1
|
Liu H, Li Q, Liu T, Tang Y, Yu F. Trimester-specific reference intervals of serum homocysteine levels for pregnant women: a longitudinal study in China. Gynecol Endocrinol 2023; 39:2242974. [PMID: 37553809 DOI: 10.1080/09513590.2023.2242974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 07/17/2023] [Accepted: 07/26/2023] [Indexed: 08/10/2023] Open
Abstract
OBJECTIVE To investigate the physiological changes of serum homocysteine (Hcy) levels and to establish trimester-specific reference intervals of serum Hcy levels for Chinese pregnant women. METHOD According to the guideline of the Clinical and Laboratory Standards Institute (CLSI) C28-A3 document, 476 healthy women were recruited in West China Second University Hospital, Sichuan University from January 2021 to October 2021. Among them, 120 were non-pregnant, 118 were in the first trimester, 120 were in the second and 118 were in the third trimester of gestation. The enzymatic cycling method was performed to detect serum Hcy levels. Non-parametric percentiles (2.5th percentile and 97.5th percentile) were calculated to establish the reference intervals for non-pregnant women and pregnant women in different trimester of gestation. RESULTS There was a significant statistical difference for serum Hcy levels between non-pregnant women and pregnant women (p < 0.05), and serum Hcy levels in the first, second, and third trimesters of gestation were statistically different (p < 0.05). The trimester-specific reference intervals of serum Hcy levels were 4.35 ∼ 10.16 μmol/L, 3.38 ∼ 8.60 μmol/L, and 3.75 ∼ 11.17 μmol/L for pregnant women in the first, second, and third trimester of gestation, respectively. CONCLUSIONS Compared to non-pregnant women, serum Hcy levels physiologically decreased after pregnancy, and the physiological changes in serum Hcy levels during pregnancy were also found. Establishing trimester-specific reference intervals of serum Hcy levels for pregnant women was valuable for clinical practice.
Collapse
Affiliation(s)
- Hai Liu
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Qing Li
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Ting Liu
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Yuanting Tang
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Fan Yu
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| |
Collapse
|
2
|
Luo M, Wang T, Huang P, Zhang S, Song X, Sun M, Liu Y, Wei J, Shu J, Zhong T, Chen Q, Zhu P, Qin J. Association of Maternal Betaine-Homocysteine Methyltransferase (BHMT) and BHMT2 Genes Polymorphisms with Congenital Heart Disease in Offspring. Reprod Sci 2023; 30:309-325. [PMID: 35835902 DOI: 10.1007/s43032-022-01029-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 06/25/2022] [Indexed: 01/11/2023]
Abstract
To systematically explore the association of single nucleotide polymorphisms (SNPs) of maternal BHMT and BHMT2 genes with the risk of congenital heart disease (CHD) and its three subtypes including atrial septal defect (ASD), ventricular septal defect (VSD), and patent ductus arteriosus (PDA) in offspring. A hospital-based case-control study involving 683 mothers of CHD children and 740 controls was performed. Necessary exposure information was captured through epidemiological investigation. Totally twelve SNPs of maternal BHMT and BHMT2 genes were detected and analyzed systematically. The study showed that maternal BHMT gene polymorphisms at rs1316753 (CG vs. CC: OR = 1.96 [95% CI 1.41-2.71]; GG vs. CC: OR = 1.99 [95% CI 1.32-3.00]; dominant model: OR = 1.97 [95% CI 1.44-2.68]) and rs1915706 (TC vs. TT: OR = 1.93 [95% CI 1.44-2.59]; CC vs. TT: OR = 2.55 [95% CI 1.38-4.72]; additive model: OR = 1.77 [95% CI 1.40-2.24]) were significantly associated with increased risk of total CHD in offspring. And two haplotypes were observed to be significantly associated with risk of total CHD, including C-C haplotype involving rs1915706 and rs3829809 in BHMT gene (OR = 1.30 [95% CI 1.07-1.58]) and C-A-A-C haplotype involving rs642431, rs592052, rs626105, and rs682985 in BHMT2 gene (OR = 0.71 [95% CI 0.58-0.88]). Besides, a three-locus model involving rs1316753 (BHMT), rs1915706 (BHMT), and rs642431 (BHMT2) was identified through gene-gene interaction analyses (P < 0.01). As for three subtypes including ASD, VSD, and PDA, significant SNPs and haplotypes were also identified. The results indicated that maternal BHMT gene polymorphisms at rs1316753 and rs1915706 are significantly associated with increased risk of total CHD and its three subtypes in offspring. Besides, significant interactions between different SNPs do exist on risk of CHD. Nevertheless, studies with larger sample size in different ethnic populations and involving more SNPs in more genes are expected to further define the genetic contribution underlying CHD and its subtypes.
Collapse
Affiliation(s)
- Manjun Luo
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Changsha, China
| | - Tingting Wang
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Changsha, China.
- NHC Key Laboratory of Birth Defect for Research and Prevention, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, China.
| | - Peng Huang
- Department of Cardiothoracic Surgery, Hunan Children's Hospital, Changsha, China
| | - Senmao Zhang
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Changsha, China
| | - Xinli Song
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Changsha, China
| | - Mengting Sun
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Changsha, China
| | - Yiping Liu
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Changsha, China
| | - Jianhui Wei
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Changsha, China
| | - Jing Shu
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Changsha, China
| | - Taowei Zhong
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Changsha, China
| | - Qian Chen
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Changsha, China
| | - Ping Zhu
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.
| | - Jiabi Qin
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Changsha, China.
- NHC Key Laboratory of Birth Defect for Research and Prevention, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, China.
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Changsha, China.
| |
Collapse
|
3
|
Profiling the Influence of Gene Variants Related to Folate-Mediated One-Carbon Metabolism on the Outcome of In Vitro Fertilization (IVF) with Donor Oocytes in Recipients Receiving Folic Acid Fortification. Int J Mol Sci 2022; 23:ijms231911298. [PMID: 36232598 PMCID: PMC9569987 DOI: 10.3390/ijms231911298] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 09/20/2022] [Accepted: 09/21/2022] [Indexed: 11/23/2022] Open
Abstract
Nutritional status and gene polymorphisms of one-carbon metabolism confer a well-known interaction that in pregnant women may affect embryo viability and the health of the newborn. Folate metabolism directly impacts nucleotide synthesis and methylation, which is of increasing interest in the reproductive medicine field. Studies assessing the genetic influence of folate metabolism on IVF treatments have currently been performed in women using their own oocytes. Most of these patients seeking to have a child or undergoing IVF treatments are advised to preventively intake folate supplies that restore known metabolic imbalances, but the treatments could lead to the promotion of specific enzymes in specific women, depending on their genetic variance. In the present study, we assess the influence of candidate gene variants related to folate metabolism, such as Serine Hydroxymethyltransferase 1 SHMT1 (rs1979276 and rs1979277), Betaine-Homocysteine S-Methyltransferase BHMT (rs3733890), Methionine synthase reductase MTRR (rs1801394), Methylenetetrahydrofolate reductase MTHFR (rs1801131 and rs1801133), methionine synthase MTR (rs12749581), ATP Binding Cassette Subfamily B Member 1 ABCB1 (rs1045642) and folate receptor alpha FOLR1 (rs2071010) on the success of IVF treatment performed in women being recipients of donated oocytes. The implication of such gene variants seems to have no direct impact on pregnancy consecution after IVF; however, several gene variants could influence pregnancy loss events or pregnancy maintenance, as consequence of folic acid fortification.
