1
|
Zhang K, Yuan Z, Wang S, Zhao S, Cui H, Lai Y. The abnormalities of free fatty acid metabolism in patients with hypertrophic cardiomyopathy, a single-center retrospective observational study. BMC Cardiovasc Disord 2024; 24:312. [PMID: 38902636 PMCID: PMC11188237 DOI: 10.1186/s12872-024-03925-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 05/06/2024] [Indexed: 06/22/2024] Open
Abstract
BACKGROUND Previous studies have shown the importance of energy deficiency and malfunctioning mitochondria in the pathophysiology of hypertrophic cardiomyopathy (HCM). There has been a little research into the relationship between plasma free fatty acids (FFA), one of the heart's main energy sources, and HCM. We evaluated its clinical importance in HCM to see if there was a link between plasma FFA metabolism and HCM. METHODS In a single-center retrospective observational study, we investigated 420 HCM patients diagnosed at Beijing Anzhen Hospital between January 1, 2018, and December 31, 2022. Meanwhile, 1372 individuals without HCM (non-HCM) were recruited. 391 non-HCM patients were chosen as controls via a propensity score matching (PSM) study with a 1:1 ratio. RESULTS FFA in HCM patients showed statistically significant correlations with creatinine (r = 0.115, p = 0.023), estimated GFR (r=-0.130, p = 0.010), BNP (r = 0.152, p = 0.007), LVEF (r=-0.227, p < 0.001), LVFS (r=-0.160, p = 0.002), and LAD (r = 0.112, p = 0.028). Higher FFA levels were found in HCM patients who had atrial fibrillation and NYHY functional classes III or IV (p = 0.015 and p = 0.022, respectively). In HCM patients, multiple linear regression analysis revealed that BNP and LVEF had independent relationships with increasing FFA (Standardized = 0.139, p = 0.013 and =-0.196, p < 0.001, respectively). CONCLUSIONS Among HCM patients, the plasma FFA concentration was lower, and those with AF and NYHY functional class III or IV had higher FFA levels, and LVEF and BNP were independently associated with increasing FFA. The findings of the study should help inspire future efforts to better understand how energy deficiency contributes to hypertrophic cardiomyopathy (HCM) development.
Collapse
Affiliation(s)
- Ke Zhang
- Department of Cardiovascular Surgery, Beijing Anzhen Hospital, Capital Medical University, No.2 Anzhen Road, Chaoyang District, Chaoyang District, Box: 100011, Beijing, China
- Beijing Anzhen Hospital, The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Capital Medical University, Ministry of Education, Beijing, 100029, China
| | - Zhongyu Yuan
- Beijing Anzhen Hospital, The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Capital Medical University, Ministry of Education, Beijing, 100029, China
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Shengwei Wang
- Department of Cardiovascular Surgery, Beijing Anzhen Hospital, Capital Medical University, No.2 Anzhen Road, Chaoyang District, Chaoyang District, Box: 100011, Beijing, China
- Beijing Anzhen Hospital, The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Capital Medical University, Ministry of Education, Beijing, 100029, China
| | - Shifeng Zhao
- Department of Cardiovascular Surgery, Beijing Anzhen Hospital, Capital Medical University, No.2 Anzhen Road, Chaoyang District, Chaoyang District, Box: 100011, Beijing, China
- Beijing Anzhen Hospital, The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Capital Medical University, Ministry of Education, Beijing, 100029, China
| | - Hao Cui
- Department of Cardiovascular Surgery, Beijing Anzhen Hospital, Capital Medical University, No.2 Anzhen Road, Chaoyang District, Chaoyang District, Box: 100011, Beijing, China
- Beijing Anzhen Hospital, The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Capital Medical University, Ministry of Education, Beijing, 100029, China
| | - Yongqiang Lai
- Department of Cardiovascular Surgery, Beijing Anzhen Hospital, Capital Medical University, No.2 Anzhen Road, Chaoyang District, Chaoyang District, Box: 100011, Beijing, China.
- Beijing Anzhen Hospital, The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Capital Medical University, Ministry of Education, Beijing, 100029, China.
