1
|
Lembas A, Mikuła T, Sapuła M, Barczak S, Badura B, Wiercińska Drapało A. The correlation of ADMA with proinflammatory, liver injury and cancer biomarkers in patients with liver dysfunction. HEPATOLOGY FORUM 2024; 5:171-177. [PMID: 39355835 PMCID: PMC11440223 DOI: 10.14744/hf.2023.2023.0068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 02/28/2024] [Indexed: 10/03/2024]
Abstract
Background and Aim Asymmetric dimethylarginine (ADMA) is an enzyme involved in vascular tone, blood pressure, and platelet activation. Serum ADMA levels are increased in liver diseases such as liver cirrhosis, hepatitis, and acute liver failure. The aim of our study was to assess the correlation of ADMA with proinflammatory, liver injury, and cancer biomarkers in patients with liver dysfunction of various etiologies. Materials and Methods We analyzed the demographic and clinical data, including serum ADMA concentration and other biochemical markers such as albumin, platelet count, international normalized ratio, bilirubin, and others in patients with hepatitis, compensated and decompensated liver cirrhosis, and hepatocellular carcinoma. The one-way ANOVA, Student's t-test, Mann-Whitney U test, univariate, and multivariate correlations were performed, and a p-value <0.05 was set as significant. Results In n=83 analyzed patients, we observed a negative correlation of ADMA with albumin concentration (p=0.049). We found a negative correlation between ADMA and platelet count in n=31 patients with compensated liver cirrhosis (p=0.022). We observed no significant correlations of ADMA with proinflammatory and cancer biomarkers in patients with hepatitis, compensated and decompensated liver cirrhosis, and hepatocellular carcinoma. Conclusion ADMA can potentially be used as a subsidiary marker of disease progression in patients with liver dysfunction. Our research suggests that ADMA cannot be useful in detecting hepatocellular carcinoma (HCC).
Collapse
Affiliation(s)
- Agnieszka Lembas
- Department of Infectious and Tropical Diseases and Hepatology, Medical University of Warsaw, Poland
- Warsaw’s Hospital for Infectious Diseases, Warsaw, Poland
| | - Tomasz Mikuła
- Department of Infectious and Tropical Diseases and Hepatology, Medical University of Warsaw, Poland
- Warsaw’s Hospital for Infectious Diseases, Warsaw, Poland
| | - Mariusz Sapuła
- Department of Infectious and Tropical Diseases and Hepatology, Medical University of Warsaw, Poland
- Warsaw’s Hospital for Infectious Diseases, Warsaw, Poland
| | - Szymon Barczak
- Students’ Scientific Society of the Department of Infectious and Tropical Diseases and Hepatology, Medical University of Warsaw, Warsaw, Poland
| | - Barbara Badura
- Students’ Scientific Society of the Department of Infectious and Tropical Diseases and Hepatology, Medical University of Warsaw, Warsaw, Poland
| | - Alicja Wiercińska Drapało
- Department of Infectious and Tropical Diseases and Hepatology, Medical University of Warsaw, Poland
- Warsaw’s Hospital for Infectious Diseases, Warsaw, Poland
| |
Collapse
|
2
|
Vairetti M, Di Pasqua LG, Cagna M, Richelmi P, Ferrigno A, Berardo C. Changes in Glutathione Content in Liver Diseases: An Update. Antioxidants (Basel) 2021; 10:364. [PMID: 33670839 PMCID: PMC7997318 DOI: 10.3390/antiox10030364] [Citation(s) in RCA: 130] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 02/22/2021] [Accepted: 02/24/2021] [Indexed: 02/07/2023] Open
Abstract
Glutathione (GSH), a tripeptide particularly concentrated in the liver, is the most important thiol reducing agent involved in the modulation of redox processes. It has also been demonstrated that GSH cannot be considered only as a mere free radical scavenger but that it takes part in the network governing the choice between survival, necrosis and apoptosis as well as in altering the function of signal transduction and transcription factor molecules. The purpose of the present review is to provide an overview on the molecular biology of the GSH system; therefore, GSH synthesis, metabolism and regulation will be reviewed. The multiple GSH functions will be described, as well as the importance of GSH compartmentalization into distinct subcellular pools and inter-organ transfer. Furthermore, we will highlight the close relationship existing between GSH content and the pathogenesis of liver disease, such as non-alcoholic fatty liver disease (NAFLD), alcoholic liver disease (ALD), chronic cholestatic injury, ischemia/reperfusion damage, hepatitis C virus (HCV), hepatitis B virus (HBV) and hepatocellular carcinoma. Finally, the potential therapeutic benefits of GSH and GSH-related medications, will be described for each liver disorder taken into account.