Collapse
|
4
|
Li J, Feng D, He S, Yang H, Su Z, Ye H. Association of MTHFR 677C > T gene polymorphism with neonatal defects: a meta-analysis of 81444 subjects. J OBSTET GYNAECOL 2022; 42:1811-1822. [PMID: 35282788 DOI: 10.1080/01443615.2022.2039908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Juan Li
- Department of Clinical Laboratory, Women and Children’s Hospital, School of Medicine, Xiamen University, Xiamen, China
| | - Danqin Feng
- Department of Clinical Laboratory, Women and Children’s Hospital, School of Medicine, Xiamen University, Xiamen, China
| | - Shiwei He
- School of Public Health, Xiamen University, Xiamen, China
| | - Hua Yang
- Department of Obstetrics, Women and Children’s Hospital, School of Medicine, Xiamen University, Xiamen, China
| | - Zhiying Su
- Women and Children’s Hospital, School of Medicine, Xiamen University, Xiamen, China
| | - Huiming Ye
- Department of Clinical Laboratory, Women and Children’s Hospital, School of Medicine, and Department of Laboratory Medicine, School of Public Health, Xiamen University, Xiamen, China
| |
Collapse
|
5
|
Alagawany M, Elnesr SS, Farag MR, El-Naggar K, Madkour M. Nutrigenomics and nutrigenetics in poultry nutrition: An updated review. WORLD POULTRY SCI J 2022. [DOI: 10.1080/00439339.2022.2014288] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- M. Alagawany
- Poultry Department, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Shaaban S. Elnesr
- Poultry Production Department, Faculty of Agriculture, Fayoum University, Fayoum, Egypt
| | - Mayada R. Farag
- Forensic Medicine and Toxicology Department, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Karima El-Naggar
- Nutrition and Veterinary Clinical Nutrition Department, Faculty of Veterinary Medicine, Alexandria University, Alexandria, Egypt
| | - M. Madkour
- Animal Production Department, National Research Centre, Dokki, Egypt
| |
Collapse
|
6
|
Sun YH, Gao J, Liu XD, Tang HW, Cao SL, Zhang JK, Wen PH, Wang ZH, Li J, Guo WZ, Zhang SJ. Interaction analysis of gene variants related to one-carbon metabolism with chronic hepatitis B infection in Chinese patients. J Gene Med 2021; 23:e3347. [PMID: 33894044 DOI: 10.1002/jgm.3347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 03/09/2021] [Accepted: 04/21/2021] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND The risk of chronic hepatitis B (CHB) infection is influenced by aberrant DNA methylation and altered nucleotide synthesis and repair, possibly caused by polymorphic variants in one-carbon metabolism genes. In the present study, we investigated the relationship between polymorphisms belonging to the one-carbon metabolic pathway and CHB infection. METHODS A case-control study using 230 CHB patients and 234 unrelated healthy controls was carried out to assess the genetic association of 24 single nucleotide polymorphisins (SNPs) determined by mass spectrometry. RESULTS Three SNPs, comprising rs10717122 and rs2229717 in serine hydroxymethyltransferase1/2 (SHMT2) and rs585800 in betaine-homocysteine S-methyltransferase (BHMT), were associated with the risk of CHB. Patients with DEL allele, DEL.DEL and DEL.T genotypes of rs10717122 had a 1.40-, 2.00- and 1.83-fold increased risk for CHB, respectively. Cases inheriting TA genotype of rs585800 had a 2.19-fold risk for CHB infection. The T allele of rs2229717 was less represented in the CHB cases (odds ratio = 0.66, 95% confidence interval = 0.48-0.92). The T allele of rs2229717 was less in patients with a low hepatitis B virus-DNA level compared to the control group (odds ratio = 0.49, 95% confidence interval = 0.25-0.97) and TT genotype of rs2229717 had a significant correlation with hepatitis B surface antigen level (p = 0.0195). Further gene-gene interaction analysis showed that subjects carrying the rs10717122 DEL.DEL/DEL.T and rs585800 TT/TA genotypes had a 2.74-fold increased risk of CHB. CONCLUSIONS The results of the present study suggest that rs10717122, rs585800 and rs2229717 and gene-gene interactions of rs10717122 and rs585800 affect the outcome of CHB infection, at the same time as indicating their usefulness as a predictive and diagnostic biomarker of CHB infection.
Collapse
Affiliation(s)
- Yao-Hui Sun
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Henan, China.,Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Henan, China.,Zhengzhou Key Laboratory of Hepatobiliary & Pancreatic Diseases and Organ Transplantation, Henan, China
| | - Jie Gao
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Henan, China.,Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Henan, China.,Zhengzhou Key Laboratory of Hepatobiliary & Pancreatic Diseases and Organ Transplantation, Henan, China
| | - Xu-Dong Liu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Henan, China.,Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Henan, China.,Zhengzhou Key Laboratory of Hepatobiliary & Pancreatic Diseases and Organ Transplantation, Henan, China
| | - Hong-Wei Tang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Henan, China.,Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Henan, China.,Zhengzhou Key Laboratory of Hepatobiliary & Pancreatic Diseases and Organ Transplantation, Henan, China
| | - Sheng-Li Cao
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Henan, China.,Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Henan, China.,Zhengzhou Key Laboratory of Hepatobiliary & Pancreatic Diseases and Organ Transplantation, Henan, China
| | - Jia-Kai Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Henan, China.,Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Henan, China.,Zhengzhou Key Laboratory of Hepatobiliary & Pancreatic Diseases and Organ Transplantation, Henan, China
| | - Pei-Hao Wen
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Henan, China.,Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Henan, China.,Zhengzhou Key Laboratory of Hepatobiliary & Pancreatic Diseases and Organ Transplantation, Henan, China
| | - Zhi-Hui Wang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Henan, China.,Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Henan, China.,Zhengzhou Key Laboratory of Hepatobiliary & Pancreatic Diseases and Organ Transplantation, Henan, China
| | - Jie Li
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Henan, China.,Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Henan, China.,Zhengzhou Key Laboratory of Hepatobiliary & Pancreatic Diseases and Organ Transplantation, Henan, China
| | - Wen-Zhi Guo
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Henan, China.,Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Henan, China.,Zhengzhou Key Laboratory of Hepatobiliary & Pancreatic Diseases and Organ Transplantation, Henan, China
| | - Shui-Jun Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Henan, China.,Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Henan, China.,Zhengzhou Key Laboratory of Hepatobiliary & Pancreatic Diseases and Organ Transplantation, Henan, China
| |
Collapse
|
7
|
Association of maternal dietary intakes and CBS gene polymorphisms with congenital heart disease in offspring. Int J Cardiol 2020; 322:121-128. [PMID: 32800907 DOI: 10.1016/j.ijcard.2020.08.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 06/24/2020] [Accepted: 08/07/2020] [Indexed: 12/18/2022]
Abstract
BACKGROUND Although it is generally acknowledged that genetic and environmental factors are associated with risk of congenital heart disease (CHD), the causes are not fully understood. This study aimed at assessing the association of maternal dietary intakes, genetic variants of cystathionine beta synthase (CBS) gene and their interactions with risk of CHDs in offspring. METHOD A hospital-based case-control study of 464 mothers with CHD infants and 504 control mothers of health infant was performed. The exposures of interest were maternal dietary intakes in early pregnancy, single nucleotide polymorphisms (SNPs) of CBS gene. RESULTS More frequent intake of pickled vegetables (adjusted odds ratio[aOR] = 1.81; 95% confidence interval[CI]: 1.38-2.37), smoked foods (aOR = 2.00; 95%CI: 1.53-2.60), barbecued foods (aOR = 1.63; 95%CI: 1.19-2.25) and fried foods (aOR = 1.57; 95%CI: 1.22-2.03) were associated with higher risk of CHD, while salted eggs (aOR = 0.20; 95%CI: 0.12-0.33), fish and shrimp (aOR = 0.34; 95%CI: 0.27-0.44), fresh fruits (aOR = 0.49; 95%CI: 0.37-0.66), and milk products (aOR = 0.54; 95%CI: 0.45-0.65) were associated with lower risk of CHD. The SNPs of CBS gene at rs2851391 (T/T vs C/C: aOR = 1.91, 95%CI: 1.15-3.15) and rs234714 (T/T vs C/C: aOR = 2.22, 95%CI: 1.32-3.73) significantly increased the risk of CHD. Additionally, significant interaction effects between maternal dietary intakes and CBS genetic variants on CHD risks were observed. CONCLUSIONS Maternal dietary factors, CBS genetic variants and their interactions were significantly associated with risk of CHD in offspring. However, it is still unclear how these factors jointly work in the development of CHD, and more studies with larger samples and prospective design are required.
