1
|
Huang M, Yu H, Lyu X, Pu W, Yin J, Gao B. Region-specific Cerebral Metabolic Alterations in Parkinson's Disease Patients With/without Mild Cognitive Impairment. Neuroscience 2024; 551:254-261. [PMID: 38848776 DOI: 10.1016/j.neuroscience.2024.05.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/24/2024] [Accepted: 05/28/2024] [Indexed: 06/09/2024]
Abstract
N-acetylaspartate (NAA), choline (Cho) and creatine (Cr) are brain metabolites involved in some key neuronal functions within the brain, such as cognitive function. The aim of this study was to investigate whether Parkinson's disease (PD) with different cognitive status induces regional brain metabolite differences. 38 diagnosed PD patients, including 18 PD patients with normal cognitive (PDN), 20 PD subjects with cognitive impairment (PDMCI) and 25 healthy controls (HC) participated in this study. All subjects underwent a single-voxel proton MR spectroscopy (1H-MRS) on a 3T scanner. 1H-MRS were obtained from bilateral PCC, left thalamus and PFC regions in all subjects, respectively. Region-specific cerebral metabolic alterations existed in PD patients with different cognitive status. PDMCI patients showed a significant reduction of NAA, Cho and tCr in the PCC and left thalamus, compared to healthy controls; whereas lower levels of NAA and Cho in thalamus were found in PDN patients. Moreover, Cho and tCr levels were positively correlated with MMSE scores. Both NAA and tCr in PCC levels were positively correlated with MMSE and MoCA scores. The combination of thalamic and PCC metabolites showed a 75.6% accuracy in distinguishing PDMCI patients from PDN patients. This study provides preliminary evidence that thalamic, PCC and PFC neurometabolic alterations occur in PD patients with cognition decline. Findings of this study indicate that NAA and tCr abnormalities in PCC and thalamus might be used as a biomarker to track cognitive decline in Parkinson's disease in clinical settings.
Collapse
Affiliation(s)
- Mingming Huang
- Department of Radiology, Affiliated Hospital of Guizhou Medical University, Guiyang, China; Key Laboratory of Brain Imaging, Guizhou Medical University, Guiyang, China.
| | - Hui Yu
- Department of Radiology, Dermatology Hospital of Southern Medical University, Guangzhou, China
| | - Xinyue Lyu
- Department of Radiology, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Wei Pu
- Department of Radiology, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Jianhong Yin
- Department of Neurology, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Bo Gao
- Department of Radiology, Affiliated Hospital of Guizhou Medical University, Guiyang, China; Key Laboratory of Brain Imaging, Guizhou Medical University, Guiyang, China.
| |
Collapse
|
2
|
Azam HMH, Rößling RI, Geithe C, Khan MM, Dinter F, Hanack K, Prüß H, Husse B, Roggenbuck D, Schierack P, Rödiger S. MicroRNA biomarkers as next-generation diagnostic tools for neurodegenerative diseases: a comprehensive review. Front Mol Neurosci 2024; 17:1386735. [PMID: 38883980 PMCID: PMC11177777 DOI: 10.3389/fnmol.2024.1386735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 04/12/2024] [Indexed: 06/18/2024] Open
Abstract
Neurodegenerative diseases (NDs) are characterized by abnormalities within neurons of the brain or spinal cord that gradually lose function, eventually leading to cell death. Upon examination of affected tissue, pathological changes reveal a loss of synapses, misfolded proteins, and activation of immune cells-all indicative of disease progression-before severe clinical symptoms become apparent. Early detection of NDs is crucial for potentially administering targeted medications that may delay disease advancement. Given their complex pathophysiological features and diverse clinical symptoms, there is a pressing need for sensitive and effective diagnostic methods for NDs. Biomarkers such as microRNAs (miRNAs) have been identified as potential tools for detecting these diseases. We explore the pivotal role of miRNAs in the context of NDs, focusing on Alzheimer's disease, Parkinson's disease, Multiple sclerosis, Huntington's disease, and Amyotrophic Lateral Sclerosis. The review delves into the intricate relationship between aging and NDs, highlighting structural and functional alterations in the aging brain and their implications for disease development. It elucidates how miRNAs and RNA-binding proteins are implicated in the pathogenesis of NDs and underscores the importance of investigating their expression and function in aging. Significantly, miRNAs exert substantial influence on post-translational modifications (PTMs), impacting not just the nervous system but a wide array of tissues and cell types as well. Specific miRNAs have been found to target proteins involved in ubiquitination or de-ubiquitination processes, which play a significant role in regulating protein function and stability. We discuss the link between miRNA, PTM, and NDs. Additionally, the review discusses the significance of miRNAs as biomarkers for early disease detection, offering insights into diagnostic strategies.
Collapse
Affiliation(s)
- Hafiz Muhammad Husnain Azam
- Institute of Biotechnology, Faculty of Environment and Natural Sciences, Brandenburg University of Technology Cottbus-Senftenberg, Senftenberg, Germany
| | - Rosa Ilse Rößling
- German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany
- Department of Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Christiane Geithe
- Institute of Biotechnology, Faculty of Environment and Natural Sciences, Brandenburg University of Technology Cottbus-Senftenberg, Senftenberg, Germany
- Faculty of Health Sciences, Joint Faculty of the Brandenburg University of Technology Cottbus - Senftenberg, The Brandenburg Medical School Theodor Fontane and the University of Potsdam, Berlin, Germany
| | - Muhammad Moman Khan
- Institute of Biotechnology, Faculty of Environment and Natural Sciences, Brandenburg University of Technology Cottbus-Senftenberg, Senftenberg, Germany
| | - Franziska Dinter
- Institute of Biotechnology, Faculty of Environment and Natural Sciences, Brandenburg University of Technology Cottbus-Senftenberg, Senftenberg, Germany
- PolyAn GmbH, Berlin, Germany
| | - Katja Hanack
- Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Harald Prüß
- German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany
- Department of Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Britta Husse
- Institute of Biotechnology, Faculty of Environment and Natural Sciences, Brandenburg University of Technology Cottbus-Senftenberg, Senftenberg, Germany
| | - Dirk Roggenbuck
- Institute of Biotechnology, Faculty of Environment and Natural Sciences, Brandenburg University of Technology Cottbus-Senftenberg, Senftenberg, Germany
| | - Peter Schierack
- Institute of Biotechnology, Faculty of Environment and Natural Sciences, Brandenburg University of Technology Cottbus-Senftenberg, Senftenberg, Germany
| | - Stefan Rödiger
- Institute of Biotechnology, Faculty of Environment and Natural Sciences, Brandenburg University of Technology Cottbus-Senftenberg, Senftenberg, Germany
- Faculty of Health Sciences, Joint Faculty of the Brandenburg University of Technology Cottbus - Senftenberg, The Brandenburg Medical School Theodor Fontane and the University of Potsdam, Berlin, Germany
| |
Collapse
|
3
|
Shukla D, Goel A, Mandal PK, Joon S, Punjabi K, Arora Y, Kumar R, Mehta VS, Singh P, Maroon JC, Bansal R, Sandal K, Roy RG, Samkaria A, Sharma S, Sandhilya S, Gaur S, Parvathi S, Joshi M. Glutathione Depletion and Concomitant Elevation of Susceptibility in Patients with Parkinson's Disease: State-of-the-Art MR Spectroscopy and Neuropsychological Study. ACS Chem Neurosci 2023; 14:4383-4394. [PMID: 38050970 PMCID: PMC10739611 DOI: 10.1021/acschemneuro.3c00717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/21/2023] [Accepted: 11/22/2023] [Indexed: 12/07/2023] Open
Abstract
Parkinson's disease (PD) is characterized by extrapyramidal motor disturbances and nonmotor cognitive impairments which impact activities of daily living. Although the etiology of PD is still obscure, autopsy reports suggest that oxidative stress (OS) is one of the important factors in the pathophysiology of PD. In the current study, we have investigated the impact of OS in PD by measuring the antioxidant glutathione (GSH) levels from the substantia nigra (SN), left hippocampus (LH) and neurotransmitter γ-amino butyric acid (GABA) levels from SN region. Concomitant quantitative susceptibility mapping (QSM) from SN and LH was also acquired from thirty-eight PD patients and 30 age-matched healthy controls (HC). Glutathione levels in the SN region decreased significantly and susceptibility increased significantly in PD compared to HC. Nonsignificant depletion of GABA was observed in the SN region. GSH levels in the LH region were depleted significantly, but LH susceptibility did not alter in the PD cohort compared to HC. Neuropsychological and physical assessment demonstrated significant impairment of cognitive functioning in PD patients compared to HC. GSH depletion was negatively correlated to motor function performance. Multivariate receiver operating characteristic (ROC) curve analysis on the combined effect of GSH, GABA, and susceptibility in the SN region yielded an improved diagnostic accuracy of 86.1% compared to individual diagnostic accuracy based on GSH (65.8%), GABA (57.5%), and susceptibility (69.6%). This is the first comprehensive report in PD demonstrating significant GSH depletion as well as concomitant iron enhancement in the SN region.