Collapse
Affiliation(s)
| | - Laura Giuseppina Di Pasqua
- Unit of Cellular and Molecular Pharmacology and Toxicology, Department of Internal Medicine and Therapeutics, University of Pavia, 27100 Pavia, Italy; (M.V.); (M.C.); (P.R.); (C.B.)
| | | | | | - Andrea Ferrigno
- Unit of Cellular and Molecular Pharmacology and Toxicology, Department of Internal Medicine and Therapeutics, University of Pavia, 27100 Pavia, Italy; (M.V.); (M.C.); (P.R.); (C.B.)
| | | |
Collapse
|
3
|
Arginine and Arginine/ADMA Ratio Predict 90-Day Mortality in Patients with Out-of-Hospital Cardiac Arrest-Results from the Prospective, Observational COMMUNICATE Trial. J Clin Med 2020; 9:jcm9123815. [PMID: 33255752 PMCID: PMC7760544 DOI: 10.3390/jcm9123815] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/08/2020] [Accepted: 11/19/2020] [Indexed: 02/07/2023] Open
Abstract
(1) Background: In patients with shock, the L-arginine nitric oxide pathway is activated, causing an elevation of nitric oxide, asymmetric dimethylarginine (ADMA) and symmetric dimethylarginine (SDMA) levels. Whether these metabolites provide prognostic information in patients after out-of-hospital cardiac arrest (OHCA) remains unclear. (2) Methods: We prospectively included OHCA patients, recorded clinical parameters and measured plasma ADMA, SDMA and Arginine levels by liquid chromatography tandem mass spectrometry (LC-MS). The primary endpoint was 90-day mortality. (3) Results: Of 263 patients, 130 (49.4%) died within 90 days after OHCA. Compared to survivors, non-survivors had significantly higher levels of ADMA and lower Arginine and Arginine/ADMA ratios in univariable regression analyses. Arginine levels and Arginine/ADMA ratio were significantly associated with 90-day mortality (OR 0.51 (95%CI 0.34 to 0.76), p < 0.01 and OR 0.40 (95%CI 0.26 to 0.61), p < 0.001, respectively). These associations remained significant in several multivariable models. Arginine/ADMA ratio had the highest predictive value with an area under the curve (AUC) of 0.67 for 90-day mortality. Results for secondary outcomes were similar with significant associations with in-hospital mortality and neurological outcome. (4) Conclusion: Arginine and Arginine/ADMA ratio were independently associated with 90-day mortality and other adverse outcomes in patients after OHCA. Whether therapeutic modification of the L-arginine-nitric oxide pathway has the potential to improve outcome should be evaluated.