Collapse
|
8
|
The Role of Nutri(epi)genomics in Achieving the Body's Full Potential in Physical Activity. Antioxidants (Basel) 2020; 9:antiox9060498. [PMID: 32517297 PMCID: PMC7346155 DOI: 10.3390/antiox9060498] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Accepted: 06/05/2020] [Indexed: 12/12/2022] Open
Abstract
Physical activity represents a powerful tool to achieve optimal health. The overall activation of several molecular pathways is associated with many beneficial effects, mainly converging towards a reduced systemic inflammation. Not surprisingly, regular activity can contribute to lowering the “epigenetic age”, acting as a modulator of risk toward several diseases and enhancing longevity. Behind this, there are complex molecular mechanisms induced by exercise, which modulate gene expression, also through epigenetic modifications. The exercise-induced epigenetic imprint can be transient or permanent and contributes to the muscle memory, which allows the skeletal muscle adaptation to environmental stimuli previously encountered. Nutrition, through key macro- and micronutrients with antioxidant properties, can play an important role in supporting skeletal muscle trophism and those molecular pathways triggering the beneficial effects of physical activity. Nutrients and antioxidant food components, reversibly altering the epigenetic imprint, have a big impact on the phenotype. This assigns a role of primary importance to nutri(epi)genomics, not only in optimizing physical performance, but also in promoting long term health. The crosstalk between physical activity and nutrition represents a major environmental pressure able to shape human genotypes and phenotypes, thus, choosing the right combination of lifestyle factors ensures health and longevity.
Collapse
|
9
|
Zhao Q, Zhang C, Li D, Huang X, Ren B, Yue L, Du B, Godfrey O, Zhang W. CBS gene polymorphism and promoter methylation‐mediating effects on the efficacy of folate therapy in patients with hyperhomocysteinemia. J Gene Med 2020; 22:e3156. [DOI: 10.1002/jgm.3156] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 12/01/2019] [Accepted: 12/18/2019] [Indexed: 12/11/2022] Open
Affiliation(s)
- Qinglin Zhao
- Department of Epidemiology, School of Public HealthZhengzhou University Zhengzhou Henan People's Republic of China
| | - Chengda Zhang
- Department of International Medicine, Beaumont Health System Royal Oak MI USA
| | - Dankang Li
- Department of Epidemiology, School of Public HealthZhengzhou University Zhengzhou Henan People's Republic of China
| | - Xiaowen Huang
- Department of Epidemiology, School of Public HealthZhengzhou University Zhengzhou Henan People's Republic of China
| | - Bingnan Ren
- Department of Epidemiology, School of Public HealthZhengzhou University Zhengzhou Henan People's Republic of China
| | - Limin Yue
- Department of Epidemiology, School of Public HealthZhengzhou University Zhengzhou Henan People's Republic of China
| | - Binghui Du
- Department of Epidemiology, School of Public HealthZhengzhou University Zhengzhou Henan People's Republic of China
| | - Opolot Godfrey
- Department of Epidemiology, School of Public HealthZhengzhou University Zhengzhou Henan People's Republic of China
| | - Weidong Zhang
- Department of Epidemiology, School of Public HealthZhengzhou University Zhengzhou Henan People's Republic of China
| |
Collapse
|
10
|
Liu J, Jiang Y, Liu D, Zhang H, Chen T, Zhang G, Liu H, DU S, Lin Z, Jin Y, Li X. Relationship between cobalt transporter II gene rs9606756 site mutant and serum homocysteine level and recurrent cerebral infarction in young and middle-aged people. Minerva Med 2020; 112:261-268. [PMID: 32207595 DOI: 10.23736/s0026-4806.20.06462-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND This study aimed to investigate the effect of cobalt transporter II gene (rs1801198, rs2301957, rs9606756) polymorphism on serum homocysteine level and its correlation with young and middle recurrent cerebral infarction. METHODS A total of 348 young and middle-aged patients with cerebral infarction admitted to The Third Affiliated Hospital of Qiqihar Medical University from January 2017 to March 2018 were enrolled. The patients were divided into recurrent and non-recurrent groups according to follow-up. DNA was extracted from the peripheral blood of patients, and the DNA samples were genotyped by IlluminaBeadArray technology to detect the gene polymorphisms of cobalt transporter II (TCN2) sites (rs1801198, rs2301957, rs9606756), and the homocysteine (hcy) level was determined by cyclic enzymatic method. VitB12 and folate levels were measured by chemiluminescence immunoassay, and holo transcobalamin (holoTC) expression levels were detected by enzyme-linked immunosorbent assay. RESULTS The frequency of alleles of rs9606756 mutation in the recurrent group was higher than that in the non-recurrent group (P<0.05), and the Hcy level in rs9606756 locus genotype AG+GG was significantly higher than the AA genotype in the recurrent group (P=0.031). Pearson correlation analysis showed that Hcy levels were associated with different genotypes of rs9606756 in the recurrent group (r=0.483, P=0.0003). The rs9606756 allele AA in SH-SY5Y cells was replaced with GG by point mutation experiment. The Hcy metabolism levels of wild and mutant cells were detected. The accumulation level of Hcy in the mutant group was significantly increased (P=0.007). The holoTC in the supernatant was significantly reduced in the mutant (P=0.032). CONCLUSIONS The TCN2 gene rs9606756 mutation is closely related to the level of Hcy metabolism in young and middle-aged patients, which may affect the recurrence of cerebral infarction. It is of great significance to further understand the pathogenesis, prevention and treatment of recurrent cerebral infarction in young and middle-aged patients.