| |
Collapse
|
2
|
Derkachev IA, Popov SV, Maslov LN, Mukhomedzyanov AV, Naryzhnaya NV, Gorbunov AS, Kan A, Krylatov AV, Podoksenov YK, Stepanov IV, Gusakova SV, Fu F, Pei JM. Angiotensin 1-7 increases cardiac tolerance to ischemia/reperfusion and mitigates adverse remodeling of the heart-The signaling mechanism. Fundam Clin Pharmacol 2024; 38:489-501. [PMID: 38311344 DOI: 10.1111/fcp.12983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 12/06/2023] [Accepted: 01/08/2024] [Indexed: 02/10/2024]
Abstract
BACKGROUND The high mortality rate of patients with acute myocardial infarction (AMI) remains the most pressing issue of modern cardiology. Over the past 10 years, there has been no significant reduction in mortality among patients with AMI. It is quite obvious that there is an urgent need to develop fundamentally new drugs for the treatment of AMI. Angiotensin 1-7 has some promise in this regard. OBJECTIVE The objective of this article is analysis of published data on the cardioprotective properties of angiotensin 1-7. METHODS PubMed, Scopus, Science Direct, and Google Scholar were used to search articles for this study. RESULTS Angiotensin 1-7 increases cardiac tolerance to ischemia/reperfusion and mitigates adverse remodeling of the heart. Angiotensin 1-7 can prevent not only ischemic but also reperfusion cardiac injury. The activation of the Mas receptor plays a key role in these effects of angiotensin 1-7. Angiotensin 1-7 alleviates Ca2+ overload of cardiomyocytes and reactive oxygen species production in ischemia/reperfusion (I/R) of the myocardium. It is possible that both effects are involved in angiotensin 1-7-triggered cardiac tolerance to I/R. Furthermore, angiotensin 1-7 inhibits apoptosis of cardiomyocytes and stimulates autophagy of cells. There is also indirect evidence suggesting that angiotensin 1-7 inhibits ferroptosis in cardiomyocytes. Moreover, angiotensin 1-7 possesses anti-inflammatory properties, possibly achieved through NF-kB activity inhibition. Phosphoinositide 3-kinase, Akt, and NO synthase are involved in the infarct-reducing effect of angiotensin 1-7. However, the specific end-effector of the cardioprotective impact of angiotensin 1-7 remains unknown. CONCLUSION The molecular nature of the end-effector of the infarct-limiting effect of angiotensin 1-7 has not been elucidated. Perhaps, this end-effector is the sarcolemmal KATP channel or the mitochondrial KATP channel.
Collapse
Affiliation(s)
- Ivan A Derkachev
- Laboratory of Experimental Cardiology, Cardiology Research Institute, Tomsk NRMC, Tomsk, Russia
| | - Sergey V Popov
- Laboratory of Experimental Cardiology, Cardiology Research Institute, Tomsk NRMC, Tomsk, Russia
| | - Leonid N Maslov
- Laboratory of Experimental Cardiology, Cardiology Research Institute, Tomsk NRMC, Tomsk, Russia
| | | | - Natalia V Naryzhnaya
- Laboratory of Experimental Cardiology, Cardiology Research Institute, Tomsk NRMC, Tomsk, Russia
| | - Alexander S Gorbunov
- Laboratory of Experimental Cardiology, Cardiology Research Institute, Tomsk NRMC, Tomsk, Russia
| | - Artur Kan
- Laboratory of Experimental Cardiology, Cardiology Research Institute, Tomsk NRMC, Tomsk, Russia
| | - Andrey V Krylatov
- Laboratory of Experimental Cardiology, Cardiology Research Institute, Tomsk NRMC, Tomsk, Russia
| | - Yuri K Podoksenov
- Laboratory of Experimental Cardiology, Cardiology Research Institute, Tomsk NRMC, Tomsk, Russia
| | - Ivan V Stepanov
- Laboratory of Experimental Cardiology, Cardiology Research Institute, Tomsk NRMC, Tomsk, Russia
| | - Svetlana V Gusakova
- Department of Biophysics and Functional Diagnostics, Siberian State Medical University, Tomsk, Russia
| | - Feng Fu
- Department of Physiology and Pathophysiology, National Key Discipline of Cell Biology, School of Basic Medicine, The Fourth Military Medical University, Xi'an, China
| | - Jian-Ming Pei
- Department of Physiology and Pathophysiology, National Key Discipline of Cell Biology, School of Basic Medicine, The Fourth Military Medical University, Xi'an, China
| |
Collapse
|
3
|
Relation of Dietary Sodium Intake With Subclinical Markers of Cardiovascular Disease (from MESA). Am J Cardiol 2019; 124:636-643. [PMID: 31300201 DOI: 10.1016/j.amjcard.2019.05.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Revised: 04/28/2019] [Accepted: 05/07/2019] [Indexed: 01/01/2023]
Abstract
The associations between dietary sodium intake and markers of subclinical cardiovascular disease (CVD), such as high-sensitivity cardiac troponin T (hs-cTnT) and amino terminal pro b-type natriuretic peptide (NT-proBNP), may provide mechanistic insight into the relation between dietary sodium and cardiovascular events. We studied 6,131 participants of the Multi-Ethnic Study of Atherosclerosis, who were free of clinical CVD at baseline. Food frequency questionnaires were used to assess estimated sodium intake (ESI) at baseline. We tested the associations between 5 quintiles of ESI (quintile 1: 0.2 to 1.3 grams/day, quintile 2: 1.3 to 1.8 grams/day, quintile 3: 1.8 to 2.4 grams/day, quintile 4: 2.4 to 3.2 grams/day, and quintile 5: 3.2 to 9.9 grams/day) with cross-sectional and 5-year longitudinal change in hs-cTnT and NT-proBNP concentrations. Restricted cubic spline plots were utilized to explore the shape of the associations between ESI and biomarker outcomes. A cross-sectional association between baseline sodium intake and hs-cTnT (but not NT-proBNP) was observed, driven predominantly by a strong positive relation at an intake range of 0.2 to 2.4 g/day. Conversely, a longitudinal association between baseline sodium intake and NT-proBNP (but not hs-cTnT) was observed, driven predominantly by a strong positive relation at intake levels ≥2.4 g/day. In conclusion, temporal shifts in the association between increased ESI and markers of subclinical CVD, hs-cTnT in the short term and NT-proBNP in the longer term, point to the complex pathobiology of the association between sodium intake and CVD. There was also no consistent evidence supporting a J-curve (i.e., excess biomarker values at very low ESI).