Collapse
|
4
|
Croce AC, Ferrigno A, Berardo C, Bottiroli G, Vairetti M, Di Pasqua LG. Spectrofluorometric Analysis of Autofluorescing Components of Crude Serum from a Rat Liver Model of Ischemia and Reperfusion. Molecules 2020; 25:molecules25061327. [PMID: 32183261 PMCID: PMC7144569 DOI: 10.3390/molecules25061327] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 03/10/2020] [Accepted: 03/11/2020] [Indexed: 12/20/2022] Open
Abstract
Autofluorescence (AF) of crude serum was investigated with reference to the potential of its intrinsic AF biomarkers for the noninvasive diagnosis of liver injury. Spectral parameters of pure compounds representing retinol (vitamin A) and fluorescing free fatty acids were characterized by spectrofluorometry, to assess spectral parameters for the subsequent AF analysis of serum, collected from rats undergoing liver ischemia/reperfusion (I/R). Differences in AF spectral profiles detected between control and I/R were due to the increase in the AF components representing fatty acids in I/R serum samples. No significant changes occurred for retinol levels, consistently with the literature reporting that constant retinol levels are commonly observed in the blood, except for malnutrition or chronic severe liver disease. Conversely, fatty acids, in particular arachidonic and linoleic acid and their derivatives, act as modulating agents in inflammation, representing both a protective and damaging response to stress stimuli. The biometabolic and pathophysiological meaning of serum components and the possibility of their direct detection by AF spectrofluorometry open up interesting perspectives for the development of AF serum analysis, as a direct, cost effective, supportive tool to assess liver injury and related systemic metabolic alterations, for applications in experimental biomedicine and foreseen translation to the clinics.
Collapse
Affiliation(s)
- Anna C. Croce
- Institute of Molecular Genetics, Italian National Research Council (CNR), Via Abbiategrasso 207, I-27100 Pavia, Italy;
- Department of Biology & Biotechnology, University of Pavia, Via Ferrata 9, I-27100 Pavia, Italy
- Correspondence: ; Tel.: +39-0382-986-428
| | - Andrea Ferrigno
- Department of Internal Medicine and Therapeutics, University of Pavia, Via Ferrata 9, I-27100 Pavia, Italy; (A.F.); (C.B.); (M.V.); (L.G.D.P.)
| | - Clarissa Berardo
- Department of Internal Medicine and Therapeutics, University of Pavia, Via Ferrata 9, I-27100 Pavia, Italy; (A.F.); (C.B.); (M.V.); (L.G.D.P.)
| | - Giovanni Bottiroli
- Institute of Molecular Genetics, Italian National Research Council (CNR), Via Abbiategrasso 207, I-27100 Pavia, Italy;
- Department of Biology & Biotechnology, University of Pavia, Via Ferrata 9, I-27100 Pavia, Italy
| | - Mariapia Vairetti
- Department of Internal Medicine and Therapeutics, University of Pavia, Via Ferrata 9, I-27100 Pavia, Italy; (A.F.); (C.B.); (M.V.); (L.G.D.P.)
| | - Laura G. Di Pasqua
- Department of Internal Medicine and Therapeutics, University of Pavia, Via Ferrata 9, I-27100 Pavia, Italy; (A.F.); (C.B.); (M.V.); (L.G.D.P.)
| |
Collapse
|
5
|
Ferrigno A, Di Pasqua LG, Berardo C, Siciliano V, Rizzo V, Adorini L, Richelmi P, Vairetti M. The farnesoid X receptor agonist obeticholic acid upregulates biliary excretion of asymmetric dimethylarginine via MATE-1 during hepatic ischemia/reperfusion injury. PLoS One 2018; 13:e0191430. [PMID: 29346429 PMCID: PMC5773219 DOI: 10.1371/journal.pone.0191430] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 01/04/2018] [Indexed: 12/12/2022] Open
Abstract
Background We previously showed that increased asymmetric dimethylarginine (ADMA) biliary excretion occurs during hepatic ischemia/reperfusion (I/R), prompting us to study the effects of the farnesoid X receptor (FXR) agonist obeticholic acid (OCA) on bile, serum and tissue levels of ADMA after I/R. Material and methods Male Wistar rats were orally administered 10mg/kg/day of OCA or vehicle for 5 days and were subjected to 60 min partial hepatic ischemia or sham-operated. After a 60 min reperfusion, serum, tissue and bile ADMA levels, liver mRNA and protein expression of ADMA transporters (CAT-1, CAT-2A, CAT-2B, OCT-1, MATE-1), and enzymes involved in ADMA synthesis (protein-arginine-N-methyltransferase-1, PRMT-1) and metabolism (dimethylarginine-dimethylaminohydrolase-1, DDAH-1) were measured. Results OCA administration induced a further increase in biliary ADMA levels both in sham and I/R groups, with no significant changes in hepatic ADMA content. A reduction in CAT-1, CAT-2A or CAT-2B transcripts was found in OCA-treated sham-operated rats compared with vehicle. Conversely, OCA administration did not change CAT-1, CAT-2A or CAT-2B expression, already reduced by I/R. However, a marked decrease in OCT-1 and increase in MATE-1 expression was observed. A similar trend occurred with protein expression. Conclusion The reduced mRNA expression of hepatic CAT transporters suggests that the increase in serum ADMA levels is probably due to decreased liver uptake of ADMA from the systemic circulation. Conversely, the mechanism involved in further increasing biliary ADMA levels in sham and I/R groups treated with OCA appears to be MATE-1-dependent.
