria and fungi. They are ubiquitous components of animal diets. Carotenoid cleavage oxygenase (CCO) superfamily members are involved in carotenoid metabolism and are present in all kingdoms of life. Throughout the animal kingdom, carotenoid oxygenases are widely distributed and they are completely absent only in two unicellular organisms, Monosiga and Leishmania. Mammals have three paralogs 15,15'-β-carotene oxygenase (BCO1), 9',10'-β-carotene oxygenase (BCO2) and RPE65. The first two enzymes are classical carotenoid oxygenases: they cleave carbon‑carbon double bonds and incorporate two atoms of oxygen in the substrate at the site of cleavage. The third, RPE65, is an unusual family member, it is the retinoid isomerohydrolase in the visual cycle that converts all-trans-retinyl ester into 11-cis-retinol. Here we discuss evolutionary aspects of the carotenoid cleavage oxygenase superfamily and their enzymology to deduce what insight we can obtain from their evolutionary conservation.
Collapse
Affiliation(s)
- Eugenia Poliakov
- Laboratory of Retinal Cell & Molecular Biology, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Sheetal Uppal
- Laboratory of Retinal Cell & Molecular Biology, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Igor B Rogozin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Susan Gentleman
- Laboratory of Retinal Cell & Molecular Biology, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - T Michael Redmond
- Laboratory of Retinal Cell & Molecular Biology, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
6
|
Ma J, Deng S, Jia Z, Sang Z, Zhu Z, Zhou C, Ma L, Chen F. Conservation and divergence of ancestral AGAMOUS/SEEDSTICK subfamily genes from the basal angiosperm Magnolia wufengensis. TREE PHYSIOLOGY 2020; 40:90-107. [PMID: 31553477 DOI: 10.1093/treephys/tpz091] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 08/14/2019] [Indexed: 06/10/2023]
Abstract
AGAMOUS/SEEDSTICK (AG/STK) subfamily genes play crucial roles in the reproductive development of plants. However, most of our current knowledge of AG/STK subfamily genes is restricted to core eudicots and grasses, and the knowledge of ancestral exon-intron structures, expression patterns, protein-protein interaction patterns and functions of AG/STK subfamily genes remains unclear. To determine these, we isolated AG/STK subfamily genes (MawuAG1, MawuAG2 and MawuSTK) from a woody basal angiosperm Magnolia wufengensis (Magnoliaceae). MawuSTK arose from the gene duplication event occurring before the diversification of extant angiosperms, and MawuAG1 and MawuAG2 may result from a gene duplication event occurring before the divergence of Magnoliaceae and Lauraceae. Gene duplication led to apparent diversification in their expression and interaction patterns. It revealed that expression in both stamens and carpels likely represents the ancestral expression profiles of AG lineage genes, and expression of STK-like genes in stamens may have been lost soon after the appearance of the STK lineage. Moreover, AG/STK subfamily proteins may have immediately established interactions with the SEPALLATA (SEP) subfamily proteins following the emergence of the SEP subfamily; however, their interactions with the APETALA1/FRUITFULL subfamily proteins or themselves differ from those found in monocots and basal and core eudicots. MawuAG1 plays highly conserved roles in the determinacy of stamen, carpel and ovule identity, while gene duplication contributed to the functional diversification of MawuAG2 and MawuSTK. In addition, we investigated the evolutionary history of exon-intron structural changes of the AG/STK subfamily, and a novel splice-acceptor mode (GUU-AU) and the convergent evolution of N-terminal extension in the euAG and PLE subclades were revealed for the first time. These results further advance our understanding of ancestral AG/STK subfamily genes in terms of phylogeny, exon-intron structures, expression and interaction patterns, and functions, and provide strong evidence for the significance of gene duplication in the expansion and evolution of the AG/STK subfamily.