Collapse
Affiliation(s)
- Deepika Shukla
- Neuroimaging
and Neurospectroscopy Laboratory (NINS), NBRC, Gurgaon 122051, India
| | - Anshika Goel
- Neuroimaging
and Neurospectroscopy Laboratory (NINS), NBRC, Gurgaon 122051, India
| | - Pravat K. Mandal
- Neuroimaging
and Neurospectroscopy Laboratory (NINS), NBRC, Gurgaon 122051, India
- Florey
Institute of Neuroscience and Mental Health, Melbourne, VIC 3052, Australia
- Department
of Neurosurgery, University of Pittsburgh
Medical School, Pittsburgh, Pennsylvania 15213, United States
| | - Shallu Joon
- Neuroimaging
and Neurospectroscopy Laboratory (NINS), NBRC, Gurgaon 122051, India
| | - Khushboo Punjabi
- Neuroimaging
and Neurospectroscopy Laboratory (NINS), NBRC, Gurgaon 122051, India
| | - Yashika Arora
- Neuroimaging
and Neurospectroscopy Laboratory (NINS), NBRC, Gurgaon 122051, India
| | - Rajnish Kumar
- Department
of Neurology, Paras Hospitals, Gurgaon, Haryana 122002, India
| | - Veer Singh Mehta
- Department
of Neurosurgery, Paras Hospitals, Gurgaon, Haryana 122002, India
| | - Padam Singh
- Department
of Biostatistics, Medanta Medicity, Gurgaon, Haryana 122001, India
| | - Joseph C. Maroon
- Department
of Neurosurgery, University of Pittsburgh
Medical School, Pittsburgh, Pennsylvania 15213, United States
| | - Rishu Bansal
- Department
of Neurology, Medanta Medicity, Gurgaon, Haryana 122001, India
| | - Kanika Sandal
- Neuroimaging
and Neurospectroscopy Laboratory (NINS), NBRC, Gurgaon 122051, India
| | - Rimil Guha Roy
- Neuroimaging
and Neurospectroscopy Laboratory (NINS), NBRC, Gurgaon 122051, India
| | - Avantika Samkaria
- Neuroimaging
and Neurospectroscopy Laboratory (NINS), NBRC, Gurgaon 122051, India
| | - Shallu Sharma
- Neuroimaging
and Neurospectroscopy Laboratory (NINS), NBRC, Gurgaon 122051, India
| | - Sandhya Sandhilya
- Neuroimaging
and Neurospectroscopy Laboratory (NINS), NBRC, Gurgaon 122051, India
| | - Shradha Gaur
- Neuroimaging
and Neurospectroscopy Laboratory (NINS), NBRC, Gurgaon 122051, India
| | - S. Parvathi
- Department
of Biostatistics, Medanta Medicity, Gurgaon, Haryana 122001, India
| | - Mallika Joshi
- Neuroimaging
and Neurospectroscopy Laboratory (NINS), NBRC, Gurgaon 122051, India
| |
Collapse
|
4
|
Dell'Orco A, Riemann LT, Ellison SLR, Aydin S, Göschel L, Tietze A, Scheel M, Fillmer A. Macromolecule modelling for improved metabolite quantification using short echo time brain 1 H MRS at 3 T and 7 T: The PRaMM Model. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.16.567383. [PMID: 38014000 PMCID: PMC10680753 DOI: 10.1101/2023.11.16.567383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Purpose To improve reliability of metabolite quantification at both, 3 T and 7 T, we propose a novel parametrized macromolecules quantification model (PRaMM) for brain 1 H MRS, in which the ratios of macromolecule peak intensities are used as soft constraints. Methods Full- and metabolite-nulled spectra were acquired in three different brain regions with different ratios of grey and white matter from six healthy volunteers, at both 3 T and 7 T. Metabolite-nulled spectra were used to identify highly correlated macromolecular signal contributions and estimate the ratios of their intensities. These ratios were then used as soft constraints in the proposed PRaMM model for quantification of full spectra. The PRaMM model was validated by comparison with a single component macromolecule model and a macromolecule subtraction technique. Moreover, the influence of the PRaMM model on the repeatability and reproducibility compared to those other methods was investigated. Results The developed PRaMM model performed better than the two other approaches in all three investigated brain regions. Several estimates of metabolite concentration and their Cramér-Rao lower bounds were affected by the PRaMM model reproducibility, and repeatability of the achieved concentrations were tested by evaluating the method on a second repeated acquisitions dataset. While the observed effects on both metrics were not significant, the fit quality metrics were improved for the PRaMM method (p≤0.0001). Minimally detectable changes are in the range 0.5 - 1.9 mM and percent coefficients of variations are lower than 10% for almost all the clinically relevant metabolites. Furthermore, potential overparameterization was ruled out. Conclusion Here, the PRaMM model, a method for an improved quantification of metabolites was developed, and a method to investigate the role of the MM background and its individual components from a clinical perspective is proposed.
Collapse
|
5
|
Huang M, Yu H, Cai X, Zhang Y, Pu W, Gao B. A comparative study of posterior cingulate metabolism in patients with mild cognitive impairment due to Parkinson's disease or Alzheimer's disease. Sci Rep 2023; 13:14241. [PMID: 37648724 PMCID: PMC10469183 DOI: 10.1038/s41598-023-41569-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 08/29/2023] [Indexed: 09/01/2023] Open
Abstract
Few comparative studies have assessed metabolic brain changes in cognitive impairment among neurodegenerative disorders, and the posterior cingulate cortex (PCC) is a metabolically active brain region with high involvement in multiple cognitive processes. Therefore, in this study, metabolic abnormalities of the PCC were compared in patients with mild cognitive impairment (MCI) due to Parkinson's disease (PD) or Alzheimer's disease (AD), as examined by proton magnetic resonance spectroscopy (1H-MRS). Thirty-eight patients with idiopathic PD, including 20 with mild cognitive impairment (PDMCI) and 18 with normal cognitive function (PDN), 18 patients with probable mild cognitive impairment (ADMCI), and 25 healthy elderly controls (HCs) were recruited and underwent PCC 1H-MRS scans. Compared with HCs, patients with PDMCI exhibited significantly reduced concentrations of N-acetyl aspartate (NAA), total NAA (tNAA), choline (Cho), glutathione (GSH), glutamate + glutamine (Glx) and total creatine (tCr), while ADMCI cases exhibited significantly elevated levels of myo-inositol (Ins) and Ins/tCr ratio, as well as reduced NAA/Ins ratio. No significant metabolic changes were detected in PDN subjects. Compared with ADMCI, reduced NAA, Ins and tCr concentrations were detected in PDMCI. Besides, ROC curve analysis revealed that tCr concentration could differentiate PDMCI from PDN with an AUC of 0.71, and NAA/Ins ratio could differentiate patients with MCI from controls with normal cognitive function with an AUC of 0.74. Patients with PDMCI and ADMCI exhibited distinct PCC metabolic 1H-MRS profiles. The findings suggested cognitively normal PD patients with low NAA and tCr in the PCC might be at risk of preclinical PDMCI, and Ins and/or NAA/MI ratio in the PCC should be reconsidered a possible biomarker of preclinical MCI in clinical practice. So, comparing PCC's 1H-MRS profiles of cognitive impairment among neurodegenerative illnesses may provide useful information for better defining the disease process and elucidate possible treatment mechanisms.
Collapse
Affiliation(s)
- Mingming Huang
- Department of Radiology, Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China.
| | - Hui Yu
- General Practice Center and Department of Radiology, The Seventh Affiliated Hospital, Southern Medical University, Foshan, 528200, China
| | - Xi Cai
- Department of Radiology, Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China
| | - Yong Zhang
- Department of Radiology, Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China
| | - Wei Pu
- Department of Radiology, Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China
| | - Bo Gao
- Department of Radiology, Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China.
| |
Collapse
|
6
|
Derkaczew M, Martyniuk P, Osowski A, Wojtkiewicz J. Cyclitols: From Basic Understanding to Their Association with Neurodegeneration. Nutrients 2023; 15:2029. [PMID: 37432155 DOI: 10.3390/nu15092029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 04/18/2023] [Accepted: 04/19/2023] [Indexed: 07/12/2023] Open
Abstract
One of the most common cyclitols found in eukaryotic cells-Myo-inositol (MI) and its derivatives play a key role in many cellular processes such as ion channel physiology, signal transduction, phosphate storage, cell wall formation, membrane biogenesis and osmoregulation. The aim of this paper is to characterize the possibility of neurodegenerative disorders treatment using MI and the research of other therapeutic methods linked to MI's derivatives. Based on the reviewed literature the researchers focus on the most common neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, Huntington's disease and Spinocerebellar ataxias, but there are also works describing other seldom encountered diseases. The use of MI, d-pinitol and other methods altering MI's metabolism, although research on this topic has been conducted for years, still needs much closer examination. The dietary supplementation of MI shows a promising effect on the treatment of neurodegenerative disorders and can be of great help in alleviating the accompanying depressive symptoms.
