1
|
Layek B. A Comprehensive Review of Xanthan Gum-Based Oral Drug Delivery Systems. Int J Mol Sci 2024; 25:10143. [PMID: 39337626 PMCID: PMC11431853 DOI: 10.3390/ijms251810143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/15/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024] Open
Abstract
Xanthan gum (XG) is an exopolysaccharide synthesized by the aerobic fermentation of simple sugars using Xanthomonas bacteria. It comprises a cellulosic backbone with a trisaccharide side chain connected to alternative glucose residues in the main backbone through α (1→3) linkage. XG dissolves readily in cold and hot water to produce a viscous solution that behaves like a pseudoplastic fluid. It shows excellent resistance to enzymatic degradation and great stability throughout a broad temperature, pH, or salt concentration range. Additionally, XG is nontoxic, biocompatible, and biodegradable, making it a suitable carrier for drug delivery. Furthermore, the carboxylic functions of pyruvate and glucuronic acid offer a considerable opportunity for chemical modification to meet the desired criteria for a specific application. Therefore, XG or its derivatives in conjunction with other polymers have frequently been studied as matrices for tablets, nanoparticles, microparticles, and hydrogels. This review primarily focuses on the applications of XG in various oral delivery systems over the past decade, including sustained-release formulations, gastroretentive dosage forms, and colon-targeted drug delivery. Source, production methods, and physicochemical properties relevant to drug delivery applications of XG have also been discussed.
Collapse
Affiliation(s)
- Buddhadev Layek
- Department of Pharmaceutical Sciences, School of Pharmacy, College of Health and Human Sciences, North Dakota State University, Fargo, ND 58105, USA
| |
Collapse
|
2
|
Blynskaya EV, Tishkov SV, Vinogradov VP, Alekseev KV, Marakhova AI, Vetcher AA. Polymeric Excipients in the Technology of Floating Drug Delivery Systems. Pharmaceutics 2022; 14:pharmaceutics14122779. [PMID: 36559272 PMCID: PMC9786229 DOI: 10.3390/pharmaceutics14122779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/07/2022] [Accepted: 12/09/2022] [Indexed: 12/14/2022] Open
Abstract
The combination of targeted transport and improvement of the release profile of the active pharmaceutical ingredient (API) is a current trend in the development of oral medicinal products (MP). A well-known way to implement this concept is to obtain floating gastroretentive delivery systems that provide a long stay of the dosage form (DF) on the surface of the stomach contents. The nomenclature of excipients (Es) of a polymeric nature used in the technology of obtaining floating drug delivery systems (FDDS) is discussed. Based on the data presented in research papers, the most widely used groups of polymers, their properties, and their purpose in various technological approaches to achieving buoyancy have been determined. In addition, ways to modify the release of APIs in these systems and the Es used for this are described. The current trends in the use of polymers in the technology of floating dosage forms (FDF) and generalized conclusions about the prospects of this direction are outlined.