Collapse
Affiliation(s)
- Jiang Ma
- Ministry of Education Key Laboratory of Silviculture and Conservation, Forestry College, Beijing Forestry University, Beijing 100083, PR China
| | - Shixin Deng
- Ministry of Education Key Laboratory of Silviculture and Conservation, Forestry College, Beijing Forestry University, Beijing 100083, PR China
| | - Zhongkui Jia
- Ministry of Education Key Laboratory of Silviculture and Conservation, Forestry College, Beijing Forestry University, Beijing 100083, PR China
| | - Ziyang Sang
- Forestry Bureau of Wufeng County, Yichang, 443002, Hubei Province, PR China
| | - Zhonglong Zhu
- Wufeng Bo Ling Magnolia Wufengensis Technology Development Co., Ltd, Yichang, 443002, Hubei Province, PR China
| | - Chao Zhou
- Key Laboratory of Three Gorges Regional Plant Genetics & Germplasm Enhancement (CTGU)/Biotechnology Research Center, China Three Gorges University, Yichang 443002, PR China
| | - Lvyi Ma
- Ministry of Education Key Laboratory of Silviculture and Conservation, Forestry College, Beijing Forestry University, Beijing 100083, PR China
| | - Faju Chen
- Key Laboratory of Three Gorges Regional Plant Genetics & Germplasm Enhancement (CTGU)/Biotechnology Research Center, China Three Gorges University, Yichang 443002, PR China
| |
Collapse
|
7
|
Águeda-Pinto A, Castro LFC, Esteves PJ. The evolution of S100A7: an unusual gene expansion in Myotis bats. BMC Evol Biol 2019; 19:102. [PMID: 31088346 PMCID: PMC6518696 DOI: 10.1186/s12862-019-1433-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 05/07/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND The S100A7 gene, also called psoriasin, was first described as an upregulated protein in psoriatic skin. For the past years, the importance of this protein as a key effector of innate immunity has been clearly established, not only due to its importance protecting against bacteria skin insult in humans, but also because of its important role in amplifying inflammatory processes. Given the importance of S100A7 in host defense, S100A7 genes have been mostly studied in humans. Here we provide a detailed analysis of the evolution of the gene family encoding for the S100A7 protein in mammals. RESULTS Examination of several mammalian genomes revealed an unexpected variation in the copy number of S100A7. Among the most representative mammalian groups, we report that multiple events of duplication, gene loss and high mutation rates are shaping the evolution of this gene family. An unexpected result comes from Myotis species (order Chiroptera), where we found an outstanding S100A7 gene radiation, resulting in more than 10 copies in M. lucifugus and 5 copies in M. brandtii. These findings suggest a unique adaptive road in these species and are suggestive of special role of this protein in their immune system. CONCLUSIONS We found different evolutionary histories among different mammalian groups. Overall, our results suggest that this gene family is evolving under the birth-and-death model of evolution. To our knowledge, this work represents the first detailed analysis of phylogenetic relationships of S100A7 within mammals and therefore will pave the way to further clarify their unique function in the immune system.
Collapse
Affiliation(s)
- Ana Águeda-Pinto
- CIBIO/InBio, Centro de Investigação em Biodiversidade e Recursos genéticos, Universidade do Porto, Rua Padre Armando Quintas, 4485-661 Vairão, Portugal
- Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre S/N, 4169-007 Porto, Portugal
| | - L. Filipe C. Castro
- Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre S/N, 4169-007 Porto, Portugal
- CIIMAR/CIMAR, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Av. general Norton de Matos S/N, 4450-208 Matosinhos, Portugal
| | - Pedro J. Esteves
- CIBIO/InBio, Centro de Investigação em Biodiversidade e Recursos genéticos, Universidade do Porto, Rua Padre Armando Quintas, 4485-661 Vairão, Portugal
- Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre S/N, 4169-007 Porto, Portugal
- CESPU, Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde, Rua Central de Gandra 1317, 4585-116 Gandra, Portugal
| |
Collapse
|
8
|
Ma J, Deng S, Chen L, Jia Z, Sang Z, Zhu Z, Ma L, Chen F. Gene duplication led to divergence of expression patterns, protein-protein interaction patterns and floral development functions of AGL6-like genes in the basal angiosperm Magnolia wufengensis (Magnoliaceae). TREE PHYSIOLOGY 2019; 39:861-876. [PMID: 31034013 DOI: 10.1093/treephys/tpz010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 01/07/2019] [Accepted: 01/31/2019] [Indexed: 06/09/2023]
Abstract
The MADS-box family genes play critical roles in the regulation of growth and development of flowering plants. AGAMOUS-LIKE 6 (AGL6)-like genes are one of the most enigmatic subfamilies of the MADS-box family because of highly variable expression patterns and ambiguous functions, which have long puzzled researchers. A lot of AGL6 homologs have been identified from gymnosperms and angiosperms. However, only a few have been characterized, especially for basal angiosperm taxa. Magnolia wufengensis is a woody basal angiosperm from the family Magnoliaceae. In the current study, the phylogenesis, expression and protein-protein interaction (PPI) patterns, and functions of two AGL6 homologs from M. wufengensis, MawuAGL6-1 and MawuAGL6-2, were analyzed. Phylogenetic analysis indicated that the two AGL6 duplicates may have arisen by gene duplication before the divergence of Magnoliaceae and Lauraceae, with the diversification of their expression and PPI patterns after gene duplication. Functional analysis revealed that, in addition to common functions in accelerating flowering, MawuAGL6-1 might be responsible for flower meristem determinacy, while MawuAGL6-2 is preferentially recruited to regulate tepal morphogenesis. These findings further advance our understanding of the evolution of phylogenesis, expression, interaction and functions of AGL6 lineage genes from basal angiosperms, as well as the entire AGL6 lineage genes, and the significance of AGL6 lineage genes in the evolution and biological diversity.