Collapse
|
4
|
Luo M, Chen PP, Yang L, Wang P, Lu YL, Shi FG, Gao Y, Xu SF, Gong QH, Xu RX, Deng J. Sodium ferulate inhibits myocardial hypertrophy induced by abdominal coarctation in rats: Involvement of cardiac PKC and MAPK signaling pathways. Biomed Pharmacother 2019; 112:108735. [PMID: 30970525 DOI: 10.1016/j.biopha.2019.108735] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 02/11/2019] [Accepted: 02/23/2019] [Indexed: 11/25/2022] Open
Abstract
Sodium ferulate (SF) is the sodium salt of ferulic acid which is an active ingredient of Radix Angelica Sinensis and Ligusticum chuanxiong hort. Here, we investigated SF inhibition in a rat model of myocardial hypertrophy induced by coarctation of the abdominal aorta. Following coarctation, rats were given SF (20, 40, and 80 mg/kg/day) for 25 consecutive days. We characterized myocardial hypertrophy using myocardial hypertrophic parameters, histopathology, and gene expression of atrial natriuretic factor (ANF) -a gene related to myocardial hypertrophy. We detected the levels of angiotensin II (Ang II) and endothelin-1 (ET-1), protein kinase C beta (PKC-β), Raf-1, extracellular regulated protein kinase 1/2 (ERK1/2), and mitogen-activated protein kinase phosphatase-1 (MKP-1) in myocardium. Notably, coarctation of the abdominal aorta increases myocardial hypertrophic parameters, cardiac myocyte diameter, the concentration of Ang II and ET-1 in myocardium, and gene expression of ANF. SF significantly ameliorates myocardial hypertrophy caused by coarctation of the abdominal aorta; reduces concentrations of Ang II and ET-1; suppresses the overexpression of ANF, PKC-β, Raf-1, and ERK1/2; and increases the expression of MKP-1. These results indicate that SF alleviates myocardial hypertrophy induced by coarctation of the abdominal aorta, and these protective effects could be related to the inhibition of PKC and mitogen-activated protein kinase (MAPK) signaling pathways.
Collapse
Affiliation(s)
- Min Luo
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, 563000, China; The First People's Hospital of Zunyi, Zunyi, Guizhou, 563006, China
| | - Pan-Pan Chen
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, 563000, China
| | - Lu Yang
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, 563000, China
| | - Peng Wang
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, 563000, China
| | - Yan-Liu Lu
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, 563000, China
| | - Fu-Guo Shi
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, 563000, China
| | - Yang Gao
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, 563000, China
| | - Shang-Fu Xu
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, 563000, China
| | - Qi-Hai Gong
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, 563000, China
| | - Rui-Xia Xu
- Division of Dyslipidemia, State Key Laboratory of Cardiovascular Disease, Fu Wai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100037, China
| | - Jiang Deng
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, 563000, China.