Collapse
Affiliation(s)
- Jing Liu
- Department of Neurology, The Third Affiliated Hospital of Qiqihar Medical University, Qiqihar, China
| | - Yan Jiang
- Department of Neurology, The Third Affiliated Hospital of Qiqihar Medical University, Qiqihar, China
| | - Deshui Liu
- Institute of Medical Sciences, Qiqihar Medical University, Qiqihar, China
| | - Hao Zhang
- Institute of Medical Sciences, Qiqihar Medical University, Qiqihar, China
| | - Tuantuan Chen
- Department of Neurology, The Third Affiliated Hospital of Qiqihar Medical University, Qiqihar, China
| | - Guangping Zhang
- Department of Neurology, The Third Affiliated Hospital of Qiqihar Medical University, Qiqihar, China
| | - Hongbin Liu
- Department of Neurology, The Third Affiliated Hospital of Qiqihar Medical University, Qiqihar, China
| | - Shu DU
- Department of Neurology, The Third Affiliated Hospital of Qiqihar Medical University, Qiqihar, China
| | - Zaihong Lin
- Department of Neurology, The Third Affiliated Hospital of Qiqihar Medical University, Qiqihar, China
| | - Yan Jin
- Department of Neurology, The Third Affiliated Hospital of Qiqihar Medical University, Qiqihar, China
| | - Xiaohua Li
- Department of Neurology, The Third Affiliated Hospital of Qiqihar Medical University, Qiqihar, China -
| |
Collapse
|
11
|
Huang X, Li D, Zhao Q, Zhang C, Ren B, Yue L, Du B, Godfrey O, Wang X, Zhang W. Association between BHMT and CBS gene promoter methylation with the efficacy of folic acid therapy in patients with hyperhomocysteinemia. J Hum Genet 2019; 64:1227-1235. [PMID: 31558761 DOI: 10.1038/s10038-019-0672-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 09/06/2019] [Accepted: 09/08/2019] [Indexed: 12/14/2022]
Abstract
Both betaine homocysteine methyltransferase (BHMT) and cystathionine β-synthase (CBS) are major enzymes in the metabolism of plasma homocysteine (Hcy). Abnormal methylation levels of BHMT and CBS are positively associated with Hcy levels. The present study is performed to explore the association between the methylation levels in the promoter regions of the BHMT and CBS genes and the efficacy of folic acid therapy in patient with hyperhomocysteinemia (HHcy). A prospective cohort study recruiting HHcy (Hcy ≥ 15 μmol/L) patients was performed. The subjects were treated with oral folic acid (5 mg/d) for 90 days, and the patients were divided into the success group (Hcy < 15 μmol/L) and the failure group (Hcy ≥ 15 μmol/L) according to their Hcy levels after treatment. In the logistic regression model with adjusted covariates, the patients with lower total methylation levels in the BHMT and CBS promoter regions exhibited 1.627-fold and 1.671-fold increased risk of treatment failure compared with higher methylation individuals, respectively. Similarly, subjects who had lower methylation levels (<methylation mean) in BHMT CpG1 had 1.792 times higher risks. Stratified analysis by sex found that lower CBS methylation levels were associated with a 2.128-fold increased risk for treatment failure in males with HHcy. Lower levels of BHMT or CBS promoter total methylation might be associated with increased the risk of treatment failure. These studies suggest that lower levels of BHMT and CBS methylation are all predictors of failure in folic acid therapy for HHcy. However, due to some limitations of this study, such as the small number of the loci tested, further large-scale studies are necessary to verify our observations.
Collapse
Affiliation(s)
- Xiaowen Huang
- Department of Epidemiology, School of Public Health, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Dankang Li
- Department of Epidemiology, School of Public Health, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Qinglin Zhao
- Department of Epidemiology, School of Public Health, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Chengda Zhang
- Department of Biostatistics and Bioinformatics, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, 70112, USA
| | - Bingnan Ren
- Department of Epidemiology, School of Public Health, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Limin Yue
- Department of Epidemiology, School of Public Health, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Binghui Du
- Department of Epidemiology, School of Public Health, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Opolot Godfrey
- Department of Epidemiology, School of Public Health, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Xiliang Wang
- Department of Epidemiology, School of Public Health, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Weidong Zhang
- Department of Epidemiology, School of Public Health, Zhengzhou University, Zhengzhou, 450001, Henan, China.
| |
Collapse
|
12
|
Genetic polymorphisms of key enzymes in folate metabolism affect the efficacy of folate therapy in patients with hyperhomocysteinaemia. Br J Nutr 2019; 119:887-895. [PMID: 29644956 DOI: 10.1017/s0007114518000508] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The aim of this study is to analyse the efficacy rate of folate for the treatment of hyperhomocysteinaemia (HHcy) and to explore how folate metabolism-related gene polymorphisms change its efficacy. This study also explored the effects of gene-gene and gene-environment interactions on the efficacy of folate. A prospective cohort study enrolling HHcy patients was performed. The subjects were treated with oral folate (5 mg/d) for 90 d. We analysed the efficacy rate of folate for the treatment of HHcy by measuring homocysteine (Hcy) levels after treatment. Unconditioned logistic regression was conducted to analyse the association between SNP and the efficacy of folic acid therapy for HHcy. The efficacy rate of folate therapy for HHcy was 56·41 %. The MTHFR rs1801133 CT genotype, TT genotype and T allele; the MTHFR rs1801131 AC genotype, CC genotype and C allele; the MTRR rs1801394 GA genotype, GG genotype and G allele; and the MTRR rs162036 AG genotype and AG+GG genotypes were associated with the efficacy of folic acid therapy for HHcy (P<0·05). No association was seen between other SNP and the efficacy of folic acid. The optimal model of gene-gene interactions was a two-factor interaction model including rs1801133 and rs1801394. The optimal model of gene-environment interaction was a three-factor interaction model including history of hypertension, history of CHD and rs1801133. Folate supplementation can effectively decrease Hcy level. However, almost half of HHcy patients failed to reach the normal range. The efficacy of folate therapy may be genetically regulated.
Collapse
|
13
|
Yang Y, Jiang H, Tang A, Xiang Z. Changes of serum homocysteine levels during pregnancy and the establishment of reference intervals in pregnant Chinese women. Clin Chim Acta 2018; 489:1-4. [PMID: 30468714 DOI: 10.1016/j.cca.2018.11.026] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 11/17/2018] [Accepted: 11/19/2018] [Indexed: 02/07/2023]
Abstract
BACKGROUD Reference intervals (RIs) of clinical laboratory indexes are important basis for interpretation of corresponding test results. While elevated homocysteine (HCY) level is a risk factor of some severe gestational diseases, HCY RIs for pregnant women have not been reported so far. The current use of HCY RIs established for general population in pregnant women may challenge clinicians' judgment. This study aims to investigate the changes of serum HCY levels during pregnancy and establish the RIs of serum HCY in healthy pregnant Chinese women to provide valuable data to clinicians and enable the provision of more appropriate therapy. METHODS 354 healthy pregnant Chinese women were randomly selected and divided into three groups according to gestational age: 114 in first trimester (1-13 week), 120 in second trimester (14-27 week) and 120 in third trimester (≥28 week). 120 healthy non-pregnant Chinese women were randomly selected as the non-pregnant control group. Serum HCY levels were determined on automatic biochemical analyzer with enzymatic cycling method. The RIs of serum HCY for healthy pregnant women were established using a nonparametric method. RESULTS the RIs of serum HCY for healthy pregnant women is 5.79-11.86 μmol/L in first and second trimester (combined) and 6.13-16.75 μmol/L in third trimester. Besides, the RIs of serum HCY for healthy non-pregnant women is 8.25-22.92 μmol/L. CONCLUSIONS Rigorously according to CLSI C28-A3 guidelines, the authoritative document of RIs establishment, the RIs of serum HCY for healthy pregnant Chinese women were established, which will provide a valuable reference for clinical work and laboratory researches.