Collapse
Affiliation(s)
- Jiang Ma
- Ministry of Education Key Laboratory of Silviculture and Conservation, Forestry College, Beijing Forestry University, Beijing, PR China
- Key Laboratory of Three Gorges Regional Plant Genetics & Germplasm Enhancement (CTGU)/Biotechnology Research Center, China Three Gorges University, Yichang, PR China
| | - Shixin Deng
- Ministry of Education Key Laboratory of Silviculture and Conservation, Forestry College, Beijing Forestry University, Beijing, PR China
| | - Liyuan Chen
- Ministry of Education Key Laboratory of Silviculture and Conservation, Forestry College, Beijing Forestry University, Beijing, PR China
| | - Zhongkui Jia
- Ministry of Education Key Laboratory of Silviculture and Conservation, Forestry College, Beijing Forestry University, Beijing, PR China
| | - Ziyang Sang
- Forestry Bureau of Wufeng County, Wufeng, Hubei Province, PR China
| | - Zhonglong Zhu
- Wufeng Bo Ling Magnolia Wufengensis Technology Development Co., Ltd, Wufeng, Hubei Province, PR China
| | - Lvyi Ma
- Ministry of Education Key Laboratory of Silviculture and Conservation, Forestry College, Beijing Forestry University, Beijing, PR China
| | - Faju Chen
- Key Laboratory of Three Gorges Regional Plant Genetics & Germplasm Enhancement (CTGU)/Biotechnology Research Center, China Three Gorges University, Yichang, PR China
| |
Collapse
|
9
|
Teleost Fish-Specific Preferential Retention of Pigmentation Gene-Containing Families After Whole Genome Duplications in Vertebrates. G3-GENES GENOMES GENETICS 2018; 8:1795-1806. [PMID: 29599177 PMCID: PMC5940169 DOI: 10.1534/g3.118.200201] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Vertebrate pigmentation is a highly diverse trait mainly determined by neural crest cell derivatives. It has been suggested that two rounds (1R/2R) of whole-genome duplications (WGDs) at the basis of vertebrates allowed changes in gene regulation associated with neural crest evolution. Subsequently, the teleost fish lineage experienced other WGDs, including the teleost-specific Ts3R before teleost radiation and the more recent Ss4R at the basis of salmonids. As the teleost lineage harbors the highest number of pigment cell types and pigmentation diversity in vertebrates, WGDs might have contributed to the evolution and diversification of the pigmentation gene repertoire in teleosts. We have compared the impact of the basal vertebrate 1R/2R duplications with that of the teleost-specific Ts3R and salmonid-specific Ss4R WGDs on 181 gene families containing genes involved in pigmentation. We show that pigmentation genes (PGs) have been globally more frequently retained as duplicates than other genes after Ts3R and Ss4R but not after the early 1R/2R. This is also true for non-pigmentary paralogs of PGs, suggesting that the function in pigmentation is not the sole key driver of gene retention after WGDs. On the long-term, specific categories of PGs have been repeatedly preferentially retained after ancient 1R/2R and Ts3R WGDs, possibly linked to the molecular nature of their proteins (e.g., DNA binding transcriptional regulators) and their central position in protein-protein interaction networks. Taken together, our results support a major role of WGDs in the diversification of the pigmentation gene repertoire in the teleost lineage, with a possible link with the diversity of pigment cell lineages observed in these animals compared to other vertebrates.
Collapse
|
10
|
Streubel S, Fritz MA, Teltow M, Kappel C, Sicard A. Successive duplication-divergence mechanisms at the RCO locus contributed to leaf shape diversity in the Brassicaceae. Development 2018; 145:145/8/dev164301. [PMID: 29691226 DOI: 10.1242/dev.164301] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 03/21/2018] [Indexed: 12/19/2022]
Abstract
Gene duplication is a major driver for the increase of biological complexity. The divergence of newly duplicated paralogs may allow novel functions to evolve, while maintaining the ancestral one. Alternatively, partitioning the ancestral function among paralogs may allow parts of that role to follow independent evolutionary trajectories. We studied the REDUCED COMPLEXITY (RCO) locus, which contains three paralogs that have evolved through two independent events of gene duplication, and which underlies repeated events of leaf shape evolution within the Brassicaceae. In particular, we took advantage of the presence of three potentially functional paralogs in Capsella to investigate the extent of functional divergence among them. We demonstrate that the RCO copies control growth in different areas of the leaf. Consequently, the copies that are retained active in the different Brassicaceae lineages contribute to define the leaf dissection pattern. Our results further illustrate how successive gene duplication events and subsequent functional divergence can increase trait evolvability by providing independent evolutionary trajectories to specialized functions that have an additive effect on a given trait.