Collapse
Affiliation(s)
- Andrea Ferrigno
- Department of Internal Medicine and Therapeutics, University of Pavia, Pavia, Italy
| | | | - Clarissa Berardo
- Department of Internal Medicine and Therapeutics, University of Pavia, Pavia, Italy
| | - Veronica Siciliano
- Department of Internal Medicine and Therapeutics, University of Pavia, Pavia, Italy
| | - Vittoria Rizzo
- Department of Molecular Medicine, IRCCS San Matteo, University of Pavia, Pavia, Italy
| | - Luciano Adorini
- Intercept Pharmaceuticals, San Diego, California, United States of America
| | - Plinio Richelmi
- Department of Internal Medicine and Therapeutics, University of Pavia, Pavia, Italy
| | - Mariapia Vairetti
- Department of Internal Medicine and Therapeutics, University of Pavia, Pavia, Italy
- * E-mail:
| |
Collapse
|
6
|
Zurfluh S, Baumgartner T, Meier MA, Ottiger M, Voegeli A, Bernasconi L, Neyer P, Mueller B, Schuetz P. The role of metabolomic markers for patients with infectious diseases: implications for risk stratification and therapeutic modulation. Expert Rev Anti Infect Ther 2018; 16:133-142. [PMID: 29316826 DOI: 10.1080/14787210.2018.1426460] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Metabolomics is a rapidly growing area of research. Metabolomic markers can provide information about the interaction of different organ systems, and thereby improve the understanding of physio-pathological processes, disease risk, prognosis and therapy responsiveness in a variety of diseases. Areas covered: In this narrative review of recent clinical studies investigating metabolomic markers in adult patients presenting with acute infectious disease, we mainly focused on patients with sepsis and lower respiratory tract infections. Currently, there is a growing body of literature showing that single metabolites from distinct metabolic pathways, as well as more complex metabolomic signatures are associated with disease severity and outcome in patients with systemic infections. These pathways include, among others, metabolomic markers of oxidative stress, steroid hormone and amino acid pathways, and nutritional markers. Expert commentary: Metabolic profiling has great potential to optimize patient management, to provide new targets for individual therapy and thereby improve survival of patients. At this stage, research mainly focused on the identification of new predictive signatures and less on metabolic determinants to predict treatment response. The transition from observational studies to implementation of novel markers into clinical practice is the next crucial step to prove the usefulness of metabolomic markers in patient care.