Collapse
Affiliation(s)
- Yuanqing Yang
- Department of Laboratory Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Hongmin Jiang
- Department of Laboratory Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Aiguo Tang
- Department of Laboratory Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhongyuan Xiang
- Department of Laboratory Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
14
|
Barnett H, D’Cunha NM, Georgousopoulou EN, Kellett J, Mellor DD, McKune AJ, Naumovski N. Effect of Folate Supplementation on Inflammatory Markers in Individuals Susceptible to Depression: A Systematic Review. EXPLORATORY RESEARCH AND HYPOTHESIS IN MEDICINE 2017; 2:1-15. [DOI: 10.14218/erhm.2017.00025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
15
|
Jones P, Lucock M, Veysey M, Jablonski N, Chaplin G, Beckett E. Frequency of folate-related polymorphisms varies by skin pigmentation. Am J Hum Biol 2017; 30. [DOI: 10.1002/ajhb.23079] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 09/27/2017] [Accepted: 10/29/2017] [Indexed: 12/12/2022] Open
Affiliation(s)
- Patrice Jones
- School of Environmental & Life Sciences, University of Newcastle; Ourimbah NSW Australia
| | - Mark Lucock
- School of Environmental & Life Sciences, University of Newcastle; Ourimbah NSW Australia
| | - Martin Veysey
- Hull-York Medical School; University of York; Heslington York UK
| | - Nina Jablonski
- Anthropology Department; The Pennsylvania State University; Pennsylvania
| | - George Chaplin
- Anthropology Department; The Pennsylvania State University; Pennsylvania
| | - Emma Beckett
- School of Environmental & Life Sciences, University of Newcastle; Ourimbah NSW Australia
- School of Medicine and Public Health; University of Newcastle; Ourimbah NSW Australia
| |
Collapse
|
16
|
Au KS, Findley TO, Northrup H. Finding the genetic mechanisms of folate deficiency and neural tube defects-Leaving no stone unturned. Am J Med Genet A 2017; 173:3042-3057. [PMID: 28944587 PMCID: PMC5650505 DOI: 10.1002/ajmg.a.38478] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 08/11/2017] [Accepted: 08/21/2017] [Indexed: 12/21/2022]
Abstract
Neural tube defects (NTDs) occur secondary to failed closure of the neural tube between the third and fourth weeks of gestation. The worldwide incidence ranges from 0.3 to 200 per 10,000 births with the United States of American NTD incidence at around 3-6.3 per 10,000 dependent on race and socioeconomic background. Human NTD incidence has fallen by 35-50% in North America due to mandatory folic acid fortification of enriched cereal grain products since 1998. The US Food and Drug Administration has approved the folic acid fortification of corn masa flour with the goal to further reduce the incidence of NTDs, especially among individuals who are Hispanic. However, the genetic mechanisms determining who will benefit most from folate enrichment of the diet remains unclear despite volumes of literature published on studies of association of genes with functions related to folate metabolism and risk of human NTDs. The advances in omics technologies provides hypothesis-free tools to interrogate every single gene within the genome of NTD affected individuals to discover pathogenic variants and methylation targets throughout the affected genome. By identifying genes with expression regulated by presence of folate through transcriptome profiling studies, the genetic mechanisms leading to human NTDs due to folate deficiency may begin to be more efficiently revealed.
Collapse
Affiliation(s)
- KS Au
- Division of Medical Genetics, Department of Pediatrics, University of Texas Health Science Houston – McGovern Medical School, Houston, TX
| | - TO Findley
- Division of Neonatology, Department of Pediatrics, University of Texas Health Science Houston – McGovern Medical School, Houston, TX
| | - H Northrup
- Division of Medical Genetics, Department of Pediatrics, University of Texas Health Science Houston – McGovern Medical School, Houston, TX
- Shriners Hospitals for Children - Houston, Houston, TX
| |
Collapse
|
17
|
Miranda-Morales E, Meier K, Sandoval-Carrillo A, Salas-Pacheco J, Vázquez-Cárdenas P, Arias-Carrión O. Implications of DNA Methylation in Parkinson's Disease. Front Mol Neurosci 2017; 10:225. [PMID: 28769760 PMCID: PMC5513956 DOI: 10.3389/fnmol.2017.00225] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 07/03/2017] [Indexed: 12/13/2022] Open
Abstract
It has been 200 years since Parkinson’s disease (PD) was first described, yet many aspects of its etiopathogenesis remain unclear. PD is a progressive and complex neurodegenerative disorder caused by genetic and environmental factors including aging, nutrition, pesticides and exposure to heavy metals. DNA methylation may be altered in response to some of these factors; therefore, it is proposed that epigenetic mechanisms, particularly DNA methylation, can have a fundamental role in gene–environment interactions that are related with PD. Epigenetic changes in PD-associated genes are now widely studied in different populations, to discover the mechanisms that contribute to disease development and identify novel biomarkers for early diagnosis and future pharmacological treatment. While initial studies sought to find associations between promoter DNA methylation and the regulation of associated genes in PD brain tissue, more recent studies have described concordant DNA methylation patterns between blood and brain tissue DNA. These data justify the use of peripheral blood samples instead of brain tissue for epigenetic studies. Here, we summarize the current data about DNA methylation changes in PD and discuss the potential of DNA methylation as a potential biomarker for PD. Additionally, we discuss environmental and nutritional factors that have been implicated in DNA methylation. Although the search for significant DNA methylation changes and gene expression analyses of PD-associated genes have yielded inconsistent and contradictory results, epigenetic modifications remain under investigation for their potential to reveal the link between environmental risk factors and the development of PD.