Collapse
Affiliation(s)
- Susanna Streubel
- Institut für Biochemie und Biologie, Universität Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam-Golm, Germany
| | - Michael André Fritz
- Institut für Biochemie und Biologie, Universität Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam-Golm, Germany
| | - Melanie Teltow
- Institut für Biochemie und Biologie, Universität Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam-Golm, Germany
| | - Christian Kappel
- Institut für Biochemie und Biologie, Universität Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam-Golm, Germany
| | - Adrien Sicard
- Institut für Biochemie und Biologie, Universität Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam-Golm, Germany .,Uppsala Biocenter, Department of Plant Biology, BOX 7080, 750 07, Uppsala, Sweden
| |
Collapse
|
11
|
Banerjee S, Feyertag F, Alvarez-Ponce D. Intrinsic protein disorder reduces small-scale gene duplicability. DNA Res 2017; 24:435-444. [PMID: 28430886 PMCID: PMC5737077 DOI: 10.1093/dnares/dsx015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 03/28/2017] [Indexed: 01/23/2023] Open
Abstract
Whereas the rate of gene duplication is relatively high, only certain duplications survive the filter of natural selection and can contribute to genome evolution. However, the reasons why certain genes can be retained after duplication whereas others cannot remain largely unknown. Many proteins contain intrinsically disordered regions (IDRs), whose structures fluctuate between alternative conformational states. Due to their high flexibility, IDRs often enable protein–protein interactions and are the target of post-translational modifications. Intrinsically disordered proteins (IDPs) have characteristics that might either stimulate or hamper the retention of their encoding genes after duplication. On the one hand, IDRs may enable functional diversification, thus promoting duplicate retention. On the other hand, increased IDP availability is expected to result in deleterious unspecific interactions. Here, we interrogate the proteomes of human, Drosophila melanogaster, Caenorhabditis elegans, Saccharomyces cerevisiae, Arabidopsis thaliana and Escherichia coli, in order to ascertain the impact of protein intrinsic disorder on gene duplicability. We show that, in general, proteins encoded by duplicated genes tend to be less disordered than those encoded by singletons. The only exception is proteins encoded by ohnologs, which tend to be more disordered than those encoded by singletons or genes resulting from small-scale duplications. Our results indicate that duplication of genes encoding IDPs outside the context of whole-genome duplication (WGD) is often deleterious, but that IDRs facilitate retention of duplicates in the context of WGD. We discuss the potential evolutionary implications of our results.
Collapse
Affiliation(s)
- Sanghita Banerjee
- Department of Biology, University of Nevada, Reno, NV 89557, USA.,Machine Intelligence Unit, Indian Statistical Institute, Kolkata 700108, India
| | - Felix Feyertag
- Department of Biology, University of Nevada, Reno, NV 89557, USA
| | | |
Collapse
|
12
|
Gao B, Zhu S. The drosomycin multigene family: three-disulfide variants from Drosophila takahashii possess antibacterial activity. Sci Rep 2016; 6:32175. [PMID: 27562645 PMCID: PMC4999892 DOI: 10.1038/srep32175] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 08/03/2016] [Indexed: 11/17/2022] Open
Abstract
Drosomycin (DRS) is a strictly antifungal peptide in Drosophila melanogaster, which contains four disulfide bridges (DBs) with three buried in molecular interior and one exposed on molecular surface to tie the amino- and carboxyl-termini of the molecule together (called wrapper disulfide bridge, WDB). Based on computational analysis of genomes of Drosophila species belonging to the Oriental lineage, we identified a new multigene family of DRS in Drosphila takahashii that includes a total of 11 DRS-encoding genes (termed DtDRS-1 to DtDRS-11) and a pseudogene. Phylogenetic tree and synteny analyses reveal orthologous relationship between DtDRSs and DRSs, indicating that orthologous genes of DRS-1, DRS-2, DRS-3 and DRS-6 have undergone duplication in D. takahashii and three amplifications (DtDRS-9 to DtDRS-11) of DRS-3 have lost WDB. Among the 11 genes, five are transcriptionally active in adult fruitflies. The ortholog of DRS (DtDRS-1) shows high structural and functional similarity to DRS while two WDB-deficient members display antibacterial activity accompanying complete loss or remarkable reduction of antifungal activity. To the best of our knowledge, this is the first report on the presence of three-disulfide antibacterial DRSs in a specific Drosophila species, suggesting a potential role of DB loss in neofunctionalization of a protein via structural adjustment.