Collapse
Affiliation(s)
- Maria Derkaczew
- Department of Human Physiology and Pathophysiology, School of Medicine, Collegium Medicum, University of Warmia and Mazury, 10-082 Olsztyn, Poland
- Students' Scientific Club of Pathophysiologists, Department of Human Physiology and Pathophysiology, School of Medicine, University of Warmia and Mazury, 10-082 Olsztyn, Poland
| | - Piotr Martyniuk
- Department of Human Physiology and Pathophysiology, School of Medicine, Collegium Medicum, University of Warmia and Mazury, 10-082 Olsztyn, Poland
- Students' Scientific Club of Pathophysiologists, Department of Human Physiology and Pathophysiology, School of Medicine, University of Warmia and Mazury, 10-082 Olsztyn, Poland
| | - Adam Osowski
- Department of Human Physiology and Pathophysiology, School of Medicine, Collegium Medicum, University of Warmia and Mazury, 10-082 Olsztyn, Poland
| | - Joanna Wojtkiewicz
- Department of Human Physiology and Pathophysiology, School of Medicine, Collegium Medicum, University of Warmia and Mazury, 10-082 Olsztyn, Poland
| |
Collapse
|
7
|
Gonzalez-Robles C, Weil RS, van Wamelen D, Bartlett M, Burnell M, Clarke CS, Hu MT, Huxford B, Jha A, Lambert C, Lawton M, Mills G, Noyce A, Piccini P, Pushparatnam K, Rochester L, Siu C, Williams-Gray CH, Zeissler ML, Zetterberg H, Carroll CB, Foltynie T, Schrag A. Outcome Measures for Disease-Modifying Trials in Parkinson's Disease: Consensus Paper by the EJS ACT-PD Multi-Arm Multi-Stage Trial Initiative. JOURNAL OF PARKINSON'S DISEASE 2023; 13:1011-1033. [PMID: 37545260 PMCID: PMC10578294 DOI: 10.3233/jpd-230051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 06/23/2023] [Indexed: 08/08/2023]
Abstract
BACKGROUND Multi-arm, multi-stage (MAMS) platform trials can accelerate the identification of disease-modifying treatments for Parkinson's disease (PD) but there is no current consensus on the optimal outcome measures (OM) for this approach. OBJECTIVE To provide an up-to-date inventory of OM for disease-modifying PD trials, and a framework for future selection of OM for such trials. METHODS As part of the Edmond J Safra Accelerating Clinical Trials in Parkinson Disease (EJS ACT-PD) initiative, an expert group with Patient and Public Involvement and Engagement (PPIE) representatives' input reviewed and evaluated available evidence on OM for potential use in trials to delay progression of PD. Each OM was ranked based on aspects such as validity, sensitivity to change, participant burden and practicality for a multi-site trial. Review of evidence and expert opinion led to the present inventory. RESULTS An extensive inventory of OM was created, divided into: general, motor and non-motor scales, diaries and fluctuation questionnaires, cognitive, disability and health-related quality of life, capability, quantitative motor, wearable and digital, combined, resource use, imaging and wet biomarkers, and milestone-based. A framework for evaluation of OM is presented to update the inventory in the future. PPIE input highlighted the need for OM which reflect their experience of disease progression and are applicable to diverse populations and disease stages. CONCLUSION We present a range of OM, classified according to a transparent framework, to aid selection of OM for disease-modifying PD trials, whilst allowing for inclusion or re-classification of relevant OM as new evidence emerges.
Collapse
Affiliation(s)
| | | | | | | | - Matthew Burnell
- Medical Research Council Clinical Trials Unit at University College London, London, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Wang P, Zhao L, Wang T, Mei W, Li J, An Y, Li L, Li Z. Comparison of Half-Effective Concentration of Propofol in Patients with Parkinson's Disease and Non-Parkinson's Disease. Clin Interv Aging 2023; 18:307-315. [PMID: 36879829 PMCID: PMC9985387 DOI: 10.2147/cia.s380416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 02/13/2023] [Indexed: 03/06/2023] Open
Abstract
Objective This study aimed to compare the half-effective concentration (EC50) of propofol required for the bispectral index (BIS) 50 in patients with Parkinson's disease (PD) and non-PD (NPD) during induction by the Dixon's improved sequential method. Methods This prospective study recruited 20 patients with PD undergoing deep brain stimulation and 20 patients with NPD accompanied by meningioma or glioma undergoing intracranial surgery from March 2018 to March 2019. The patients were induced by propofol via target-controlled infusion. The target effect-site concentration of propofol was determined by the Dixon's improved sequential method. The results of the pilot experiment showed that the target effect-site concentration for the first patient with PD and NPD was 3.5 µg/mL and 2.8 µg/mL, respectively. BIS values were recorded after achieving a constant effect-site concentration of propofol. The increment or decrement of the target effect-site concentration of the next patient was 0.1 µg/mL. Results Demographic data, general physical condition, and hemodynamic values were similar between the PD and the NPD groups. The target effect-site concentration of propofol induction doses was significantly higher in the PD group than in the NPD group. The EC50 of propofol required for BIS 50 was 3.213 µg/mL [95% confidence interval (CI), 3.085-3.287 µg/mL] in the PD group and 2.77 µg/mL (95% CI, 2.568-2.977 µg/mL) in the NPD group. Conclusion The EC50 of propofol required for BIS 50 was higher in patients with PD than in patients with NPD.
Collapse
Affiliation(s)
- Ping Wang
- Department of Anesthesiology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, People's Republic of China.,Department of Anesthesiology, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, 210000, People's Republic of China
| | - Lei Zhao
- Department of Anesthesiology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, People's Republic of China
| | - Tianlong Wang
- Department of Anesthesiology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, People's Republic of China
| | - Wei Mei
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430000, People's Republic of China
| | - Jingsheng Li
- Department of Anesthesiology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, People's Republic of China
| | - Yi An
- Department of Anesthesiology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, People's Republic of China
| | - Lixia Li
- Department of Anesthesiology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, People's Republic of China
| | - Zhongjia Li
- Department of Anesthesiology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, People's Republic of China
| |
Collapse
|
9
|
Islam F, Islam MM, Khan Meem AF, Nafady MH, Islam MR, Akter A, Mitra S, Alhumaydhi FA, Emran TB, Khusro A, Simal-Gandara J, Eftekhari A, Karimi F, Baghayeri M. Multifaceted role of polyphenols in the treatment and management of neurodegenerative diseases. CHEMOSPHERE 2022; 307:136020. [PMID: 35985383 DOI: 10.1016/j.chemosphere.2022.136020] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 07/21/2022] [Accepted: 08/07/2022] [Indexed: 06/15/2023]
Abstract
Neurodegenerative diseases (NDDs) are conditions that cause neuron structure and/or function to deteriorate over time. Genetic alterations may be responsible for several NDDs. However, a multitude of physiological systems can trigger neurodegeneration. Several NDDs, such as Huntington's, Parkinson's, and Alzheimer's, are assigned to oxidative stress (OS). Low concentrations of reactive oxygen and nitrogen species are crucial for maintaining normal brain activities, as their increasing concentrations can promote neural apoptosis. OS-mediated neurodegeneration has been linked to several factors, including notable dysfunction of mitochondria, excitotoxicity, and Ca2+ stress. However, synthetic drugs are commonly utilized to treat most NDDs, and these treatments have been known to have side effects during treatment. According to providing empirical evidence, studies have discovered many occurring natural components in plants used to treat NDDs. Polyphenols are often safer and have lesser side effects. As, epigallocatechin-3-gallate, resveratrol, curcumin, quercetin, celastrol, berberine, genistein, and luteolin have p-values less than 0.05, so they are typically considered to be statistically significant. These polyphenols could be a choice of interest as therapeutics for NDDs. This review highlighted to discusses the putative effectiveness of polyphenols against the most prevalent NDDs.