Collapse
Affiliation(s)
- Ernesto Miranda-Morales
- Unidad de Trastornos del Movimiento y Sueño, Hospital General Dr. Manuel Gea GonzálezMexico City, Mexico.,Instituto de Investigación Científica, Universidad Juárez del Estado de DurangoDurango, Mexico
| | - Karin Meier
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de MéxicoMexico City, Mexico
| | - Ada Sandoval-Carrillo
- Instituto de Investigación Científica, Universidad Juárez del Estado de DurangoDurango, Mexico
| | - José Salas-Pacheco
- Instituto de Investigación Científica, Universidad Juárez del Estado de DurangoDurango, Mexico
| | | | - Oscar Arias-Carrión
- Unidad de Trastornos del Movimiento y Sueño, Hospital General Dr. Manuel Gea GonzálezMexico City, Mexico
| |
Collapse
|
18
|
Colomina JM, Cavallé-Busquets P, Fernàndez-Roig S, Solé-Navais P, Fernandez-Ballart JD, Ballesteros M, Ueland PM, Meyer K, Murphy MM. Maternal Folate Status and the BHMT c.716G>A Polymorphism Affect the Betaine Dimethylglycine Pathway during Pregnancy. Nutrients 2016; 8:nu8100621. [PMID: 27735840 PMCID: PMC5084009 DOI: 10.3390/nu8100621] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 09/20/2016] [Accepted: 09/27/2016] [Indexed: 12/31/2022] Open
Abstract
The effect of the betaine: homocysteine methyltransferase BHMT c.716G>A (G: guanosine; A: adenosine) single nucleotide polymorphism (SNP) on the BHMT pathway is unknown during pregnancy. We hypothesised that it impairs betaine to dimethylglycine conversion and that folate status modifies its effect. We studied 612 women from the Reus Tarragona Birth Cohort from ≤12 gestational weeks (GW) throughout pregnancy. The frequency of the variant BHMT c.716A allele was 30.8% (95% confidence interval (CI): 28.3, 33.5). In participants with normal-high plasma folate status (>13.4 nmol/L), least square geometric mean [95% CI] plasma dimethylglycine (pDMG, µmol/L) was lower in the GA (2.35 [2.23, 2.47]) versus GG (2.58 [2.46, 2.70]) genotype at ≤12 GW (p < 0.05) and in the GA (2.08 [1.97, 2.19]) and AA (1.94 [1.75, 2.16]) versus GG (2.29 [2.18, 2.40]) genotypes at 15 GW (p < 0.05). No differences in pDMG between genotypes were observed in participants with possible folate deficiency (≤13.4 nmol/L) (p for interactions at ≤12 GW: 0.023 and 15 GW: 0.038). PDMG was lower in participants with the AA versus GG genotype at 34 GW (2.01 [1.79, 2.25] versus 2.44 [2.16, 2.76] and at labour, 2.51 [2.39, 2.64] versus 3.00 [2.84, 3.18], (p < 0.01)). Possible deficiency compared to normal-high folate status was associated with higher pDMG in multiple linear regression analysis (β coefficients [SEM] ranging from 0.07 [0.04], p < 0.05 to 0.20 [0.04], p < 0.001 in models from early and mid-late pregnancy) and the AA compared to GG genotype was associated with lower pDMG (β coefficients [SEM] ranging from −0.11 [0.06], p = 0.055 to −0.23 [0.06], p < 0.001). Conclusion: During pregnancy, the BHMT pathway is affected by folate status and by the variant BHMT c.716A allele.
Collapse
Affiliation(s)
- Jose M Colomina
- Area of Preventive Medicine and Public Health, Faculty of Medicine and Health Sciences, Universitat Rovira i Virgili, IISPV, C/Sant Llorenç 21, Reus 43201, Spain.
- Ciberobn Fisiopatología de la Obesidad y Nutrición (CB06/03), Instituto Carlos III, Madrid 28029, Spain.
| | - Pere Cavallé-Busquets
- Ciberobn Fisiopatología de la Obesidad y Nutrición (CB06/03), Instituto Carlos III, Madrid 28029, Spain.
- Area of Obstetrics and Gynaecology, Hospital Universitari Sant Joan, Reus and Universitat Rovira i Virgili, Reus 43204, Spain.
| | - Sílvia Fernàndez-Roig
- Area of Preventive Medicine and Public Health, Faculty of Medicine and Health Sciences, Universitat Rovira i Virgili, IISPV, C/Sant Llorenç 21, Reus 43201, Spain.
- Ciberobn Fisiopatología de la Obesidad y Nutrición (CB06/03), Instituto Carlos III, Madrid 28029, Spain.
| | - Pol Solé-Navais
- Area of Preventive Medicine and Public Health, Faculty of Medicine and Health Sciences, Universitat Rovira i Virgili, IISPV, C/Sant Llorenç 21, Reus 43201, Spain.
- Ciberobn Fisiopatología de la Obesidad y Nutrición (CB06/03), Instituto Carlos III, Madrid 28029, Spain.
| | - Joan D Fernandez-Ballart
- Area of Preventive Medicine and Public Health, Faculty of Medicine and Health Sciences, Universitat Rovira i Virgili, IISPV, C/Sant Llorenç 21, Reus 43201, Spain.
- Ciberobn Fisiopatología de la Obesidad y Nutrición (CB06/03), Instituto Carlos III, Madrid 28029, Spain.
| | - Mónica Ballesteros
- Area of Obstetrics and Gynaecology, Hospital Universitari Joan XXIII, Tarragona and Universitat Rovira i Virgili, Tarragona 43005, Spain.
| | - Per M Ueland
- Section for Pharmacology, Department of Internal Medicine, University of Bergen, Bergen N-5020, Norway.
| | - Klaus Meyer
- Bevital A/S, Laboratory building, 9th floor, Bergen N-5021, Norway.
| | - Michelle M Murphy
- Area of Preventive Medicine and Public Health, Faculty of Medicine and Health Sciences, Universitat Rovira i Virgili, IISPV, C/Sant Llorenç 21, Reus 43201, Spain.
- Ciberobn Fisiopatología de la Obesidad y Nutrición (CB06/03), Instituto Carlos III, Madrid 28029, Spain.
| |
Collapse
|
19
|
Uvarova MA, Ivanov AV, Dedul AG, Sheveleva TS, Komlichenko EV. The effect of single nucleotide genetic polymorphisms of folic acid cycle on the female reproductive system disorders. Gynecol Endocrinol 2015. [DOI: 10.3109/09513590.2015.1086504] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
20
|
Zwart SR, Gregory JF, Zeisel SH, Gibson CR, Mader TH, Kinchen JM, Ueland PM, Ploutz-Snyder R, Heer MA, Smith SM. Genotype, B-vitamin status, and androgens affect spaceflight-induced ophthalmic changes. FASEB J 2015; 30:141-8. [PMID: 26316272 DOI: 10.1096/fj.15-278457] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 08/17/2015] [Indexed: 12/18/2022]
Abstract
Ophthalmic changes have occurred in a subset of astronauts on International Space Station missions. Visual deterioration is considered the greatest human health risk of spaceflight. Affected astronauts exhibit higher concentrations of 1-carbon metabolites (e.g., homocysteine) before flight. We hypothesized that genetic variations in 1-carbon metabolism genes contribute to susceptibility to ophthalmic changes in astronauts. We investigated 5 polymorphisms in the methionine synthase reductase (MTRR), methylenetetrahydrofolate reductase (MTHFR), serine hydroxymethyltransferase (SHMT), and cystathionine β-synthase (CBS) genes and their association with ophthalmic changes after flight in 49 astronauts. The number of G alleles of MTRR 66 and C alleles of SHMT1 1420 both contributed to the odds of visual disturbances. Preflight dehydroepiandrosterone was positively associated with cotton wool spots, and serum testosterone response during flight was associated with refractive change. Block regression showed that B-vitamin status and genetics were significant predictors of many of the ophthalmic outcomes that we observed. In one example, genetics trended toward improving (P = 0.10) and B-vitamin status significantly improved (P < 0.001) the predictive model for refractive change after flight. We document an association between MTRR 66 and SHMT1 1420 polymorphisms and spaceflight-induced vision changes. This line of research could lead to therapeutic options for both space travelers and terrestrial patients.