Collapse
Affiliation(s)
- Bin Gao
- Group of Peptide Biology and Evolution, State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing 100101, China
| | - Shunyi Zhu
- Group of Peptide Biology and Evolution, State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing 100101, China
| |
Collapse
|
13
|
Yerramsetty P, Stata M, Siford R, Sage TL, Sage RF, Wong GKS, Albert VA, Berry JO. Evolution of RLSB, a nuclear-encoded S1 domain RNA binding protein associated with post-transcriptional regulation of plastid-encoded rbcL mRNA in vascular plants. BMC Evol Biol 2016; 16:141. [PMID: 27356975 PMCID: PMC4928308 DOI: 10.1186/s12862-016-0713-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 06/14/2016] [Indexed: 11/16/2022] Open
Abstract
Background RLSB, an S-1 domain RNA binding protein of Arabidopsis, selectively binds rbcL mRNA and co-localizes with Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) within chloroplasts of C3 and C4 plants. Previous studies using both Arabidopsis (C3) and maize (C4) suggest RLSB homologs are post-transcriptional regulators of plastid-encoded rbcL mRNA. While RLSB accumulates in all Arabidopsis leaf chlorenchyma cells, in C4 leaves RLSB-like proteins accumulate only within Rubisco-containing bundle sheath chloroplasts of Kranz-type species, and only within central compartment chloroplasts in the single cell C4 plant Bienertia. Our recent evidence implicates this mRNA binding protein as a primary determinant of rbcL expression, cellular localization/compartmentalization, and photosynthetic function in all multicellular green plants. This study addresses the hypothesis that RLSB is a highly conserved Rubisco regulatory factor that occurs in the chloroplasts all higher plants. Results Phylogenetic analysis has identified RLSB orthologs and paralogs in all major plant groups, from ancient liverworts to recent angiosperms. RLSB homologs were also identified in algae of the division Charophyta, a lineage closely related to land plants. RLSB-like sequences were not identified in any other algae, suggesting that it may be specific to the evolutionary line leading to land plants. The RLSB family occurs in single copy across most angiosperms, although a few species with two copies were identified, seemingly randomly distributed throughout the various taxa, although perhaps correlating in some cases with known ancient whole genome duplications. Monocots of the order Poales (Poaceae and Cyperaceae) were found to contain two copies, designated here as RLSB-a and RLSB-b, with only RLSB-a implicated in the regulation of rbcL across the maize developmental gradient. Analysis of microsynteny in angiosperms revealed high levels of conservation across eudicot species and for both paralogs in grasses, highlighting the possible importance of maintaining this gene and its surrounding genomic regions. Conclusions Findings presented here indicate that the RLSB family originated as a unique gene in land plant evolution, perhaps in the common ancestor of charophytes and higher plants. Purifying selection has maintained this as a highly conserved single- or two-copy gene across most extant species, with several conserved gene duplications. Together with previous findings, this study suggests that RLSB has been sustained as an important regulatory protein throughout the course of land plant evolution. While only RLSB-a has been directly implicated in rbcL regulation in maize, RLSB-b could have an overlapping function in the co-regulation of rbcL, or may have diverged as a regulator of one or more other plastid-encoded mRNAs. This analysis confirms that RLSB is an important and unique photosynthetic regulatory protein that has been continuously expressed in land plants as they emerged and diversified from their ancient common ancestor. Electronic supplementary material The online version of this article (doi:10.1186/s12862-016-0713-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Pradeep Yerramsetty
- Department of Biological Sciences, University at Buffalo, Buffalo, NY, 14260, USA
| | - Matt Stata
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, M5S3B2, Canada
| | - Rebecca Siford
- Department of Biological Sciences, University at Buffalo, Buffalo, NY, 14260, USA
| | - Tammy L Sage
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, M5S3B2, Canada
| | - Rowan F Sage
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, M5S3B2, Canada
| | - Gane Ka-Shu Wong
- Department of Biological Sciences, University of Alberta, Edmonton, AB, T6G 2E9, Canada.,Department of Medicine, University of Alberta, Edmonton, AB, T6G 2E1, Canada.,BGI-Shenzhen, Beishan Industrial Zone, Yantian District, Shenzhen, 518083, China
| | - Victor A Albert
- Department of Biological Sciences, University at Buffalo, Buffalo, NY, 14260, USA.
| | - James O Berry
- Department of Biological Sciences, University at Buffalo, Buffalo, NY, 14260, USA.