Collapse
Affiliation(s)
- Fahadul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh
| | - Md Mohaimenul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh
| | - Atkia Farzana Khan Meem
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh
| | - Mohamed H Nafady
- Faculty of Applied Health Science Technology, Misr University for Science and Technology, Giza, 12568, Egypt
| | - Md Rezaul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh
| | - Aklima Akter
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh
| | - Saikat Mitra
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Fahad A Alhumaydhi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, 52571, Saudi Arabia
| | - Talha Bin Emran
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh; Department of Pharmacy, BGC Trust University Bangladesh, Chittagong, 4381, Bangladesh.
| | - Ameer Khusro
- Department of Biotechnology, Hindustan College of Arts & Science, Padur, OMR, Chennai, 603103, India; Centre for Research and Development, Department of Biotechnology, Hindustan College of Arts & Science, Padur, OMR, Chennai, 603103, India
| | - Jesus Simal-Gandara
- Universidade de Vigo, Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, E32004, Ourense, Spain.
| | - Aziz Eftekhari
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Pharmacology & Toxicology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fatemeh Karimi
- Department of Chemical Engineering, Quchan University of Technology, Quchan, Iran.
| | - Mehdi Baghayeri
- Department of Chemistry, Faculty of Science, Hakim Sabzevari University, PO. Box 397, Sabzevar, Iran.
| |
Collapse
|
10
|
Shoeibi A, Verdipour M, Hoseini A, Moshfegh M, Olfati N, Layegh P, Dadgar-Moghadam M, Farzadfard MT, Rezaeitalab F, Borji N. Brain proton magnetic resonance spectroscopy in patients with Parkinson's disease. CURRENT JOURNAL OF NEUROLOGY 2022; 21:156-161. [PMID: 38011354 PMCID: PMC10082953 DOI: 10.18502/cjn.v21i3.11108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 05/06/2022] [Indexed: 11/29/2023]
Abstract
Background: The accuracy of current laboratory and imaging studies for diagnosis and monitoring of Parkinson's disease (PD) severity is low and diagnosis is mainly dependent on clinical examination. Proton magnetic resonance spectroscopy (MRS) is a non-invasive technique that can assess the chemical profile of the brain. In this study, we evaluated the utility of proton MRS in diagnosis of PD and determination of its severity. Methods: Patients with PD and healthy age-matched controls were studied using proton MRS. The level of N-acetylaspartate (NAA), total creatine (Cr), and total choline (Cho), and their ratios were calculated in substantia nigra (SN), putamen (Pu), and motor cortex. PD severity was assessed by the Unified Parkinson's Disease Rating Scale (UPDRS) and the Hoehn and Yahr scale. Results: Compared to 25 healthy controls (18 men, age: 59.00 ± 8.39 years), our 30 patients with PD (24 men, age: 63.80 ± 12.00 years, 29 under treatment) showed no significant difference in the metabolite ratios in SN, Pu, and motor cortex. Nigral level of NAA/Cr was significantly correlated with total UPDRS score in patients with PD (r = -0.35, P = 0.08). Moreover, patients with PD with Hoehn and Yahr scale score ≥ 2 had a lower NAA/Cr level in SN compared to patients with a lower stage. Conclusion: This study shows that 1.5 tesla proton MRS is unable to detect metabolite abnormalities in patients with PD who are under treatment. However, the NAA/Cr ratio in the SN might be a useful imaging biomarker for evaluation of disease severity in these patients.
Collapse
Affiliation(s)
- Ali Shoeibi
- Department of Neurology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahdieh Verdipour
- Department of Neurology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Alireza Hoseini
- Department of Neurology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Nahid Olfati
- Department of Neurology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Parvaneh Layegh
- Department of Radiology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maliheh Dadgar-Moghadam
- Department of Community and Family Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Fariborz Rezaeitalab
- Department of Neurology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Nahid Borji
- Department of Radiology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
11
|
Höllerhage M, Klietz M, Höglinger GU. Disease modification in Parkinsonism: obstacles and ways forward. J Neural Transm (Vienna) 2022; 129:1133-1153. [PMID: 35695938 PMCID: PMC9463344 DOI: 10.1007/s00702-022-02520-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 05/21/2022] [Indexed: 12/19/2022]
Abstract
To date, the diagnoses of Parkinson syndromes are based on clinical examination. Therefore, these specific diagnoses are made, when the neuropathological process is already advanced. However, disease modification or neuroprotection, is considered to be most effective before marked neurodegeneration has occurred. In recent years, early clinical or prodromal stages of Parkinson syndromes came into focus. Moreover, subtypes of distinct diseases will allow predictions of the individual course of the diseases more precisely. Thereby, patients will be enrolled into clinical trials with more specific disease entities and endpoints. Furthermore, novel fluid and imaging biomarkers that allow biochemical diagnoses are under development. These will lead to earlier diagnoses and earlier therapy in the future as consequence. Furthermore, therapeutic approaches will take the underlying neuropathological process of neurodegenerative Parkinson syndromes more specific into account. Specifically, future therapies will target the aggregation of aggregation-prone proteins such as alpha-synuclein and tau, the degradation of pathological aggregates, and the spreading of pathological protein aggregates throughout the brain. Many of these approaches are already in (pre)clinical development. In addition, anti-inflammatory approaches are in development. Furthermore, drug-repurposing is a feasible approach to shorten the developmental process of new drugs.
Collapse
Affiliation(s)
- M Höllerhage
- Department of Neurology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - M Klietz
- Department of Neurology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - G U Höglinger
- Department of Neurology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany.
| |
Collapse
|
12
|
Effect of MAO-B Inhibitors on Neurometabolic Profile of Patients Affected by Parkinson Disease: A Proton Magnetic Resonance Spectroscopy Study. J Clin Med 2022; 11:jcm11071931. [PMID: 35407539 PMCID: PMC8999805 DOI: 10.3390/jcm11071931] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/18/2022] [Accepted: 03/27/2022] [Indexed: 12/10/2022] Open
Abstract
Parkinson’s Disease (PD) is the most common neurodegenerative movement disorder whose treatment is symptomatic. No suitable methods for assessing the effects of dopaminergic drugs on disease progression in clinical trials have yet been provided. The aim of this longitudinal study is to evaluate the influence of rasagiline and selegiline on neurometabolic profile in de novo PD patients by using Proton Magnetic Resonance Spectroscopy (1H-MRS). We enrolled de novo PD patients who were divided into two groups of 20 patients each, according to the dopaminergic treatment prescribed at the baseline visit (rasagiline or selegiline). At the baseline visit and after 12 months, all patients underwent neurological evaluation as well as 1H-MRS. Forty healthy controls (HC) underwent 1H-MRS at baseline and after 12 months. PD patients, compared to HC, showed significantly lower concentrations of NAA in the motor cortex, while the Cho levels showed a decreasing trend. After 12 months of therapy, the 1H-MRS study revealed that rasagiline and selegiline in a similar way were able to restore the NAA levels to values similar to those of HC. In addition, this neurometabolic change showed a correlation with UPDRS-III scores. This is the first longitudinal study that provides preliminary evidence that 1H-MRS may be a suitable method to evaluate objectively the influence of MAO-B inhibitors on the neurometabolic profile of PD patients. These results could open a new scenario on the hypothesis of a drug-induced slowing effect of PD progression.
Collapse
|
13
|
Prasuhn J, Strautz R, Lemmer F, Dreischmeier S, Kasten M, Hanssen H, Heldmann M, Brüggemann N. Neuroimaging Correlates of Substantia Nigra Hyperechogenicity in Parkinson's Disease. JOURNAL OF PARKINSON'S DISEASE 2022; 12:1191-1200. [PMID: 35180131 DOI: 10.3233/jpd-213000] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
BACKGROUND Degeneration of dopaminergic neurons within the brainstem substantia nigra (SN) is both a pathological hallmark of Parkinson's disease (PD) and a major contributor to symptom expression. Therefore, non-invasive evaluation of the SN is critical for diagnosis and evaluation of disease progression. Hyperechogenicity (HE+) on midbrain transcranial sonography (TCS) supports the clinically established diagnosis of PD. Further, postmortem studies suggest involvement of neuromelanin (NM) loss and iron deposition in nigral neurodegeneration and HE+ emergence. However, the associations between HE+ and signs of nigral NM loss and iron deposition revealed by magnetic resonance imaging (MRI) have not been examined. OBJECTIVE To elucidate the magnetic resonance- (MR-) morphological representation of the HE+ by NM-weighted (NMI) and susceptibility-weighted MRI (SWI). METHODS Thirty-four PD patients and 29 healthy controls (HCs) received TCS followed by NMI and SWI. From MR images, two independent raters manually identified the SN, placed seeds in non-SN midbrain areas, and performed semi-automated SN segmentation with different thresholds based on seed mean values and standard deviations. Masks of the SN were then used to extract mean area, mean signal intensity, maximal signal area, maximum signal (for NMI), and minimum signal (for SWI). RESULTS There were no significant differences in NMI- and SWI-based parameters between patients and HCs, and no significant associations between HE+ extent and NMI- or SWI-based parameters. CONCLUSION HE+ on TCS appears unrelated to PD pathology revealed by NMI and SWI. Thus, TCS and MRI parameters should be considered complementary, and the pathophysiological correlates of the HE+ require further study.