Collapse
Affiliation(s)
- Sara R Zwart
- *Division of Space Life Sciences, Universities Space Research Association, Houston, Texas, USA; Food Science and Human Nutrition, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, Florida, USA; Nutrition Research Institute, University of North Carolina at Kannapolis, Kannapolis, North Carolina, USA; Coastal Eye Associates, Webster, Texas, USA; Cooper Landing, Alaska, USA; Metabolon, Incorporated, Durham, North Carolina, USA; Department of Clinical Science, University of Bergen, Bergen, Norway; **Department of Nutrition and Food Science, Nutritional Physiology, University of Bonn, Bonn, Germany; and Biomedical Research and Environmental Sciences Division, National Aeronautics and Space Administration Johnson Space Center, Houston, Texas, USA
| | - Jesse F Gregory
- *Division of Space Life Sciences, Universities Space Research Association, Houston, Texas, USA; Food Science and Human Nutrition, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, Florida, USA; Nutrition Research Institute, University of North Carolina at Kannapolis, Kannapolis, North Carolina, USA; Coastal Eye Associates, Webster, Texas, USA; Cooper Landing, Alaska, USA; Metabolon, Incorporated, Durham, North Carolina, USA; Department of Clinical Science, University of Bergen, Bergen, Norway; **Department of Nutrition and Food Science, Nutritional Physiology, University of Bonn, Bonn, Germany; and Biomedical Research and Environmental Sciences Division, National Aeronautics and Space Administration Johnson Space Center, Houston, Texas, USA
| | - Steven H Zeisel
- *Division of Space Life Sciences, Universities Space Research Association, Houston, Texas, USA; Food Science and Human Nutrition, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, Florida, USA; Nutrition Research Institute, University of North Carolina at Kannapolis, Kannapolis, North Carolina, USA; Coastal Eye Associates, Webster, Texas, USA; Cooper Landing, Alaska, USA; Metabolon, Incorporated, Durham, North Carolina, USA; Department of Clinical Science, University of Bergen, Bergen, Norway; **Department of Nutrition and Food Science, Nutritional Physiology, University of Bonn, Bonn, Germany; and Biomedical Research and Environmental Sciences Division, National Aeronautics and Space Administration Johnson Space Center, Houston, Texas, USA
| | - Charles R Gibson
- *Division of Space Life Sciences, Universities Space Research Association, Houston, Texas, USA; Food Science and Human Nutrition, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, Florida, USA; Nutrition Research Institute, University of North Carolina at Kannapolis, Kannapolis, North Carolina, USA; Coastal Eye Associates, Webster, Texas, USA; Cooper Landing, Alaska, USA; Metabolon, Incorporated, Durham, North Carolina, USA; Department of Clinical Science, University of Bergen, Bergen, Norway; **Department of Nutrition and Food Science, Nutritional Physiology, University of Bonn, Bonn, Germany; and Biomedical Research and Environmental Sciences Division, National Aeronautics and Space Administration Johnson Space Center, Houston, Texas, USA
| | - Thomas H Mader
- *Division of Space Life Sciences, Universities Space Research Association, Houston, Texas, USA; Food Science and Human Nutrition, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, Florida, USA; Nutrition Research Institute, University of North Carolina at Kannapolis, Kannapolis, North Carolina, USA; Coastal Eye Associates, Webster, Texas, USA; Cooper Landing, Alaska, USA; Metabolon, Incorporated, Durham, North Carolina, USA; Department of Clinical Science, University of Bergen, Bergen, Norway; **Department of Nutrition and Food Science, Nutritional Physiology, University of Bonn, Bonn, Germany; and Biomedical Research and Environmental Sciences Division, National Aeronautics and Space Administration Johnson Space Center, Houston, Texas, USA
| | - Jason M Kinchen
- *Division of Space Life Sciences, Universities Space Research Association, Houston, Texas, USA; Food Science and Human Nutrition, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, Florida, USA; Nutrition Research Institute, University of North Carolina at Kannapolis, Kannapolis, North Carolina, USA; Coastal Eye Associates, Webster, Texas, USA; Cooper Landing, Alaska, USA; Metabolon, Incorporated, Durham, North Carolina, USA; Department of Clinical Science, University of Bergen, Bergen, Norway; **Department of Nutrition and Food Science, Nutritional Physiology, University of Bonn, Bonn, Germany; and Biomedical Research and Environmental Sciences Division, National Aeronautics and Space Administration Johnson Space Center, Houston, Texas, USA
| | - Per M Ueland
- *Division of Space Life Sciences, Universities Space Research Association, Houston, Texas, USA; Food Science and Human Nutrition, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, Florida, USA; Nutrition Research Institute, University of North Carolina at Kannapolis, Kannapolis, North Carolina, USA; Coastal Eye Associates, Webster, Texas, USA; Cooper Landing, Alaska, USA; Metabolon, Incorporated, Durham, North Carolina, USA; Department of Clinical Science, University of Bergen, Bergen, Norway; **Department of Nutrition and Food Science, Nutritional Physiology, University of Bonn, Bonn, Germany; and Biomedical Research and Environmental Sciences Division, National Aeronautics and Space Administration Johnson Space Center, Houston, Texas, USA
| | - Robert Ploutz-Snyder
- *Division of Space Life Sciences, Universities Space Research Association, Houston, Texas, USA; Food Science and Human Nutrition, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, Florida, USA; Nutrition Research Institute, University of North Carolina at Kannapolis, Kannapolis, North Carolina, USA; Coastal Eye Associates, Webster, Texas, USA; Cooper Landing, Alaska, USA; Metabolon, Incorporated, Durham, North Carolina, USA; Department of Clinical Science, University of Bergen, Bergen, Norway; **Department of Nutrition and Food Science, Nutritional Physiology, University of Bonn, Bonn, Germany; and Biomedical Research and Environmental Sciences Division, National Aeronautics and Space Administration Johnson Space Center, Houston, Texas, USA
| | - Martina A Heer
- *Division of Space Life Sciences, Universities Space Research Association, Houston, Texas, USA; Food Science and Human Nutrition, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, Florida, USA; Nutrition Research Institute, University of North Carolina at Kannapolis, Kannapolis, North Carolina, USA; Coastal Eye Associates, Webster, Texas, USA; Cooper Landing, Alaska, USA; Metabolon, Incorporated, Durham, North Carolina, USA; Department of Clinical Science, University of Bergen, Bergen, Norway; **Department of Nutrition and Food Science, Nutritional Physiology, University of Bonn, Bonn, Germany; and Biomedical Research and Environmental Sciences Division, National Aeronautics and Space Administration Johnson Space Center, Houston, Texas, USA
| | - Scott M Smith
- *Division of Space Life Sciences, Universities Space Research Association, Houston, Texas, USA; Food Science and Human Nutrition, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, Florida, USA; Nutrition Research Institute, University of North Carolina at Kannapolis, Kannapolis, North Carolina, USA; Coastal Eye Associates, Webster, Texas, USA; Cooper Landing, Alaska, USA; Metabolon, Incorporated, Durham, North Carolina, USA; Department of Clinical Science, University of Bergen, Bergen, Norway; **Department of Nutrition and Food Science, Nutritional Physiology, University of Bonn, Bonn, Germany; and Biomedical Research and Environmental Sciences Division, National Aeronautics and Space Administration Johnson Space Center, Houston, Texas, USA
| |
Collapse
|
21
|
Verly-Jr E, Steluti J, Fisberg RM, Marchioni DML. A quantile regression approach can reveal the effect of fruit and vegetable consumption on plasma homocysteine levels. PLoS One 2014; 9:e111619. [PMID: 25365261 PMCID: PMC4218785 DOI: 10.1371/journal.pone.0111619] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Accepted: 10/06/2014] [Indexed: 12/14/2022] Open
Abstract
INTRODUCTION A reduction in homocysteine concentration due to the use of supplemental folic acid is well recognized, although evidence of the same effect for natural folate sources, such as fruits and vegetables (FV), is lacking. The traditional statistical analysis approaches do not provide further information. As an alternative, quantile regression allows for the exploration of the effects of covariates through percentiles of the conditional distribution of the dependent variable. OBJECTIVE To investigate how the associations of FV intake with plasma total homocysteine (tHcy) differ through percentiles in the distribution using quantile regression. MATERIALS AND METHODS A cross-sectional population-based survey was conducted among 499 residents of Sao Paulo City, Brazil. The participants provided food intake and fasting blood samples. Fruit and vegetable intake was predicted by adjusting for day-to-day variation using a proper measurement error model. We performed a quantile regression to verify the association between tHcy and the predicted FV intake. The predicted values of tHcy for each percentile model were calculated considering an increase of 200 g in the FV intake for each percentile. RESULTS The results showed that tHcy was inversely associated with FV intake when assessed by linear regression whereas, the association was different when using quantile regression. The relationship with FV consumption was inverse and significant for almost all percentiles of tHcy. The coefficients increased as the percentile of tHcy increased. A simulated increase of 200 g in the FV intake could decrease the tHcy levels in the overall percentiles, but the higher percentiles of tHcy benefited more. CONCLUSIONS This study confirms that the effect of FV intake on lowering the tHcy levels is dependent on the level of tHcy using an innovative statistical approach. From a public health point of view, encouraging people to increase FV intake would benefit people with high levels of tHcy.