| |
Collapse
|
14
|
Pan ST, Xue D, Li ZL, Zhou ZW, He ZX, Yang Y, Yang T, Qiu JX, Zhou SF. Computational Identification of the Paralogs and Orthologs of Human Cytochrome P450 Superfamily and the Implication in Drug Discovery. Int J Mol Sci 2016; 17:E1020. [PMID: 27367670 PMCID: PMC4964396 DOI: 10.3390/ijms17071020] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 04/02/2016] [Accepted: 06/07/2016] [Indexed: 12/31/2022] Open
Abstract
The human cytochrome P450 (CYP) superfamily consisting of 57 functional genes is the most important group of Phase I drug metabolizing enzymes that oxidize a large number of xenobiotics and endogenous compounds, including therapeutic drugs and environmental toxicants. The CYP superfamily has been shown to expand itself through gene duplication, and some of them become pseudogenes due to gene mutations. Orthologs and paralogs are homologous genes resulting from speciation or duplication, respectively. To explore the evolutionary and functional relationships of human CYPs, we conducted this bioinformatic study to identify their corresponding paralogs, homologs, and orthologs. The functional implications and implications in drug discovery and evolutionary biology were then discussed. GeneCards and Ensembl were used to identify the paralogs of human CYPs. We have used a panel of online databases to identify the orthologs of human CYP genes: NCBI, Ensembl Compara, GeneCards, OMA ("Orthologous MAtrix") Browser, PATHER, TreeFam, EggNOG, and Roundup. The results show that each human CYP has various numbers of paralogs and orthologs using GeneCards and Ensembl. For example, the paralogs of CYP2A6 include CYP2A7, 2A13, 2B6, 2C8, 2C9, 2C18, 2C19, 2D6, 2E1, 2F1, 2J2, 2R1, 2S1, 2U1, and 2W1; CYP11A1 has 6 paralogs including CYP11B1, 11B2, 24A1, 27A1, 27B1, and 27C1; CYP51A1 has only three paralogs: CYP26A1, 26B1, and 26C1; while CYP20A1 has no paralog. The majority of human CYPs are well conserved from plants, amphibians, fishes, or mammals to humans due to their important functions in physiology and xenobiotic disposition. The data from different approaches are also cross-validated and validated when experimental data are available. These findings facilitate our understanding of the evolutionary relationships and functional implications of the human CYP superfamily in drug discovery.
Collapse
Affiliation(s)
- Shu-Ting Pan
- Department of Oral and Maxillofacial Surgery, the First Affiliated Hospital of Nanchang University, Nanchang 330003, China.
| | - Danfeng Xue
- Department of Oral and Maxillofacial Surgery, the First Affiliated Hospital of Nanchang University, Nanchang 330003, China.
| | - Zhi-Ling Li
- Department of Pharmacy, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai 200040, China.
| | - Zhi-Wei Zhou
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA.
| | - Zhi-Xu He
- Guizhou Provincial Key Laboratory for Regenerative Medicine, Stem Cell and Tissue Engineering Research Center & Sino-US Joint Laboratory for Medical Sciences, Guizhou Medical University, Guiyang 550004, China.
| | - Yinxue Yang
- Department of Colorectal Surgery, General Hospital of Ningxia Medical University, Yinchuan 750004, China.
| | - Tianxin Yang
- Department of Internal Medicine, University of Utah and Salt Lake Veterans Affairs Medical Center, Salt Lake City, UT 84132, USA.
| | - Jia-Xuan Qiu
- Department of Oral and Maxillofacial Surgery, the First Affiliated Hospital of Nanchang University, Nanchang 330003, China.
| | - Shu-Feng Zhou
- Department of Chemical and Pharmaceutical Engineering, College of Chemical Engineering, Huaqiao University, Xiamen 361021, Fujian, China.
| |
Collapse
|
15
|
Ye L, Wang B, Zhang W, Shan H, Kong H. Gains and Losses of Cis-regulatory Elements Led to Divergence of the Arabidopsis APETALA1 and CAULIFLOWER Duplicate Genes in the Time, Space, and Level of Expression and Regulation of One Paralog by the Other. PLANT PHYSIOLOGY 2016; 171:1055-69. [PMID: 27208240 PMCID: PMC4902614 DOI: 10.1104/pp.16.00320] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 04/04/2016] [Indexed: 05/05/2023]
Abstract
How genes change their expression patterns over time is still poorly understood. Here, by conducting expression, functional, bioinformatic, and evolutionary analyses, we demonstrate that the differences between the Arabidopsis (Arabidopsis thaliana) APETALA1 (AP1) and CAULIFLOWER (CAL) duplicate genes in the time, space, and level of expression were determined by the presence or absence of functionally important transcription factor-binding sites (TFBSs) in regulatory regions. In particular, a CArG box, which is the autoregulatory site of AP1 that can also be bound by the CAL protein, is a key determinant of the expression differences. Because of the CArG box, AP1 is both autoregulated and cross-regulated (by AP1 and CAL, respectively), and its relatively high-level expression is maintained till to the late stages of sepal and petal development. The observation that the CArG box was gained recently further suggests that the autoregulation and cross-regulation of AP1, as well as its function in sepal and petal development, are derived features. By comparing the evolutionary histories of this and other TFBSs, we further indicate that the divergence of AP1 and CAL in regulatory regions has been markedly asymmetric and can be divided into several stages. Specifically, shortly after duplication, when AP1 happened to be the paralog that maintained the function of the ancestral gene, CAL experienced certain degrees of degenerate evolution, in which several functionally important TFBSs were lost. Later, when functional divergence allowed the survival of both paralogs, CAL remained largely unchanged in expression, whereas the functions of AP1 were gradually reinforced by gains of the CArG box and other TFBSs.