Collapse
Affiliation(s)
- Jannik Prasuhn
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
- Department of Neurology, University Medical Center Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
- Center for Brain, Behavior, and Metabolism, University of Lübeck, Lübeck, Germany
| | - Robert Strautz
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
- Department of Neurology, University Medical Center Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
| | - Felicitas Lemmer
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
- Department of Neurology, University Medical Center Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
| | - Shalida Dreischmeier
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
- Department of Neurology, University Medical Center Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
| | - Meike Kasten
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
- Center for Brain, Behavior, and Metabolism, University of Lübeck, Lübeck, Germany
- Department of Psychiatry, University Medical Center Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
| | - Henrike Hanssen
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
- Department of Neurology, University Medical Center Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
- Center for Brain, Behavior, and Metabolism, University of Lübeck, Lübeck, Germany
| | - Marcus Heldmann
- Department of Neurology, University Medical Center Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
- Center for Brain, Behavior, and Metabolism, University of Lübeck, Lübeck, Germany
- Institute of Psychology II, University of Lübeck, Lübeck, Germany
| | - Norbert Brüggemann
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
- Department of Neurology, University Medical Center Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
- Center for Brain, Behavior, and Metabolism, University of Lübeck, Lübeck, Germany
| |
Collapse
|
14
|
Mortezazadeh T, Seyedarabi H, Mahmoudian B, Islamian JP. Imaging modalities in differential diagnosis of Parkinson’s disease: opportunities and challenges. THE EGYPTIAN JOURNAL OF RADIOLOGY AND NUCLEAR MEDICINE 2021. [DOI: 10.1186/s43055-021-00454-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Parkinson’s disease (PD) diagnosis is yet largely based on the related clinical aspects. However, genetics, biomarkers, and neuroimaging studies have demonstrated a confirming role in the diagnosis, and future developments might be used in a pre-symptomatic phase of the disease.
Main text
This review provides an update on the current applications of neuroimaging modalities for PD diagnosis. A literature search was performed to find published studies that were involved on the application of different imaging modalities for PD diagnosis. An organized search of PubMed/MEDLINE, Embase, ProQuest, Scopus, Cochrane, and Google Scholar was performed based on MeSH keywords and suitable synonyms. Two researchers (TM and JPI) independently and separately performed the literature search. Our search strategy in each database was done by the following terms: ((Parkinson [Title/Abstract]) AND ((“Parkinsonian syndromes ”[Mesh]) OR Parkinsonism [Title/Abstract])) AND ((PET [Title/Abstract]) OR “SPECT”[Mesh]) OR ((Functional imaging, Transcranial sonography [Title/Abstract]) OR “Magnetic resonance spectroscopy ”[Mesh]). Database search had no limitation in time, and our last update of search was in February 2021. To have a comprehensive search and to find possible relevant articles, a manual search was conducted on the reference list of the articles and limited to those published in English.
Conclusion
Early diagnosis of PD could be vital for early management and adequate neuroprotection. Recent neuroimaging modalities such as SPECT and PET imaging using radiolabeled tracers, MRI, and CT are used to discover the disease. By the modalities, it is possible to early diagnose dopaminergic degeneration and also to differentiate PD from others parkinsonian syndromes, to monitor the natural progression of the disease and the effect of neuroprotective treatments on the progression. In this regard, functional imaging techniques have provided critical insights and roles on PD.
Collapse
|
15
|
Clark EH, Vázquez de la Torre A, Hoshikawa T, Briston T. Targeting mitophagy in Parkinson's disease. J Biol Chem 2021; 296:100209. [PMID: 33372898 PMCID: PMC7948953 DOI: 10.1074/jbc.rev120.014294] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 12/18/2020] [Accepted: 12/18/2020] [Indexed: 12/22/2022] Open
Abstract
The genetics and pathophysiology of Parkinson's disease (PD) strongly implicate mitochondria in disease aetiology. Elegant studies over the last two decades have elucidated complex molecular signaling governing the identification and removal of dysfunctional mitochondria from the cell, a process of mitochondrial quality control known as mitophagy. Mitochondrial deficits and specifically reduced mitophagy are evident in both sporadic and familial PD. Mendelian genetics attributes loss-of-function mutations in key mitophagy regulators PINK1 and Parkin to early-onset PD. Pharmacologically enhancing mitophagy and accelerating the removal of damaged mitochondria are of interest for developing a disease-modifying PD therapeutic. However, despite significant understanding of both PINK1-Parkin-dependent and -independent mitochondrial quality control pathways, the therapeutic potential of targeting mitophagy remains to be fully explored. Here, we provide a summary of the genetic evidence supporting the role for mitophagy failure as a pathogenic mechanism in PD. We assess the tractability of mitophagy pathways and prospects for drug discovery and consider intervention points for mitophagy enhancement. We explore the numerous hit molecules beginning to emerge from high-content/high-throughput screening as well as the biochemical and phenotypic assays that enabled these screens. The chemical and biological properties of these reference compounds suggest many could be used to interrogate and perturb mitochondrial biology to validate promising drug targets. Finally, we address key considerations and challenges in achieving preclinical proof-of-concept, including in vivo mitophagy reporter methodologies and disease models, as well as patient stratification and biomarker development for mitochondrial forms of the disease.
Collapse
Affiliation(s)
- Emily H Clark
- Hatfield Research Laboratories, Neurology Innovation Centre, Eisai Ltd, Hatfield, United Kingdom
| | | | - Tamaki Hoshikawa
- Hatfield Research Laboratories, Neurology Innovation Centre, Eisai Ltd, Hatfield, United Kingdom
| | - Thomas Briston
- Hatfield Research Laboratories, Neurology Innovation Centre, Eisai Ltd, Hatfield, United Kingdom.
| |
Collapse
|
16
|
Marino S, Cartella E, Donato N, Muscarà N, Sorbera C, Cimino V, De Salvo S, Micchìa K, Silvestri G, Bramanti A, Di Lorenzo G. Quantitative assessment of Parkinsonian tremor by using biosensor device. Medicine (Baltimore) 2019; 98:e17897. [PMID: 31860947 PMCID: PMC6940115 DOI: 10.1097/md.0000000000017897] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 06/12/2019] [Accepted: 10/11/2019] [Indexed: 01/12/2023] Open
Abstract
Parkinson disease (PD) is the second most common neurodegenerative disease which affects population older than 65 years. Tremor represents one of the main symptomatic triads in PD, particularly in rest state.We enrolled 41 idiopathic PD patients, to validate the assessment of tremor symptoms.To be enrolled in the study, patients had to fulfill the movement disorder society clinical diagnostic criteria for PD.We used an innovative home-made, low-cost device, able to quantify the frequency and amplitude of rest tremor and stress conditionOur results confirmed the presence of tremor during muscular effort in a significant number of patients and the influence of emotional stress.We suppose that this new device should be validated in clinical practice as a support of differential diagnosis and therapeutic management of PD patients.
Collapse
Affiliation(s)
| | | | - Nicola Donato
- Laboratory of Electronics for Sensors and for Systems of Transduction, Department of Engineering, University of Messina
| | | | | | | | | | | | | | - Alessia Bramanti
- Institute of Applied Sciences and Intelligent Systems “Edoardo Caianello” (ISASI), National Research Council of Italy, Messina, Italy
| | | |
Collapse
|
17
|
Klietz M, Bronzlik P, Nösel P, Wegner F, Dressler DW, Dadak M, Maudsley AA, Sheriff S, Lanfermann H, Ding XQ. Altered Neurometabolic Profile in Early Parkinson's Disease: A Study With Short Echo-Time Whole Brain MR Spectroscopic Imaging. Front Neurol 2019; 10:777. [PMID: 31379726 PMCID: PMC6651356 DOI: 10.3389/fneur.2019.00777] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 07/03/2019] [Indexed: 12/11/2022] Open
Abstract
Objective: To estimate alterations in neurometabolic profile of patients with early stage Parkinson's disease (PD) by using a short echo-time whole brain magnetic resonance spectroscopic imaging (wbMRSI) as possible biomarker for early diagnosis and monitoring of PD. Methods: 20 PD patients in early stage (H&Y ≤ 2) without evidence of severe other diseases and 20 age and sex matched healthy controls underwent wbMRSI. In each subject brain regional concentrations of metabolites N-acetyl-aspartate (NAA), choline (Cho), total creatine (tCr), glutamine (Gln), glutamate (Glu), and myo-inositol (mIns) were obtained in atlas-defined lobar structures including subcortical basal ganglia structures (the left and right frontal lobes, temporal lobes, parietal lobes, occipital lobes, and the cerebellum) and compared between patients and matched healthy controls. Clinical characteristics of the PD patients were correlated with spectroscopic findings. Results: In comparison to controls the PD patients revealed altered lobar metabolite levels in all brain lobes contralateral to dominantly affected body side, i.e., decreases of temporal NAA, Cho, and tCr, parietal NAA and tCr, and frontal as well as occipital NAA. The frontal NAA correlated negatively with the MDS-UPDRS II (R = 22120.585, p = 0.008), MDS-UPDRS IV (R = −0.458, p = 0.048) and total MDS-UPDRS scores (R = −0.679, p = 0.001). Conclusion: In early PD stages metabolic alterations are evident in all contralateral brain lobes demonstrating that the neurodegenerative process affects not only local areas by dopaminergic denervation, but also the functional network within different brain regions. The wbMRSI-detectable brain metabolic alterations reveal the potential to serve as biomarkers for early PD.