Collapse
Affiliation(s)
- Seline Zurfluh
- a University Department of Medicine, Kantonsspital Aarau and Faculty of Medicine , University of Basel , Aarau , Switzerland
| | - Thomas Baumgartner
- a University Department of Medicine, Kantonsspital Aarau and Faculty of Medicine , University of Basel , Aarau , Switzerland
| | - Marc A Meier
- a University Department of Medicine, Kantonsspital Aarau and Faculty of Medicine , University of Basel , Aarau , Switzerland
| | - Manuel Ottiger
- a University Department of Medicine, Kantonsspital Aarau and Faculty of Medicine , University of Basel , Aarau , Switzerland
| | - Alaadin Voegeli
- a University Department of Medicine, Kantonsspital Aarau and Faculty of Medicine , University of Basel , Aarau , Switzerland
| | - Luca Bernasconi
- b Department of Laboratory Medicine, University Department of Medicine , Kantonsspital Aarau , Aarau , Switzerland
| | - Peter Neyer
- b Department of Laboratory Medicine, University Department of Medicine , Kantonsspital Aarau , Aarau , Switzerland
| | - Beat Mueller
- a University Department of Medicine, Kantonsspital Aarau and Faculty of Medicine , University of Basel , Aarau , Switzerland
| | - Philipp Schuetz
- a University Department of Medicine, Kantonsspital Aarau and Faculty of Medicine , University of Basel , Aarau , Switzerland
| |
Collapse
|
7
|
Liu Z, Wang J, Xing W, Peng Y, Huang Y, Fan X. Role of DDAH/ADMA pathway in TGF-β1-mediated activation of hepatic stellate cells. Mol Med Rep 2017; 17:2549-2556. [PMID: 29207068 DOI: 10.3892/mmr.2017.8107] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 11/13/2017] [Indexed: 11/06/2022] Open
Abstract
Asymmetric dimethylarginine (ADMA) is catalyzed by the enzyme dimethylarginine dimethylaminohydrolase (DDAH) in humans, and the role for ADMA has been associated with hepatic fibrogenesis. Transforming growth factor‑β (TGF‑β) has been shown to mediate the myofibroblastic transformation of quiescent hepatic stellate cells (HSCs), a pivotal step in liver fibrogenesis. However, the underlying molecular mechanisms are not well understood. Accumulation of ADMA due to low activity of DDAH has been reported to be associated with liver damage and hepatic fibrosis. In this study, the role of the DDAH/ADMA pathway in the TGF‑β1‑induced HSC activation was assessed. Freshly harvested primary HSCs from rat liver were used in this study. It was demonstrated that TGF‑β1 treatment significantly suppressed the DDAH protein expression and activity, and increased levels of ADMA in the culture medium of rat primary HSCs. Notably, the TGF‑β1‑mediated effects on DDAH/ADMA were significantly abrogated by the p38 mitogen activated protein kinase specific inhibitor, SB203580. Furthermore, it was demonstrated that excessive ADMA led to an increase in the number of TGF‑β1‑positive HSCs and induced the expression of α‑smooth muscle actin and collagen type I in rat primary HSCs. In addition, rat primary HSCs exposed to excessive ADMA showed a significant increase in the expressions of α‑SMA and collagen type I. Finally, it was revealed that ADMA treatment promoted the proliferation of rat primary HSCs. In conclusion, the results obtained from the study suggest a potentially novel role for the ADMA/DDAH1 signaling pathway in TGF‑β1‑induced HSC activation, and along with the studies of others, suppression of the ADMA/DDAH1 pathway may be an alterative approach for the treatment of liver fibrosis.
Collapse
Affiliation(s)
- Zhenguo Liu
- Department of Infectious Disease, Key Laboratory of Viral Hepatitis of Hunan, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Juan Wang
- Department of Infectious Disease, Key Laboratory of Viral Hepatitis of Hunan, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Wu Xing
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Yingqiong Peng
- Department of Infectious Disease, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China
| | - Yan Huang
- Department of Infectious Disease, Key Laboratory of Viral Hepatitis of Hunan, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Xuegong Fan