Collapse
Affiliation(s)
- Lingling Ye
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China (L.Y., B.W., W.Z., H.S., H.K.); andUniversity of the Chinese Academy of Sciences, Beijing 100049, China (L.Y., B.W., W.Z.)
| | - Bin Wang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China (L.Y., B.W., W.Z., H.S., H.K.); andUniversity of the Chinese Academy of Sciences, Beijing 100049, China (L.Y., B.W., W.Z.)
| | - Wengen Zhang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China (L.Y., B.W., W.Z., H.S., H.K.); andUniversity of the Chinese Academy of Sciences, Beijing 100049, China (L.Y., B.W., W.Z.)
| | - Hongyan Shan
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China (L.Y., B.W., W.Z., H.S., H.K.); andUniversity of the Chinese Academy of Sciences, Beijing 100049, China (L.Y., B.W., W.Z.)
| | - Hongzhi Kong
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China (L.Y., B.W., W.Z., H.S., H.K.); andUniversity of the Chinese Academy of Sciences, Beijing 100049, China (L.Y., B.W., W.Z.)
| |
Collapse
|
16
|
Comparative Transcriptomics Indicates a Role for SHORT VEGETATIVE PHASE (SVP) Genes in Mimulus guttatus Vernalization Response. G3-GENES GENOMES GENETICS 2016; 6:1239-49. [PMID: 26921300 PMCID: PMC4856076 DOI: 10.1534/g3.115.026468] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The timing of reproduction in response to variable environmental conditions is critical to plant fitness, and is a major driver of taxon differentiation. In the yellow monkey flower, Mimulus guttatus, geographically distinct North American populations vary in their photoperiod and chilling (vernalization) requirements for flowering, suggesting strong local adaptation to their surroundings. Previous analyses revealed quantitative trait loci (QTL) underlying short-day mediated vernalization responsiveness using two annual M. guttatus populations that differed in their vernalization response. To narrow down candidate genes responsible for this variation, and to reveal potential downstream genes, we conducted comparative transcriptomics and quantitative PCR (qPCR) in shoot apices of parental vernalization responsive IM62, and unresponsive LMC24 inbred lines grown under different photoperiods and temperatures. Our study identified several metabolic, hormone signaling, photosynthetic, stress response, and flowering time genes that are differentially expressed between treatments, suggesting a role for their protein products in short-day-mediated vernalization responsiveness. Only a small subset of these genes intersected with candidate genes from the previous QTL study, and, of the main candidates tested with qPCR under nonpermissive conditions, only SHORT VEGETATIVE PHASE (SVP) gene expression met predictions for a population-specific short-day-repressor of flowering that is repressed by cold.
Collapse
|
17
|
Guselnikov SV, Grayfer L, De Jesús Andino F, Rogozin IB, Robert J, Taranin AV. Retention of duplicated ITAM-containing transmembrane signaling subunits in the tetraploid amphibian species Xenopus laevis. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2015; 53:158-68. [PMID: 26170006 PMCID: PMC4536121 DOI: 10.1016/j.dci.2015.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 07/02/2015] [Accepted: 07/02/2015] [Indexed: 06/04/2023]
Abstract
The ITAM-bearing transmembrane signaling subunits (TSS) are indispensable components of activating leukocyte receptor complexes. The TSS-encoding genes map to paralogous chromosomal regions, which are thought to arise from ancient genome tetraploidization(s). To assess a possible role of tetraploidization in the TSS evolution, we studied TSS and other functionally linked genes in the amphibian species Xenopus laevis whose genome was duplicated about 40 MYR ago. We found that X. laevis has retained a duplicated set of sixteen TSS genes, all except one being transcribed. Furthermore, duplicated TCRα loci and genes encoding TSS-coupling protein kinases have also been retained. No clear evidence for functional divergence of the TSS paralogs was obtained from gene expression and sequence analyses. We suggest that the main factor of maintenance of duplicated TSS genes in X. laevis was a protein dosage effect and that this effect might have facilitated the TSS set expansion in early vertebrates.
Collapse
Affiliation(s)
- S V Guselnikov
- Institute of Molecular and Cellular Biology, Siberian Branch of the Russian Academy of Sciences, Lavrentiev Avenue 8/2, Novosibirsk 630090, Russia; Novosibirsk State University, Pirogov Street 2, Novosibirsk 630090, Russia.
| | - L Grayfer
- University of Rochester, Medical Center, 601 Elmwood Avenue, MRBX, Rochester, NY 14642, USA.
| | - F De Jesús Andino
- University of Rochester, Medical Center, 601 Elmwood Avenue, MRBX, Rochester, NY 14642, USA.
| | - I B Rogozin
- National Center for Biotechnology Information NLM, National Institutes of Health, 8600 Rockville Pike, Bldg. 38A, Bethesda, MD, USA.