Collapse
Affiliation(s)
- Martin Klietz
- Department of Neurology, Hannover Medical School, Hanover, Germany
| | - Paul Bronzlik
- Department of Neuroradiology, Hannover Medical School, Hanover, Germany
| | - Patrick Nösel
- Department of Neuroradiology, Hannover Medical School, Hanover, Germany
| | - Florian Wegner
- Department of Neurology, Hannover Medical School, Hanover, Germany
| | - Dirk W Dressler
- Department of Neurology, Hannover Medical School, Hanover, Germany
| | - Mete Dadak
- Department of Neuroradiology, Hannover Medical School, Hanover, Germany
| | - Andrew A Maudsley
- Department of Radiology, University of Miami School of Medicine, Miami, FL, United States
| | - Sulaiman Sheriff
- Department of Radiology, University of Miami School of Medicine, Miami, FL, United States
| | | | - Xiao-Qi Ding
- Department of Neuroradiology, Hannover Medical School, Hanover, Germany
| |
Collapse
|
18
|
Watson CN, Belli A, Di Pietro V. Small Non-coding RNAs: New Class of Biomarkers and Potential Therapeutic Targets in Neurodegenerative Disease. Front Genet 2019; 10:364. [PMID: 31080456 PMCID: PMC6497742 DOI: 10.3389/fgene.2019.00364] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 04/05/2019] [Indexed: 12/11/2022] Open
Abstract
Neurodegenerative diseases (NDs) are becoming increasingly prevalent in the world, with an aging population. In the last few decades, due to the devastating nature of these diseases, the research of biomarkers has become crucial to enable adequate treatments and to monitor the progress of disease. Currently, gene mutations, CSF and blood protein markers together with the neuroimaging techniques are the most used diagnostic approaches. However, despite the efforts in the research, conflicting data still exist, highlighting the need to explore new classes of biomarkers, particularly at early stages. Small non-coding RNAs (MicroRNA, Small nuclear RNA, Small nucleolar RNA, tRNA derived small RNA and Piwi-interacting RNA) can be considered a "relatively" new class of molecule that have already proved to be differentially regulated in many NDs, hence they represent a new potential class of biomarkers to be explored. In addition, understanding their involvement in disease development could depict the underlying pathogenesis of particular NDs, so novel treatment methods that act earlier in disease progression can be developed. This review aims to describe the involvement of small non-coding RNAs as biomarkers of NDs and their potential role in future clinical applications.
Collapse
Affiliation(s)
- Callum N. Watson
- Neuroscience and Ophthalmology Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
- National Institute for Health Research Surgical Reconstruction and Microbiology Research Centre, Queen Elizabeth Hospital Birmingham, Birmingham, United Kingdom
| | - Antonio Belli
- Neuroscience and Ophthalmology Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
- National Institute for Health Research Surgical Reconstruction and Microbiology Research Centre, Queen Elizabeth Hospital Birmingham, Birmingham, United Kingdom
| | - Valentina Di Pietro
- Neuroscience and Ophthalmology Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
- National Institute for Health Research Surgical Reconstruction and Microbiology Research Centre, Queen Elizabeth Hospital Birmingham, Birmingham, United Kingdom
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana–Champaign, Urbana, IL, United States
| |
Collapse
|
19
|
Differential diagnosis of multiple system atrophy with predominant parkinsonism and Parkinson's disease using neural networks. J Neurol Sci 2019; 401:19-26. [PMID: 31005759 DOI: 10.1016/j.jns.2019.04.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 03/18/2019] [Accepted: 04/09/2019] [Indexed: 02/08/2023]
Abstract
Differential diagnosis between Parkinson's disease (PD) and atypical parkinsonism, such as multiple system atrophy (MSA), can be difficult, especially in the early stages of the disease. Deep learning using neural networks (NNs) makes possible the prediction of the diagnosis using various types of biomarkers, unlike conventional linear statistics. We aimed to differentiate the Parkinson's variant of MSA (MSA-P) from PD both in the early stages by clinical utilization of NN analyses before the hot cross-bun and putaminal rim imaging features of MSA appeared. Analysis by NN involved the data of voxel-based morphometry (VBM) that indicate morphological changes and magnetic resonance spectroscopy (MRS) that indicate qualitative changes. VBM analysis showed that compared with PD patients, MSA-P patients showed atrophy in the superior cerebellar peduncle, middle cerebellar peduncle, cerebellar hemisphere, pons, midbrain, and putamen, but not in the globus pallidus. Proton MRS on the globus pallidus in the diseased hemisphere, lacking atrophy as observed with VBM, revealed decreased neurons and gliosis in both groups. Clinical differentiation of MSA-P from PD using NN analysis, involved measuring the prediction potential using the area under the receiver operator characteristic (ROC) curves (AUC). Using both VBM and MRS data, NNs contributed adequately to the clinical diagnosis.
Collapse
|
20
|
LC–MS/MS determination of N-acetylaspartic acid in dried blood spot for selective screening of Canavan disease. MONATSHEFTE FUR CHEMIE 2019. [DOI: 10.1007/s00706-018-2349-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
21
|
Impairment of Motor Function Correlates with Neurometabolite and Brain Iron Alterations in Parkinson's Disease. Cells 2019; 8:cells8020096. [PMID: 30699914 PMCID: PMC6406520 DOI: 10.3390/cells8020096] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 01/17/2019] [Accepted: 01/24/2019] [Indexed: 12/13/2022] Open
Abstract
We took advantage of magnetic resonance imaging (MRI) and spectroscopy (MRS) as non-invasive methods to quantify brain iron and neurometabolites, which were analyzed along with other predictors of motor dysfunction in Parkinson’s disease (PD). Tapping hits, tremor amplitude, and the scores derived from part III of the Movement Disorder Society-Sponsored Revision of the Unified Parkinson Disease Rating Scale (MDS-UPDRS3 scores) were determined in 35 male PD patients and 35 controls. The iron-sensitive MRI relaxation rate R2* was measured in the globus pallidus and substantia nigra. γ-aminobutyric acid (GABA)-edited and short echo-time MRS was used for the quantification of neurometabolites in the striatum and thalamus. Associations of R2*, neurometabolites, and other factors with motor function were estimated with Spearman correlations and mixed regression models to account for repeated measurements (hands, hemispheres). In PD patients, R2* and striatal GABA correlated with MDS-UPDRS3 scores if not adjusted for age. Patients with akinetic-rigid PD subtype (N = 19) presented with lower creatine and striatal glutamate and glutamine (Glx) but elevated thalamic GABA compared to controls or mixed PD subtype. In PD patients, Glx correlated with an impaired dexterity when adjusted for covariates. Elevated myo-inositol was associated with more tapping hits and lower MDS-UPDRS3 scores. Our neuroimaging study provides evidence that motor dysfunction in PD correlates with alterations in brain iron and neurometabolites.
Collapse
|
22
|
Pupo DA, Kakareka JW, Krynitsky J, Leggio L, Pohida T, Studenski S, Harvey BK. Reliability of a Novel Video-Based Method for Assessing Age-Related Changes in Upper Limb Kinematics. Front Aging Neurosci 2018; 10:281. [PMID: 30319392 PMCID: PMC6166023 DOI: 10.3389/fnagi.2018.00281] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 08/29/2018] [Indexed: 11/21/2022] Open
Abstract
Monitoring age-related changes in motor function can be used to identify deviations that represent underlying diseases for which early diagnosis is often paramount for efficacious, interventional therapies. Currently, the availability of cost-effective and reliable diagnostic tools capable of routine monitoring is limited. Adequate diagnostic systems are needed to identify, monitor and distinguish early subclinical symptoms of neurological diseases from normal aging-associated changes. Herein, we describe the development, initial validation and reliability of the Hand-Arm Movement Monitoring System (HAMMS), a video-based data acquisition system built using a programmable, versatile platform for acquiring temporal and spatial metrics of hand and arm movements. A healthy aging population of 111 adults were used to evaluate the HAMMS via a repetitive motion test of changing target size. The test required participants to move a fiducial on their hand between two targets presented on a video monitor. The test-retest reliability based on Intraclass Correlation Coefficient (ICCs) for the system ranged from 0.56 to 0.87 and the Linear Correlation Coefficients (LCCs) ranged from 0.58 to 0.87. Average speed, average acceleration, speed error and center offset all demonstrated a positive correlation with age. Using an intertarget path of hand motion, we observed an age-dependent increase in the average number of points outside the most direct motion path, indicating a reduction in hand-arm movement control with age. The reliability, flexibility and programmability of the HAMMS makes this low cost, video-based platform an effective tool for evaluating longitudinal changes in hand-arm related movements and a potential diagnostic device for neurological diseases where hand-arm movements are affected.