- Department of Infectious Disease, Key Laboratory of Viral Hepatitis of Hunan, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| |
Collapse
|
8
|
Asymmetric Dimethylarginine Predicts Long-Term Outcome in Patients with Acute Exacerbation of Chronic Obstructive Pulmonary Disease. Lung 2017; 195:717-727. [DOI: 10.1007/s00408-017-0047-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 08/21/2017] [Indexed: 12/19/2022]
|
9
|
Vögeli A, Ottiger M, Meier MA, Steuer C, Bernasconi L, Kulkarni P, Huber A, Christ-Crain M, Henzen C, Hoess C, Thomann R, Zimmerli W, Mueller B, Schuetz P. Admission levels of asymmetric and symmetric dimethylarginine predict long-term outcome in patients with community-acquired pneumonia. Respir Res 2017; 18:25. [PMID: 28114935 PMCID: PMC5259979 DOI: 10.1186/s12931-017-0502-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 12/28/2016] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND During infection, there is an activation of the L-arginine-nitric-oxide pathway, with a shift from nitric oxide synthesis to a degradation of L-arginine to its metabolites, asymmetric and symmetric dimethylarginine (ADMA and SDMA). However, the prognostic implications for short-term or long-term survival remains unclear. We investigated the association of L-arginine, ADMA, and SDMA with adverse clinical outcomes in a well-defined cohort of patients with community-acquired pneumonia (CAP). METHODS We measured L-arginine, ADMA, and SDMA in 268 CAP patients from a Swiss multicenter trial by mass spectrometry and used Cox regression models to investigate associations between blood marker levels and disease severity as well as mortality over a period of 6 years. RESULTS Six-year mortality was 44.8%. Admission levels of ADMA and SDMA (μmol/L) were correlated with CAP severity as assessed by the pneumonia severity index (r = 0.32, p < 0.001 and r = 0.56, p < 0.001 for ADMA and SDMA, respectively) and higher in 6-year non-survivors versus survivors (median 0.62 vs. 0.48; p < 0.001 and 1.01 vs. 0.85; p < 0.001 for ADMA and SDMA, respectively). Both ADMA and SDMA were significantly associated with long-term mortality (hazard ratios [HR] 4.44 [95% confidence intervals (CI) 1.84 to 10.74] and 2.81 [95% CI 1.45 to 5.48], respectively). The effects were no longer significant after multivariate adjustment for age and comorbidities. No association of L-arginine with severity and outcome was found. CONCLUSIONS Both ADMA and SDMA show a severity-dependent increase in patients with CAP and are strongly associated with mortality. This association is mainly explained by age and comorbidities. TRIAL REGISTRATION ISRCTN95122877 . Registered 31 July 2006.
Collapse
Affiliation(s)
- Alaadin Vögeli
- Kantonsspital Aarau, University Department of Internal Medicine, Tellstrasse, CH-5001 Aarau, Switzerland
| | - Manuel Ottiger
- Kantonsspital Aarau, University Department of Internal Medicine, Tellstrasse, CH-5001 Aarau, Switzerland
| | - Marc A. Meier
- Kantonsspital Aarau, University Department of Internal Medicine, Tellstrasse, CH-5001 Aarau, Switzerland
| | - Christian Steuer
- Institute of Laboratory Medicine, Kantonsspital Aarau, Aarau, Switzerland
| | - Luca Bernasconi
- Institute of Laboratory Medicine, Kantonsspital Aarau, Aarau, Switzerland
| | | | - Andreas Huber
- Institute of Laboratory Medicine, Kantonsspital Aarau, Aarau, Switzerland
| | - Mirjam Christ-Crain
- Endocrinology, Diabetology, and Metabolism, University Hospital Basel, Basel, Switzerland
| | - Christoph Henzen
- Department of Internal Medicine, Kantonsspital Luzern, Luzern, Switzerland
| | - Claus Hoess
- Department of Internal Medicine, Kantonsspital Münsterlingen, Münsterlingen, Switzerland
| | - Robert Thomann
- Department of Internal Medicine, Bürgerspital Solothurn, Solothurn, Switzerland
| | - Werner Zimmerli
- Kantonsspital Baselland, University Department of Internal Medicine, Liestal, Switzerland
| | - Beat Mueller
- Kantonsspital Aarau, University Department of Internal Medicine, Tellstrasse, CH-5001 Aarau, Switzerland
| | - Philipp Schuetz
- Kantonsspital Aarau, University Department of Internal Medicine, Tellstrasse, CH-5001 Aarau, Switzerland
| |
Collapse
|
10
|