Collapse
Affiliation(s)
- Evgenia V. Blynskaya
- V. V. Zakusov Research Institute of Pharmacology, 8 Baltiyskaya St., 125315 Moscow, Russia
- Institute of Biochemical Technology and Nanotechnology, Peoples’ Friendship University of Russia (RUDN), 6 Miklukho-Maklaya St., 117198 Moscow, Russia
| | - Sergey V. Tishkov
- V. V. Zakusov Research Institute of Pharmacology, 8 Baltiyskaya St., 125315 Moscow, Russia
| | - Vladimir P. Vinogradov
- Institute of Biochemical Technology and Nanotechnology, Peoples’ Friendship University of Russia (RUDN), 6 Miklukho-Maklaya St., 117198 Moscow, Russia
| | - Konstantin V. Alekseev
- V. V. Zakusov Research Institute of Pharmacology, 8 Baltiyskaya St., 125315 Moscow, Russia
| | - Anna I. Marakhova
- Institute of Biochemical Technology and Nanotechnology, Peoples’ Friendship University of Russia (RUDN), 6 Miklukho-Maklaya St., 117198 Moscow, Russia
| | - Alexandre A. Vetcher
- Institute of Biochemical Technology and Nanotechnology, Peoples’ Friendship University of Russia (RUDN), 6 Miklukho-Maklaya St., 117198 Moscow, Russia
- Complementary and Integrative Health Clinic of Dr. Shishonin, 5 Yasnogorskaya St., 117588 Moscow, Russia
- Correspondence:
| |
Collapse
|
3
|
Baksa D, Szabo E, Kocsel N, Galambos A, Edes AE, Pap D, Zsombok T, Magyar M, Gecse K, Dobos D, Kozak LR, Bagdy G, Kokonyei G, Juhasz G. Circadian Variation of Migraine Attack Onset Affects fMRI Brain Response to Fearful Faces. Front Hum Neurosci 2022; 16:842426. [PMID: 35355585 PMCID: PMC8959375 DOI: 10.3389/fnhum.2022.842426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 02/10/2022] [Indexed: 11/29/2022] Open
Abstract
Background Previous studies suggested a circadian variation of migraine attack onset, although, with contradictory results – possibly because of the existence of migraine subgroups with different circadian attack onset peaks. Migraine is primarily a brain disorder, and if the diversity in daily distribution of migraine attack onset reflects an important aspect of migraine, it may also associate with interictal brain activity. Our goal was to assess brain activity differences in episodic migraine subgroups who were classified according to their typical circadian peak of attack onset. Methods Two fMRI studies were conducted with migraine without aura patients (n = 31 in Study 1, n = 48 in Study 2). Among them, three subgroups emerged with typical Morning, Evening, and Varying start of attack onset. Whole brain activity was compared between the groups in an implicit emotional processing fMRI task, comparing fearful, sad, and happy facial stimuli to neutral ones. Results In both studies, significantly increased neural activation was detected to fearful (but not sad or happy) faces. In Study 1, the Evening start group showed increased activation compared to the Morning start group in regions involved in emotional, self-referential (left posterior cingulate gyrus, right precuneus), pain (including left middle cingulate, left postcentral, left supramarginal gyri, right Rolandic operculum) and sensory (including bilateral superior temporal gyrus, right Heschl’s gyrus) processing. While in Study 2, the Morning start group showed increased activation compared to the Varying start group at a nominally significant level in regions with pain (right precentral gyrus, right supplementary motor area) and sensory processing (bilateral paracentral lobule) functions. Conclusion Our fMRI studies suggest that different circadian attack onset peaks are associated with interictal brain activity differences indicating heterogeneity within migraine patients and alterations in sensitivity to threatening fearful stimuli. Circadian variation of migraine attack onset may be an important characteristic to address in future studies and migraine prophylaxis.
Collapse
Affiliation(s)
- Daniel Baksa
- SE-NAP2 Genetic Brain Imaging Migraine Research Group, Hungarian Brain Research Program, Semmelweis University, Budapest, Hungary
- Department of Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, Budapest, Hungary
- Department of Personality and Clinical Psychology, Institute of Psychology, Faculty of Humanities and Social Sciences, Pázmány Péter Catholic University, Budapest, Hungary
| | - Edina Szabo
- SE-NAP2 Genetic Brain Imaging Migraine Research Group, Hungarian Brain Research Program, Semmelweis University, Budapest, Hungary
- Center for Pain and the Brain (PAIN Research Group), Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children’s Hospital and Harvard Medical School, Boston, MA, United States
- Institute of Psychology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Natalia Kocsel
- SE-NAP2 Genetic Brain Imaging Migraine Research Group, Hungarian Brain Research Program, Semmelweis University, Budapest, Hungary
- Institute of Psychology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Attila Galambos