Collapse
Affiliation(s)
- Daniel A Pupo
- Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD, United States
| | - John W Kakareka
- Signal Processing and Instrumentation Section, Office of Intramural Research, Center for Information Technology (CIT), National Institutes of Health, Bethesda, MD, United States
| | - Jonathan Krynitsky
- Signal Processing and Instrumentation Section, Office of Intramural Research, Center for Information Technology (CIT), National Institutes of Health, Bethesda, MD, United States
| | - Lorenzo Leggio
- Section on Clinical Psychoneuroendocrinology and Neuropsychopharmacology, National Institute on Alcohol Abuse and Alcoholism (NIAAA) and National Institute on Drug Abuse, National Institutes of Health, Bethesda, MD, United States.,Center for Alcohol and Addiction Studies, Brown University, Providence, RI, United States
| | - Tom Pohida
- Signal Processing and Instrumentation Section, Office of Intramural Research, Center for Information Technology (CIT), National Institutes of Health, Bethesda, MD, United States
| | - Stephanie Studenski
- Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD, United States
| | - Brandon K Harvey
- Optogenetics and Transgenic Technology Core, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, United States
| |
Collapse
|
23
|
|
24
|
O'Gorman Tuura RL, Baumann CR, Baumann-Vogel H. Neurotransmitter activity is linked to outcome following subthalamic deep brain stimulation in Parkinson's disease. Parkinsonism Relat Disord 2018; 50:54-60. [PMID: 29472099 DOI: 10.1016/j.parkreldis.2018.02.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 01/24/2018] [Accepted: 02/07/2018] [Indexed: 11/16/2022]
Abstract
INTRODUCTION While the mechanisms underlying the therapeutic effects of deep brain stimulation (DBS) in Parkinson's Disease (PD) are not yet fully understood, DBS appears to exert a wide range of neurochemical effects on the network level, thought to arise from activation of inhibitory and excitatory pathways. The activity within the primary inhibitory (GABAergic) and excitatory (glutamatergic) neurotransmitter systems may therefore play an important role in the therapeutic efficacy of DBS in PD. The purpose of this study was to investigate abnormalities in GABA-ergic and glutamatergic neurotransmission in PD, and to examine the link between neurotransmitter levels and outcome following DBS. METHODS Magnetic resonance spectra were acquired from the pons and basal ganglia in sixteen patients with PD and sixteen matched control participants. GABA and glutamate levels were quantified with LCModel, an automated spectral fitting package. Fourteen patients subsequently underwent DBS, and PD symptoms were evaluated with the MDS-UPDRS at baseline and six months after surgery. The efficacy of DBS treatment was evaluated from the percentage improvement in MDS-UPDRS scores. RESULTS Basal ganglia GABA levels were significantly higher in PD patients relative to control participants (p < 0.01), while pontine glutamate + glutamine (Glx) levels were significantly lower in patients with PD (p < 0.05). While GABA levels were not significantly related to outcome post-surgery, basal ganglia glutamate levels emerged as a significant predictor of outcome, suggesting a possible role for glutamatergic neurotransmission in the therapeutic mechanism of DBS. CONCLUSION GABAergic and glutamatergic neurotransmission is altered in PD, and glutamatergic activity in particular may influence outcome post-surgery.
Collapse
Affiliation(s)
- Ruth L O'Gorman Tuura
- Center for MR Research, University Children's Hospital Zurich, Steinwiesstrasse 75, Zurich, 8032, Switzerland.
| | - Christian R Baumann
- Department of Neurology, University Hospital Zurich, Frauenklinikstrasse 26, Zurich, 8091, Switzerland
| | - Heide Baumann-Vogel
- Department of Neurology, University Hospital Zurich, Frauenklinikstrasse 26, Zurich, 8091, Switzerland
| |
Collapse
|
25
|
Examining alterations in GABA concentrations in the basal ganglia of patients with Parkinson's disease using MEGA-PRESS MRS. Jpn J Radiol 2017; 36:194-199. [PMID: 29280067 DOI: 10.1007/s11604-017-0714-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 12/11/2017] [Indexed: 12/24/2022]
Abstract
PURPOSE The aim of this study was to compare the gamma-amino butyric acid (GABA) levels in the left basal ganglia (BG) of patients with Parkinson's disease (PD) to those of healthy control (HC) volunteers using proton magnetic resonance spectroscopy (1H MRS). MATERIALS AND METHODS The GABA+ signal-the composite signal from GABA, macromolecules (MMs), and homocarnosine-was detected. GABA+ levels were examined in 21 PD patients and 15 age- and sex-matched HCs. 3T-1H-MRS using the Mescher-Garwood point-resolved spectroscopy (MEGA-PRESS) sequence was performed in order to detect GABA+ levels in the left BG, and the spectra were processed using the Gannet software. Differences in GABA+ levels between the two groups were analyzed using independent t-test analysis. RESULTS The GABA+ levels were significantly lower (P < 0.001) in the left BG of the patients with PD (1.31 ± 0.21 i.u.) than in the left BG of the HCs (1.62 ± 0.26 i.u.). CONCLUSION The lower GABA+ levels in the left BG of the PD patients suggest that GABA plays an important role in the pathogenesis of PD. The reduced GABA+ levels in the PD patients may be associated with GABAergic dysfunction.
Collapse
|
26
|
Wei TY, Fu Y, Chang KH, Lin KJ, Lu YJ, Cheng CM. Point-of-Care Devices Using Disease Biomarkers To Diagnose Neurodegenerative Disorders. Trends Biotechnol 2017; 36:290-303. [PMID: 29242004 DOI: 10.1016/j.tibtech.2017.11.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Revised: 11/16/2017] [Accepted: 11/17/2017] [Indexed: 12/16/2022]
Abstract
Neurodegenerative disorders such as Alzheimer's, Parkinson's, and Huntington's diseases are highly prevalent and immensely destructive to the health and well-being of individuals and their families across the globe. Neurodegenerative diseases are characterized by the gradual loss of neural tissue in the central nervous system. Clearly, early diagnosis of the onset of neurodegeneration is vital and beneficial. Current diagnostic methods rely heavily on symptoms or autopsy results, thus overlooking early diagnosis, the only opportunity for amelioration. However, appropriately selected and used biomarker diagnostics provide a solution. This article reviews the development and application of biomarker-related diagnostics for neurodegenerative disease with specific recommendations for point-of-care (POC) methodology. These advantageous approaches may offer a solution to existing obstacles and limitations to neurodegenerative disease treatment.
Collapse
Affiliation(s)
- Ting-Yen Wei
- Interdisciplinary Program of Life Science, National Tsing Hua University, Hsinchu 30013, Taiwan; These authors contributed equally
| | - Yun Fu
- Department of Dermatology, Chang Gung Memorial Hospital Linkou Medical Center, Taoyuan 33305, Taiwan; These authors contributed equally
| | - Kuo-Hsuan Chang
- Department of Neurology, Chang Gung Memorial Hospital Linkou Medical Center and College of Medicine, Chang Gung University, Taoyuan 33305, Taiwan
| | - Kun-Ju Lin
- Animal Molecular Imaging Center and Department of Nuclear Medicine, Chang Gung Memorial Hospital Linkou Medical Center, Taoyuan 33305, Taiwan
| | - Yu-Jen Lu
- Department of Neurosurgery, Chang Gung Memorial Hospital Linkou Medical Center and College of Medicine, Chang Gung University, Taoyuan 33305, Taiwan.
| | - Chao-Min Cheng
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan.
| |
Collapse
|
27
|
Li M, Wang K, Su WT, Jia J, Wang XM. Effects of Electroacupuncture on Metabolic Changes in Motor Cortex and Striatum of 6-Hydroxydopamine-Induced Parkinsonian Rats. Chin J Integr Med 2017; 26:701-708. [PMID: 28986816 DOI: 10.1007/s11655-017-2975-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/07/2017] [Indexed: 12/17/2022]
Abstract
OBJECTIVE To explore the possible underlying mechanism by investigating the effect of electroacupuncture (EA) treatment on the primary motor cortex and striatum in a unilateral 6-hydroxydopamine (6-OHDA) induced rat Parkinson's disease (PD) model. METHODS Male Sprague-Dawley rats were randomly divided into sham group (n=16), model group (n=14), and EA group (n=14). EA stimulation at Dazhui (GV 14) and Baihui (GV20) was applied to PD rats in the EA group for 4 weeks. Behavioral tests were conducted to evaluate the effectiveness of EA treatment. Metabolites were detected by 7.0 T proton nuclear magnetic resonance. RESULTS Following 4 weeks of EA treatment in PD model rats, the abnormal behavioral impairment induced by 6-OHDA was alleviated. In monitoring changes in metabolic activity, ratios of myoinositol/creatine (Cr) and N-acetyl aspartate (NAA)/Cr in the primary motor cortex were significantly lower at the injected side than the non-injected side in PD rats (P=0.024 and 0.020). The ratios of glutamate + glutamine (Glx)/Cr and NAA/Cr in the striatum were higher and lower, respectively, at the injected side than the non-injected side (P=0.046 and 0.008). EA treatment restored the balance of metabolic activity in the primary motor cortex and striatum. In addition, the taurine/Cr ratio and Glx/Cr ratio were elevated in the striatum of PD model rats compared to sham-lesioned rats (P=0.026 and 0.000). EA treatment alleviated the excessive glutamatergic transmission by down-regulating the striatal Glx/Cr ratio (P=0.001). The Glx/Cr ratio was negatively correlated with floor plane spontaneous locomotion in PD rats (P=0.027 and P=0.0007). CONCLUSIONS EA treatment is able to normalize the metabolic balance in the primary motor cortex and striatum of PD rats, which may contribute to its therapeutic effect on motor deficits. The striatal Glx/Cr ratio may serve as a potential indicator of PD and a therapeutic target of EA treatment.