Barber BE, William T, Grigg MJ, Parameswaran U, Piera KA, Yeo TW, Anstey NM. Asymmetric Dimethylarginine in Adult Falciparum Malaria: Relationships With Disease Severity, Antimalarial Treatment, Hemolysis, and Inflammation. Open Forum Infect Dis 2016; 3:ofw027. [PMID: 26985445 PMCID: PMC4789539 DOI: 10.1093/ofid/ofw027] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 02/05/2016] [Indexed: 12/04/2022] Open
Abstract
Asymmetric Dimethylarginine (ADMA) and arginine bioavailability are reduced acutely in adult falciparum malaria. ADMA increases following commencement of antimalarial therapy, is associated with arginine and haemolysis, and likely contributes to reduced nitric oxide bioavailability in severe falciparum malaria. Background. Endothelial nitric oxide (NO) bioavailability is impaired in severe falciparum malaria (SM). Asymmetric dimethylarginine (ADMA), an endogenous inhibitor of NO synthase (NOS), contributes to endothelial dysfunction and is associated with mortality in adults with falciparum malaria. However, factors associated with ADMA in malaria, including the NOS-substrate l-arginine, hemolysis, and antimalarial treatment, are not well understood. Methods. In a prospective observational study of Malaysian adults with SM (N = 22) and non-SM (NSM; N = 124) and healthy controls (HCs), we investigated factors associated with plasma ADMA including the effects of antimalarial treatment. Results. Compared with HCs, ADMA levels were lower in NSM (0.488 µM vs 0.540 µM, P = .001) and in the subset of SM patients enrolled before commencing treatment (0.453 µM [N = 5], P = .068), but levels were higher in SM patients enrolled after commencing antimalarial treatment (0.610 µM [N = 17], P = .026). In SM and NSM, ADMA levels increased significantly to above-baseline levels by day 3. Baseline ADMA was correlated with arginine and cell-free hemoglobin in SM and NSM and inversely correlated with interleukin-10 in NSM. Arginine and the arginine/ADMA ratio (reflective of arginine bioavailability) were lower in SM and NSM compared with HCs, and the arginine/ADMA ratio was lower in SM compared with NSM. Conclusions. Pretreatment ADMA concentrations and l-arginine bioavailability are reduced in SM and NSM. Asymmetric dimethylarginine increases to above-baseline levels after commencement of antimalarial treatment. Arginine, hemolysis, and posttreatment inflammation all likely contribute to ADMA regulation, with ADMA likely contributing to the reduced NO bioavailability in SM.
Collapse
Affiliation(s)
- Bridget E Barber
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Australia; Infectious Diseases Society Sabah-Menzies School of Health Research Clinical Research Unit
| | - Timothy William
- Infectious Diseases Society Sabah-Menzies School of Health Research Clinical Research Unit; Jesselton Medical Centre, Kota Kinabalu, Malaysia
| | - Matthew J Grigg
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Australia; Infectious Diseases Society Sabah-Menzies School of Health Research Clinical Research Unit
| | - Uma Parameswaran
- Global and Tropical Health Division , Menzies School of Health Research and Charles Darwin University , Darwin , Australia
| | - Kim A Piera
- Global and Tropical Health Division , Menzies School of Health Research and Charles Darwin University , Darwin , Australia
| | - Tsin W Yeo
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Australia; Infectious Diseases Society Sabah-Menzies School of Health Research Clinical Research Unit; Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore; Institute of Infectious Disease and Epidemiology, Tan Tock Seng Hospital, Singapore
| | - Nicholas M Anstey
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Australia; Infectious Diseases Society Sabah-Menzies School of Health Research Clinical Research Unit; Department of Infectious Diseases, Royal Darwin Hospital, Australia
| |
Collapse
|
11
|
Ferrigno A, Di Pasqua LG, Berardo C, Rizzo V, Richelmi P, Vairetti M. Changes in Biliary Levels of Arginine and its Methylated Derivatives after Hepatic Ischaemia/Reperfusion. Basic Clin Pharmacol Toxicol 2016; 119:101-9. [PMID: 26663642 DOI: 10.1111/bcpt.12540] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Accepted: 11/24/2015] [Indexed: 12/15/2022]