- SE-NAP2 Genetic Brain Imaging Migraine Research Group, Hungarian Brain Research Program, Semmelweis University, Budapest, Hungary
- Institute of Psychology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Andrea Edit Edes
- SE-NAP2 Genetic Brain Imaging Migraine Research Group, Hungarian Brain Research Program, Semmelweis University, Budapest, Hungary
- Department of Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, Budapest, Hungary
| | - Dorottya Pap
- SE-NAP2 Genetic Brain Imaging Migraine Research Group, Hungarian Brain Research Program, Semmelweis University, Budapest, Hungary
| | - Terezia Zsombok
- SE-NAP2 Genetic Brain Imaging Migraine Research Group, Hungarian Brain Research Program, Semmelweis University, Budapest, Hungary
| | - Mate Magyar
- SE-NAP2 Genetic Brain Imaging Migraine Research Group, Hungarian Brain Research Program, Semmelweis University, Budapest, Hungary
- János Szentágothai Doctoral School of Neurosciences, Semmelweis University, Budapest, Hungary
- Department of Neuroradiology, Medical Imaging Centre, Semmelweis University, Budapest, Hungary
| | - Kinga Gecse
- SE-NAP2 Genetic Brain Imaging Migraine Research Group, Hungarian Brain Research Program, Semmelweis University, Budapest, Hungary
- Department of Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, Budapest, Hungary
| | - Dora Dobos
- SE-NAP2 Genetic Brain Imaging Migraine Research Group, Hungarian Brain Research Program, Semmelweis University, Budapest, Hungary
- Department of Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, Budapest, Hungary
| | - Lajos Rudolf Kozak
- Department of Neuroradiology, Medical Imaging Centre, Semmelweis University, Budapest, Hungary
| | - Gyorgy Bagdy
- Department of Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, Budapest, Hungary
- NAP-2-SE New Antidepressant Target Research Group, Hungarian Brain Research Program, Semmelweis University, Budapest, Hungary
- MTA-SE Neuropsychopharmacology and Neurochemistry Research Group, Hungarian Academy of Sciences, Semmelweis University, Budapest, Hungary
| | - Gyongyi Kokonyei
- SE-NAP2 Genetic Brain Imaging Migraine Research Group, Hungarian Brain Research Program, Semmelweis University, Budapest, Hungary
- Department of Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, Budapest, Hungary
- Institute of Psychology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Gabriella Juhasz
- SE-NAP2 Genetic Brain Imaging Migraine Research Group, Hungarian Brain Research Program, Semmelweis University, Budapest, Hungary
- Department of Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, Budapest, Hungary
- NAP-2-SE New Antidepressant Target Research Group, Hungarian Brain Research Program, Semmelweis University, Budapest, Hungary
- MTA-SE Neuropsychopharmacology and Neurochemistry Research Group, Hungarian Academy of Sciences, Semmelweis University, Budapest, Hungary
- *Correspondence: Gabriella Juhasz,
| |
Collapse
|
4
|
Assadpour S, Akhtari J, Shiran MR. Pharmacokinetics study of chitosan-coated liposomes containing sumatriptan in the treatment of migraine. CASPIAN JOURNAL OF INTERNAL MEDICINE 2022; 13:90-99. [PMID: 35178213 PMCID: PMC8797816 DOI: 10.22088/cjim.13.1.90] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 11/27/2021] [Accepted: 11/18/2021] [Indexed: 10/31/2022]
Abstract
BACKGROUND Sumatriptan is a routine medication in the treatment of migraine and cluster headache that is generally given by oral or parental routes. However, a substantial proportion of patients suffer severe side effects. The aim of this study was to investigate the physicochemical characterization and pharmacokinetic parameters of a novel delivery system for sumatriptan succinate (SS) using nanoliposomes (NLs) coated by chitosan (CCLs) to optimize the formulations to enhance its bioavailability. METHODS The new formulation was used to minimize drug particle size and extend its release and bioavailability. The mean particle size and entrapment efficiency for NLs and CCls were optimized and the formulations with better characteristics were chosen for in vivo studies. The concentration-time profile of intravenous SS, intranasal SS, SS-NLs, and CCLs were examined in a rabbit model. RESULTS The results demonstrated that CCLs were absorbed more rapidly from nasal drops containing chitosan compared to those of SS and SS-NLs as indicated by a shorter tmax, and a higher Cmax in both states. A comparison of the AUC (0-240 min) values revealed that chitosan improved the extent of SS absorption for CCLs formulation. The results of the present study indicated that loading SS into the liposome and coating with chitosan improves drug absorption and a large amount of the drug can be efficiently delivered into the systemic circulation. CONCLUSION The liposomal and chitosan formulations of SS had better kinetic behavior than the soluble form in the animal model.