| | - J Robert
- University of Rochester, Medical Center, 601 Elmwood Avenue, MRBX, Rochester, NY 14642, USA.
| | - A V Taranin
- Institute of Molecular and Cellular Biology, Siberian Branch of the Russian Academy of Sciences, Lavrentiev Avenue 8/2, Novosibirsk 630090, Russia; Novosibirsk State University, Pirogov Street 2, Novosibirsk 630090, Russia.
| |
Collapse
|
18
|
Baskaran P, Rödelsperger C, Prabh N, Serobyan V, Markov GV, Hirsekorn A, Dieterich C. Ancient gene duplications have shaped developmental stage-specific expression in Pristionchus pacificus. BMC Evol Biol 2015; 15:185. [PMID: 26370559 PMCID: PMC4570658 DOI: 10.1186/s12862-015-0466-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 08/14/2015] [Indexed: 12/28/2022] Open
Abstract
Background The development of multicellular organisms is accompanied by gene expression changes in differentiating cells. Profiling stage-specific expression during development may reveal important insights into gene sets that contributed to the morphological diversity across the animal kingdom. Results We sequenced RNA-seq libraries throughout a developmental timecourse of the nematode Pristionchus pacificus. The transcriptomes reflect early larval stages, adult worms including late larvae, and growth-arrested dauer larvae and allowed the identification of developmentally regulated gene clusters. Our data reveals similar trends as previous transcriptome profiling of dauer worms and represents the first expression data for early larvae in P. pacificus. Gene expression clusters characterizing early larval stages show most significant enrichments of chaperones, while collagens are most significantly enriched in transcriptomes of late larvae and adult worms. By combining expression data with phylogenetic analysis, we found that developmentally regulated genes are found in paralogous clusters that have arisen through lineage-specific duplications after the split from the Caenorhabditis elegans branch. Conclusions We propose that gene duplications of developmentally regulated genes represent a plausible evolutionary mechanism to increase the dosage of stage-specific expression. Consequently, this may contribute to the substantial divergence in expression profiles that has been observed across larger evolutionary time scales. Electronic supplementary material The online version of this article (doi:10.1186/s12862-015-0466-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Praveen Baskaran
- Max-Planck Institute for Developmental Biology, Spemannstr. 35, Tübingen, 72076, Germany.
| | - Christian Rödelsperger
- Max-Planck Institute for Developmental Biology, Spemannstr. 35, Tübingen, 72076, Germany.
| | - Neel Prabh
- Max-Planck Institute for Developmental Biology, Spemannstr. 35, Tübingen, 72076, Germany.
| | - Vahan Serobyan
- Max-Planck Institute for Developmental Biology, Spemannstr. 35, Tübingen, 72076, Germany.
| | - Gabriel V Markov
- Max-Planck Institute for Developmental Biology, Spemannstr. 35, Tübingen, 72076, Germany.
| | - Antje Hirsekorn
- Max-Delbrück Center for Molecular Medicine, Robert-Rössle-Straße 10, Berlin-Buch, 13125, Germany.
| | - Christoph Dieterich
- Max-Planck Institute for Biology of Aging, Joseph-Stelzmann-Str. 9b, Köln, 50866, Germany.
| |
Collapse
|
19
|
Microevolution of Duplications and Deletions and Their Impact on Gene Expression in the Nematode Pristionchus pacificus. PLoS One 2015; 10:e0131136. [PMID: 26125626 PMCID: PMC4488370 DOI: 10.1371/journal.pone.0131136] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 05/27/2015] [Indexed: 11/19/2022] Open
Abstract
The evolution of diversity across the animal kingdom has been accompanied by tremendous gene loss and gain. While comparative genomics has been fruitful to characterize differences in gene content across highly diverged species, little is known about the microevolution of structural variations that cause these differences in the first place. In order to investigate the genomic impact of structural variations, we made use of genomic and transcriptomic data from the nematode Pristionchus pacificus, which has been established as a satellite model to Caenorhabditis elegans for comparative biology. We exploit the fact that P. pacificus is a highly diverse species for which various genomic data including the draft genome of a sister species P. exspectatus is available. Based on resequencing coverage data for two natural isolates we identified large (> 2kb) deletions and duplications relative to the reference strain. By restriction to completely syntenic regions between P. pacificus and P. exspectatus, we were able to polarize the comparison and to assess the impact of structural variations on expression levels. We found that while loss of genes correlates with lack of expression, duplication of genes has virtually no effect on gene expression. Further investigating expression of individual copies at sites that segregate between the duplicates, we found in the majority of cases only one of the copies to be expressed. Nevertheless, we still find that certain gene classes are strongly depleted in deletions as well as duplications, suggesting evolutionary constraint acting on synteny. In summary, our results are consistent with a model, where most structural variations are either deleterious or neutral and provide first insights into the microevolution of structural variations in the P. pacificus genome.
Collapse
|