Collapse
Affiliation(s)
- Min Li
- Departments of Neurobiology and Physiology, Key Laboratory for Neurodegenerative Disorders of the Ministry of Education, Beijing Key Laboratory for Parkinson's Disease, Capital Medical University; Beijing Institute for Brain Disorders, Beijing, 100069, China
| | - Ke Wang
- Departments of Neurobiology and Physiology, Key Laboratory for Neurodegenerative Disorders of the Ministry of Education, Beijing Key Laboratory for Parkinson's Disease, Capital Medical University; Beijing Institute for Brain Disorders, Beijing, 100069, China
| | - Wen-Ting Su
- Departments of Neurobiology and Physiology, Key Laboratory for Neurodegenerative Disorders of the Ministry of Education, Beijing Key Laboratory for Parkinson's Disease, Capital Medical University; Beijing Institute for Brain Disorders, Beijing, 100069, China
| | - Jun Jia
- Departments of Neurobiology and Physiology, Key Laboratory for Neurodegenerative Disorders of the Ministry of Education, Beijing Key Laboratory for Parkinson's Disease, Capital Medical University; Beijing Institute for Brain Disorders, Beijing, 100069, China
| | - Xiao-Min Wang
- Departments of Neurobiology and Physiology, Key Laboratory for Neurodegenerative Disorders of the Ministry of Education, Beijing Key Laboratory for Parkinson's Disease, Capital Medical University; Beijing Institute for Brain Disorders, Beijing, 100069, China.
| |
Collapse
|
28
|
Havelund JF, Heegaard NHH, Færgeman NJK, Gramsbergen JB. Biomarker Research in Parkinson's Disease Using Metabolite Profiling. Metabolites 2017; 7:E42. [PMID: 28800113 PMCID: PMC5618327 DOI: 10.3390/metabo7030042] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 08/08/2017] [Accepted: 08/09/2017] [Indexed: 01/08/2023] Open
Abstract
Biomarker research in Parkinson's disease (PD) has long been dominated by measuring dopamine metabolites or alpha-synuclein in cerebrospinal fluid. However, these markers do not allow early detection, precise prognosis or monitoring of disease progression. Moreover, PD is now considered a multifactorial disease, which requires a more precise diagnosis and personalized medication to obtain optimal outcome. In recent years, advanced metabolite profiling of body fluids like serum/plasma, CSF or urine, known as "metabolomics", has become a powerful and promising tool to identify novel biomarkers or "metabolic fingerprints" characteristic for PD at various stages of disease. In this review, we discuss metabolite profiling in clinical and experimental PD. We briefly review the use of different analytical platforms and methodologies and discuss the obtained results, the involved metabolic pathways, the potential as a biomarker and the significance of understanding the pathophysiology of PD. Many of the studies report alterations in alanine, branched-chain amino acids and fatty acid metabolism, all pointing to mitochondrial dysfunction in PD. Aromatic amino acids (phenylalanine, tyrosine, tryptophan) and purine metabolism (uric acid) are also altered in most metabolite profiling studies in PD.
Collapse
Affiliation(s)
- Jesper F Havelund
- Villum Centre for Bioanalytical Sciences, Department of Biochemistry and Molecular Biology, University of Southern Denmark, DK-5230 Odense, Denmark.
| | - Niels H H Heegaard
- Department of Autoimmunology and Biomarkers, Statens Serum Institute, DK-2300 Copenhagen, Denmark.
- Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, University of Southern Denmark, DK-5000 Odense, Denmark.
| | - Nils J K Færgeman
- Villum Centre for Bioanalytical Sciences, Department of Biochemistry and Molecular Biology, University of Southern Denmark, DK-5230 Odense, Denmark.
| | - Jan Bert Gramsbergen
- Institute of Molecular Medicine, University of Southern Denmark, DK-5000 Odense, Denmark.
| |
Collapse
|
29
|
Altered Striatocerebellar Metabolism and Systemic Inflammation in Parkinson's Disease. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:1810289. [PMID: 27688826 PMCID: PMC5023825 DOI: 10.1155/2016/1810289] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 06/24/2016] [Accepted: 07/25/2016] [Indexed: 12/26/2022]
Abstract
Parkinson's disease (PD) is the most second common neurodegenerative movement disorder. Neuroinflammation due to systemic inflammation and elevated oxidative stress is considered a major factor promoting the pathogenesis of PD, but the relationship of structural brain imaging parameters to clinical inflammatory markers has not been well studied. Our aim was to evaluate the association of magnetic resonance spectroscopy (MRS) measures with inflammatory markers. Blood samples were collected from 33 patients with newly diagnosed PD and 30 healthy volunteers. MRS data including levels of N-acetylaspartate (NAA), creatine (Cre), and choline (Cho) were measured in the bilateral basal ganglia and cerebellum. Inflammatory markers included plasma nuclear DNA, plasma mitochondrial DNA, and apoptotic leukocyte levels. The Cho/Cre ratio in the dominant basal ganglion, the dominant basal ganglia to cerebellum ratios of two MRS parameters NAA/Cre and Cho/Cre, and levels of nuclear DNA, mitochondrial DNA, and apoptotic leukocytes were significantly different between PD patients and normal healthy volunteers. Significant positive correlations were noted between MRS measures and inflammatory marker levels. In conclusion, patients with PD seem to have abnormal levels of inflammatory markers in the peripheral circulation and deficits in MRS measures in the dominant basal ganglion and cerebellum.
Collapse
|
30
|
Potential Therapies by Stem Cell-Derived Exosomes in CNS Diseases: Focusing on the Neurogenic Niche. Stem Cells Int 2016; 2016:5736059. [PMID: 27195011 PMCID: PMC4853949 DOI: 10.1155/2016/5736059] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 03/27/2016] [Indexed: 12/31/2022] Open
Abstract
Neurodegenerative disorders are one of the leading causes of death and disability and one of the biggest burdens on health care systems. Novel approaches using various types of stem cells have been proposed to treat common neurodegenerative disorders such as Alzheimer's Disease, Parkinson's Disease, or stroke. Moreover, as the secretome of these cells appears to be of greater benefit compared to the cells themselves, the extracellular components responsible for its therapeutic benefit have been explored. Stem cells, as well as most cells, release extracellular vesicles such as exosomes, which are nanovesicles able to target specific cell types and thus to modify their function by delivering proteins, lipids, and nucleic acids. Exosomes have recently been tested in vivo and in vitro as therapeutic conveyors for the treatment of diseases. As such, they could be engineered to target specific populations of cells within the CNS. Considering the fact that many degenerative brain diseases have an impact on adult neurogenesis, we discuss how the modulation of the adult neurogenic niches may be a therapeutic target of stem cell-derived exosomes. These novel approaches should be examined in cellular and animal models to provide better, more effective, and specific therapeutic tools in the future.
Collapse
|
31
|
Agrawal M, Biswas A. Molecular diagnostics of neurodegenerative disorders. Front Mol Biosci 2015; 2:54. [PMID: 26442283 PMCID: PMC4585189 DOI: 10.3389/fmolb.2015.00054] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Accepted: 09/04/2015] [Indexed: 12/12/2022] Open
Abstract
Molecular diagnostics provide a powerful method to detect and diagnose various neurological diseases such as Alzheimer's and Parkinson's disease. The confirmation of such diagnosis allows early detection and subsequent medical counseling that help specific patients to undergo clinically important drug trials. This provides a medical pathway to have better insight of neurogenesis and eventual cure of the neurodegenerative diseases. In this short review, we present recent advances in molecular diagnostics especially biomarkers and imaging spectroscopy for neurological diseases. We describe advances made in Alzheimer's disease (AD), Parkinson's disease (PD), Amyotrophic lateral sclerosis (ALS) and Huntington's disease (HD), and finally present a perspective on the future directions to provide a framework for further developments and refinements of molecular diagnostics to combat neurodegenerative disorders.
Collapse
Affiliation(s)
- Megha Agrawal
- Department of Biology, University of Arkansas at Little Rock Little Rock, AR, USA
| | - Abhijit Biswas
- Department of Electrical Engineering, Center for Nano Science and Technology, University of Notre Dame Notre Dame, IN, USA
| |
Collapse
|