Collapse
Affiliation(s)
- Sara Assadpour
- Molecular and Cell Biology Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Javad Akhtari
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Mazandaran University of Medical Sciences, Sari, Iran
- Toxoplasmosis Research Center, Communicable Diseases Institute, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mohammad Reza Shiran
- Molecular and Cell Biology Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
- Department of Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
5
|
Brain targeted delivery of sumatriptan succinate loaded chitosan nanoparticles: Preparation, In vitro characterization, and (Neuro-)pharmacokinetic evaluations. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2020.102179] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
6
|
Bicker J, Alves G, Falcão A, Fortuna A. Timing in drug absorption and disposition: The past, present, and future of chronopharmacokinetics. Br J Pharmacol 2020; 177:2215-2239. [PMID: 32056195 DOI: 10.1111/bph.15017] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Revised: 01/05/2020] [Accepted: 01/27/2020] [Indexed: 12/20/2022] Open
Abstract
The importance of drug dosing time in pharmacokinetics, pharmacodynamics, and toxicity is receiving increasing attention from the scientific community. In spite of mounting evidence that circadian oscillations affect drug absorption, distribution, metabolism, and excretion (ADME), there remain many unanswered questions in this field and, occasionally, conflicting experimental results. Such data arise not only from translational difficulties caused by interspecies differences but also from variability in study design and a lack of understanding of how the circadian clock affects physiological factors that strongly influence ADME, namely, the expression and activity of drug transporters. Hence, the main goal of this review is to provide an updated analysis of the role of the circadian rhythm in drug absorption, distribution across blood-tissue barriers, metabolism in hepatic and extra-hepatic tissues, and hepatobiliary and renal excretion. It is expected that the research suggestions proposed here will contribute to a tissue-targeted and time-targeted pharmacotherapy.
Collapse
Affiliation(s)
- Joana Bicker
- Laboratory of Pharmacology, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal.,CIBIT/ICNAS-Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, Coimbra, Portugal
| | - Gilberto Alves
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Amílcar Falcão
- Laboratory of Pharmacology, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal.,CIBIT/ICNAS-Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, Coimbra, Portugal
| | - Ana Fortuna
- Laboratory of Pharmacology, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal.,CIBIT/ICNAS-Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
7
|
Baksa D, Gecse K, Kumar S, Toth Z, Gal Z, Gonda X, Juhasz G. Circadian Variation of Migraine Attack Onset: A Review of Clinical Studies. BIOMED RESEARCH INTERNATIONAL 2019; 2019:4616417. [PMID: 31534960 PMCID: PMC6732618 DOI: 10.1155/2019/4616417] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 07/21/2019] [Indexed: 01/01/2023]
Abstract
Several studies suggested that migraine attack onset shows a circadian variation; however, there has not been an overview and synthesis of these findings. A PubMed search with keywords "migraine" AND "circadian" resulted in ten studies directly investigating this topic. Results of these studies mostly show that migraine attacks follow a monophasic 24-hour cyclic pattern with an early morning or late night peak while other studies reported an afternoon peak and also a biphasic 24-hour cycle of attacks. The identified studies showed methodological variation including sample size, inclusion of medication use, comorbidities, and night or shift workers which could have contributed to the contradictory results. Several theories emerged explaining the diurnal distribution of migraine attacks suggesting roles for different phenomena including a morning rise in cortisol levels, a possible hypothalamic dysfunction, a circadian variation of migraine triggers, sleep stages, and a potentially different setting of the circadian pacemaker among migraineurs. At the moment, most studies show an early morning or late night peak of migraine attack onset, but a significant amount of studies reveals contradictory results. Further studies should investigate the arising hypotheses to improve our understanding of the complex mechanism behind the circadian variation of migraine attacks that can shed light on new targets for migraine therapy.