Abstract
Arginine (Arg) can be methylated to form symmetrical dimethylarginine (SDMA) and asymmetrical dimethylarginine (ADMA), the latter an endogenous inhibitor of nitric oxide synthase (NOS). SDMA is excreted in the urine, while ADMA is mainly subjected to degradation in the liver. Arg competes with ADMA and SDMA for cellular transport across cationic amino-acid transporters (CATs). We evaluated the changes in serum, tissue and biliary levels of Arg, citrulline (Cit), ADMA and SDMA and the modifications in CATs after ischaemia-reperfusion (I/R). Male Wistar rats were subjected to 30-min. partial-hepatic ischaemia or sham-operated. After 60-min. reperfusion, the concentrations of ADMA, SDMA, Arg and Cit in serum, tissue and bile were measured. Serum levels of AST, ALT and alkaline phosphatase (AP) levels were determined. mRNA of cationic transporter 2A (CAT-2A) and 2B (CAT-2B) were also quantified. An increase in ADMA and a decrease in SDMA were observed in bile at the end of reperfusion. On the contrary, lower tissue ADMA levels and higher SDMA levels were quantified. No serum changes in ADMA and SDMA were found. A decrease in Arg and an increase of Cit were detected in serum, bile and tissue after I/R. A marked increase in AST, ALT and AP levels in serum confirmed I/R injury. A decrease in mRNA transporter CAT-2A but not in CAT-2B was detected. This study supported a biliary CAT-2B-dependent transport of ADMA and demonstrated, for the first time, that the liver is also responsible for the biliary excretion of SDMA into the bile.
Collapse
Affiliation(s)
- Andrea Ferrigno
- Department of Internal Medicine and Therapeutics, University of Pavia, Pavia, Italy
| | | | - Clarissa Berardo
- Department of Internal Medicine and Therapeutics, University of Pavia, Pavia, Italy
| | - Vittoria Rizzo
- Department of Molecular Medicine, IRCCS Policlinico San Matteo, University of Pavia, Pavia, Italy
| | - Plinio Richelmi
- Department of Internal Medicine and Therapeutics, University of Pavia, Pavia, Italy
| | - Mariapia Vairetti
- Department of Internal Medicine and Therapeutics, University of Pavia, Pavia, Italy
| |
Collapse
|
12
|
Ferrigno A, Di Pasqua LG, Berardo C, Richelmi P, Vairetti M. Liver plays a central role in asymmetric dimethylarginine-mediated organ injury. World J Gastroenterol 2015; 21:5131-5137. [PMID: 25954086 PMCID: PMC4419053 DOI: 10.3748/wjg.v21.i17.5131] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Revised: 02/24/2015] [Accepted: 03/31/2015] [Indexed: 02/06/2023] Open
Abstract
Asymmetric-dimethylarginine (ADMA) competes with L-arginine for each of the three isoforms of nitric oxide synthase: endothelial; neuronal; inducible. ADMA is synthesized by protein methyltransferases followed by proteolytic degradation. ADMA is metabolized to citrulline and dimethylamine, by dimethylarginine dimethylaminohydrolase (DDAH) and enters cells through cationic amino-acid transporters extensively expressed in the liver. The liver plays a crucial role in ADMA metabolism by DDAH-1 and, as has been recently demonstrated, it is also responsible for ADMA biliary excretion. A correlation has been demonstrated between plasma ADMA levels and the degree of hepatic dysfunction in patients suffering from liver diseases with varying aetiologies: plasma ADMA levels are increased in patients with liver cirrhosis, alcoholic hepatitis and acute liver failure. The mechanism by which liver dysfunction results in raised ADMA concentrations is probably due to impaired activity of DDAH due to severe inflammation, oxidative stress, and direct damage to DDAH. High plasma ADMA levels are also relevant as they are associated with the onset of multi-organ failure (MOF). Increased plasma concentration of ADMA was identified as an independent risk factor for MOF in critically-ill patients causing enhanced Intensive Care Unit mortality: a significant reduction in nitric oxide synthesis, leading to malperfusion in various organs, eventually culminating in multi organs dysfunction.
Collapse
|