Collapse
Affiliation(s)
- Eliseu Verly-Jr
- Department of Epidemiology, Institute of Social Medicine, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Josiane Steluti
- Department of Nutrition, School of Public Health, Sao Paulo University, São Paulo, Brazil
| | - Regina Mara Fisberg
- Department of Nutrition, School of Public Health, Sao Paulo University, São Paulo, Brazil
| | | |
Collapse
|
22
|
Cornelis MC, Fornage M, Foy M, Xun P, Gladyshev VN, Morris S, Chasman DI, Hu FB, Rimm EB, Kraft P, Jordan JM, Mozaffarian D, He K. Genome-wide association study of selenium concentrations. Hum Mol Genet 2014; 24:1469-77. [PMID: 25343990 DOI: 10.1093/hmg/ddu546] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Selenium (Se) is an essential trace element in human nutrition, but its role in certain health conditions, particularly among Se sufficient populations, is controversial. A genome-wide association study (GWAS) of blood Se concentrations previously identified a locus at 5q14 near BHMT. We performed a GW meta-analysis of toenail Se concentrations, which reflect a longer duration of exposure than blood Se concentrations, including 4162 European descendants from four US cohorts. Toenail Se was measured using neutron activation analysis. We identified a GW-significant locus at 5q14 (P < 1 × 10(-16)), the same locus identified in the published GWAS of blood Se based on independent cohorts. The lead single-nucleotide polymorphism (SNP) explained ∼1% of the variance in toenail Se concentrations. Using GW-summary statistics from both toenail and blood Se, we observed statistical evidence of polygenic overlap (P < 0.001) and meta-analysis of results from studies of either trait (n = 9639) yielded a second GW-significant locus at 21q22.3, harboring CBS (P < 4 × 10(-8)). Proteins encoded by genes at 5q14 and 21q22.3 function in homocysteine (Hcy) metabolism, and index SNPs for each have previously been associated with betaine and Hcy levels in GWAS. Our findings show evidence of a genetic link between Se and Hcy pathways, both involved in cardiometabolic disease.
Collapse
Affiliation(s)
| | - Myriam Fornage
- Center for Human Genetics, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Millennia Foy
- Center for Human Genetics, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Pengcheng Xun
- Department of Epidemiology and Biostatistics, Indiana University at Bloomington, Bloomington, IN, USA
| | | | - Steve Morris
- University of Missouri Research Reactor Center, Columbia, MO, USA
| | - Daniel I Chasman
- Division of Preventive Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Frank B Hu
- Channing Division of Network Medicine, Department of Nutrition, Department of Epidemiology, and
| | - Eric B Rimm
- Channing Division of Network Medicine, Department of Nutrition, Department of Epidemiology, and
| | - Peter Kraft
- Program in Genetic Epidemiology and Statistical Genetics, Harvard School of Public Health, Boston, MA, USA
| | - Joanne M Jordan
- Thurston Arthritis Research Center, University of North Carolina at Chapel Hill, NC, USA, Department of Medicine and Department of Orthopaedics, UNC School of Medicine, NC, USA, Department of Epidemiology, UNC Gillings School of Global Public Health, NC, USA
| | - Dariush Mozaffarian
- Channing Division of Network Medicine, Department of Nutrition, Department of Epidemiology, and Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA, USA
| | - Ka He
- Department of Epidemiology and Biostatistics, Indiana University at Bloomington, Bloomington, IN, USA
| |
Collapse
|
23
|
Bezerra JF, Oliveira GHM, Soares CD, Cardoso ML, Ururahy MAG, Neto FPF, Lima-Neto LG, Luchessi AD, Silbiger VN, Fajardo CM, de Oliveira SR, Almeida MDG, Hirata RDC, de Rezende AA, Hirata MH. Genetic and non-genetic factors that increase the risk of non-syndromic cleft lip and/or palate development. Oral Dis 2014; 21:393-9. [DOI: 10.1111/odi.12292] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Revised: 07/22/2014] [Accepted: 08/10/2014] [Indexed: 02/04/2023]
Affiliation(s)
- JF Bezerra
- Department of Clinical and Toxicological Analysis; Federal University of Rio Grande do Norte; Natal RN Brazil
| | - GHM Oliveira
- Department of Clinical and Toxicological Analysis; Federal University of Rio Grande do Norte; Natal RN Brazil
| | - CD Soares
- Department of Clinical and Toxicological Analysis; Federal University of Rio Grande do Norte; Natal RN Brazil
| | - ML Cardoso
- Department of Clinical and Toxicological Analysis; Federal University of Rio Grande do Norte; Natal RN Brazil
| | - MAG Ururahy
- Department of Clinical and Toxicological Analysis; Federal University of Rio Grande do Norte; Natal RN Brazil
| | - FPF Neto
- Department of Clinical and Toxicological Analysis; Federal University of Rio Grande do Norte; Natal RN Brazil
| | | | - AD Luchessi
- Department of Clinical and Toxicological Analysis; Federal University of Rio Grande do Norte; Natal RN Brazil
| | - VN Silbiger
- Department of Clinical and Toxicological Analysis; Federal University of Rio Grande do Norte; Natal RN Brazil
| | - CM Fajardo
- Department of Clinical and Toxicological Analysis; School of Pharmaceutical Sciences; University of São Paulo; São Paulo SP Brazil
| | - SR de Oliveira
- Program for Children with Cleft lip and Palate; Pediatric Hospital Professor Heriberto Ferreira Bezerra; Federal University of Rio Grande do Norte; Natal RN Brazil
| | - M das G Almeida
- Department of Clinical and Toxicological Analysis; Federal University of Rio Grande do Norte; Natal RN Brazil
| | - RDC Hirata
- Department of Clinical and Toxicological Analysis; School of Pharmaceutical Sciences; University of São Paulo; São Paulo SP Brazil
| | - AA de Rezende
- Department of Clinical and Toxicological Analysis; Federal University of Rio Grande do Norte; Natal RN Brazil
| | - MH Hirata
- Department of Clinical and Toxicological Analysis; School of Pharmaceutical Sciences; University of São Paulo; São Paulo SP Brazil
| |
Collapse
|