Collapse
Affiliation(s)
- Daniel Baksa
- SE-NAP2 Genetic Brain Imaging Migraine Research Group, Hungarian Brain Research Program, Semmelweis University, Budapest, Hungary
- Department of Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, Budapest, Hungary
| | - Kinga Gecse
- SE-NAP2 Genetic Brain Imaging Migraine Research Group, Hungarian Brain Research Program, Semmelweis University, Budapest, Hungary
- Department of Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, Budapest, Hungary
| | - Sahel Kumar
- Department of Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, Budapest, Hungary
- MTA-SE Neuropsychopharmacology and Neurochemistry Research Group, Hungarian Academy of Sciences, Semmelweis University, Budapest, Hungary
| | - Zsuzsanna Toth
- SE-NAP2 Genetic Brain Imaging Migraine Research Group, Hungarian Brain Research Program, Semmelweis University, Budapest, Hungary
- Department of Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, Budapest, Hungary
| | - Zsofia Gal
- MTA-SE Neuropsychopharmacology and Neurochemistry Research Group, Hungarian Academy of Sciences, Semmelweis University, Budapest, Hungary
- Department of Physiology and Neurobiology, Institute of Biology, Faculty of Science, Eotvos Lorand University, Budapest, Hungary
| | - Xenia Gonda
- MTA-SE Neuropsychopharmacology and Neurochemistry Research Group, Hungarian Academy of Sciences, Semmelweis University, Budapest, Hungary
- NAP-2-SE New Antidepressant Target Research Group, Hungarian Brain Research Program, Semmelweis University, Budapest, Hungary
- Department of Psychiatry and Psychotherapy, Semmelweis University, Budapest, Hungary
| | - Gabriella Juhasz
- SE-NAP2 Genetic Brain Imaging Migraine Research Group, Hungarian Brain Research Program, Semmelweis University, Budapest, Hungary
- Department of Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, Budapest, Hungary
- MTA-SE Neuropsychopharmacology and Neurochemistry Research Group, Hungarian Academy of Sciences, Semmelweis University, Budapest, Hungary
- Neuroscience and Psychiatry Unit, The University of Manchester and Manchester Academic Health Sciences Centre, Manchester, UK
| |
Collapse
|
8
|
Bueno PVA, Hilamatu KCP, Carmona-Ribeiro AM, Petri DFS. Magnetically triggered release of amoxicillin from xanthan/Fe 3O 4/albumin patches. Int J Biol Macromol 2018; 115:792-800. [PMID: 29702165 DOI: 10.1016/j.ijbiomac.2018.04.119] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Revised: 04/02/2018] [Accepted: 04/23/2018] [Indexed: 02/08/2023]
Abstract
This work was motivated by the need of stimuli responsive drug carriers, which can be activated by low cost non-invasive stimuli such as external magnetic field (EMF). Thus, novel antimicrobial materials based on xanthan gum (XG), magnetic nanoparticles (MNP), bovine serum albumin (BSA) and amoxicillin (Amox) were designed in order to promote the release of Amox under magnetic stimuli. Firstly, surfaces with different functionalities were prepared by sequential deposition of thin layers on Si wafers and characterized by means of ellipsometry and atomic force microscopy. Amox adsorbed preferentially onto XG or BSA films. In solution, favorable interactions between Amox and BSA were evidenced by substantial changes in the BSA secondary structure, as revealed by circular dichroism. Patches of XG and XG/MNP/BSA were immersed in 2 g L-1 Amox, yielding 10 ± 3 and 17 ± 4 μg/cm3 Amox loading, respectively. The inclusion of 0.2 wt% Fe3O4 in the patches and their exposure to EMF enabled in vitro release of Amox, at pH 5.5 and 0.02 mol L-1 NaCl, following the quasi-Fickian behavior. Amox diffused from XG/MNP/BSA patches in agar medium containing Staphylococcus aureus and Escherichia coli, inhibiting their growth. The inhibition of E. coli growth was particularly efficient under EMF.
Collapse
Affiliation(s)
- Pedro V A Bueno
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes 748, 05508-000 São Paulo, Brazil
| | - Karina C P Hilamatu
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes 748, 05508-000 São Paulo, Brazil
| | | | - Denise F S Petri
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes 748, 05508-000 São Paulo, Brazil.
| |
Collapse
|
9
|
Lin CH, Chen CH, Lin ZC, Fang JY. Recent advances in oral delivery of drugs and bioactive natural products using solid lipid nanoparticles as the carriers. J Food Drug Anal 2017; 25:219-234. [PMID: 28911663 PMCID: PMC9332520 DOI: 10.1016/j.jfda.2017.02.001] [Citation(s) in RCA: 150] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 02/21/2017] [Indexed: 11/30/2022] Open
Abstract
Chemical and enzymatic barriers in the gastrointestinal (GI) tract hamper the oral delivery of many labile drugs. The GI epithelium also contributes to poor permeability for numerous drugs. Drugs with poor aqueous solubility have difficulty dissolving in the GI tract, resulting in low bioavailability. Nanomedicine provides an opportunity to improve the delivery efficiency of orally administered drugs. Solid lipid nanoparticles (SLNs) are categorized as a new generation of lipid nanoparticles consisting of a complete solid lipid matrix. SLNs used for oral administration offer several benefits over conventional formulations, including increased solubility, enhanced stability, improved epithelium permeability and bioavailability, prolonged half-life, tissue targeting, and minimal side effects. The nontoxic excipients and sophisticated material engineering of SLNs tailor the controllable physicochemical properties of the nanoparticles for GI penetration via mucosal or lymphatic transport. In this review, we highlight the recent progress in the development of SLNs for disease treatment. Recent application of oral SLNs includes therapies for cancers, central nervous system-related disorders, cardiovascular-related diseases, infection, diabetes, and osteoporosis. In addition to drugs that may be active cargos in SLNs, some natural compounds with pharmacological activity are also suitable for SLN encapsulation to enhance oral bioavailability. In this article, we systematically introduce the concepts and amelioration mechanisms of the nanomedical techniques for drug- and natural compound-loaded SLNs.
Collapse
|
10
|
Hansraj GP, Singh SK, Kumar P. Sumatriptan succinate loaded chitosan solid lipid nanoparticles for enhanced anti-migraine potential. Int J Biol Macromol 2015; 81:467-76. [DOI: 10.1016/j.ijbiomac.2015.08.035] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Revised: 07/29/2015] [Accepted: 08/19/2015] [Indexed: 10/23/2022]
|
11
|
Das N, Tripathi N, Basu S, Bose C, Maitra S, Khurana S. Progress in the development of gelling agents for improved culturability of microorganisms. Front Microbiol 2015; 6:698. [PMID: 26257708 PMCID: PMC4511835 DOI: 10.3389/fmicb.2015.00698] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2015] [Accepted: 06/26/2015] [Indexed: 11/21/2022] Open
Abstract
Gelling agents are required for formulating both solid and semisolid media, vital for the isolation of microorganisms. Gelatin was the first gelling agent to be discovered but it soon paved the way for agar, which has far superior material qualities. Source depletion, issues with polymerase-chain-reaction and inability to sustain extermophiles etc., necessitate the need of other gelling agents. Many new gelling agents, such as xantham gum, gellan gum, carrageenan, isubgol, and guar gum have been formulated, raising the hopes for the growth of previously unculturable microorganisms. We evaluate the progress in the development of gelling agents, with the hope that our synthesis would help accelerate research in the field.
Collapse
Affiliation(s)
- Nabajit Das
- Department of Biological Sciences, Indian Institute of Science Education and Research KolkataKolkata, India
| | - Naveen Tripathi
- Department of Biological Sciences, Indian Institute of Science Education and Research KolkataKolkata, India
| | - Srijoni Basu
- Department of Biological Sciences, Indian Institute of Science Education and Research KolkataKolkata, India
| | - Chandra Bose
- Department of Biological Sciences, Indian Institute of Science Education and Research KolkataKolkata, India
| | - Susmit Maitra
- School of Biotechnology, Kalinga Institute of Industrial Technology UniversityBhubaneswar, India
| | - Sukant Khurana
- Department of Biological Sciences, Indian Institute of Science Education and Research KolkataKolkata, India
| |
Collapse
|