| |
Collapse
|
5
|
Li C, Li Y, Zhao Z, Lv Y, Gu B, Zhao L. Aerobic exercise regulates synaptic transmission and reactive oxygen species production in the paraventricular nucleus of spontaneously hypertensive rats. Brain Res 2019; 1712:82-92. [PMID: 30735639 DOI: 10.1016/j.brainres.2019.02.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 01/29/2019] [Accepted: 02/04/2019] [Indexed: 02/07/2023]
Abstract
Aerobic exercise lowers blood pressure in patients with hypertension, but the underlying mechanisms remain incompletely understood. The hypothalamic paraventricular nucleus (PVN) plays a key role in the control of sympathetic outflow and cardiovascular tone. We examined whether chronic aerobic exercise altered synaptic transmission and reactive oxygen species (ROS) production in the PVN. In the present study, spontaneously hypertensive rats (SHRs) were subjected to exercise training for 8 weeks, five times per week, with Wistar Kyoto (WKY) rats as the cohort control. Miniature excitatory and inhibitory postsynaptic currents (mEPSCs and mIPSCs) were recorded from the PVN in ex vivo hypothalamic slice preparations obtained after the last training, and biomarkers of oxidative stress and physical indexes were observed. The mean frequency and amplitude, as well as the rise time and the decay time constant of mIPSCs, significantly decreased in 20-wk-old SHRs compared to WKY 20-wk-old controls. In contrast to mIPSCs, only the mean mEPSC frequency was higher, and there were no other changes in mEPSCs in comparison to the control group. SHRs exhibited higher ROS, 8-OHdG, and MDA; and lower SOD1, SOD2, CAT, Ogg1, and SOD and CAT activity in the PVN. These SHRs also had a significant increase in heart rate, blood pressure and sympathetic nerve activity, and higher levels of norepinephrine (NE). Exercise training ameliorated all these abnormalities, resulting in an increase in the mean frequency, amplitude and kinetics of mIPSCs, accompanied by a decrease in the mean frequency of mEPSCs in the PVN. This study demonstrates that moderate intensity, high frequency exercise training induces a selective enhancement of inhibitory synaptic transmission in the PVN, which may dampen sympathetic activity and reduce blood pressure in hypertension. These changes may be due to antioxidant-related adaptations in the PVNs of SHRs.
Collapse
Affiliation(s)
- Cui Li
- Department of Exercise Physiology, Beijing Sport University, Beijing, China
| | - Yan Li
- Department of Exercise Physiology, Beijing Sport University, Beijing, China
| | - Ziqi Zhao
- College of Life Science, University of Chinese Academy of Science, Beijing, China
| | - Yuanyuan Lv
- Key Laboratory of Physical Fitness and Exercise, Ministry of Education, Beijing Sport University, Beijing, China
| | - Boya Gu
- Key Laboratory of Physical Fitness and Exercise, Ministry of Education, Beijing Sport University, Beijing, China
| | - Li Zhao
- Department of Exercise Physiology, Beijing Sport University, Beijing, China; Key Laboratory of Physical Fitness and Exercise, Ministry of Education, Beijing Sport University, Beijing, China.
| |
Collapse
|
6
|
Yu Y, Gao Q, Xia W, Zhang L, Hu Z, Wu X, Jia X. Association between Physical Exercise and Biomarkers of Oxidative Stress among Middle-Aged and Elderly Community Residents with Essential Hypertension in China. BIOMED RESEARCH INTERNATIONAL 2018; 2018:4135104. [PMID: 30065938 PMCID: PMC6051290 DOI: 10.1155/2018/4135104] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 05/20/2018] [Accepted: 06/06/2018] [Indexed: 02/08/2023]
Abstract
This study aimed to investigate the role of different types and frequencies of physical exercise in biomarkers of oxidative stress among middle-aged and elderly community residents with essential hypertension in China. A community-based cross-sectional survey was undertaken in 7 subdistricts. Individuals, 45-79 years old, with essential hypertension (n = 402) and without cardiovascular disease (n = 1047) were included. Superoxide dismutase (SOD) activities and plasma levels of malondialdehyde (MDA) and 4-hydroxynonenal (4-HNE) were determined. Multilevel linear regression was used to estimate the associations between various types of physical exercise and oxidative stress biomarker levels. Participants engaged in high frequency walking/square dancing or taiji/yoga demonstrated decreased systolic blood pressure in both groups; however, diastolic blood pressure decreased only among individuals with hypertension participating in walking/square dancing. In individuals with hypertension, MDA levels decreased in those participating in walking/square dancing, SOD activity increased in those participating in walking/square dancing, and 4-HNE levels decreased in those involved in taiji/yoga. In individuals without cardiovascular disease, MDA levels decreased in those involved in walking/square dancing or taiji/yoga, SOD activity increased in those performing walking/square dancing, and 4-HNE levels decreased in those involved in taiji/yoga. Oxidative stress marker levels also improved in those involved in walking/square dancing or taiji/yoga groups as the exercise frequency increased. Thus, frequent participation in walking/square dancing or taiji/yoga effectively decreases hypertension-related oxidative stress biomarker levels.
Collapse
Affiliation(s)
- Ying Yu
- Department of Physiology, Bengbu Medical College, 2600 Dong Hai Avenue, Bengbu 233030, China
- Science Research Center, Bengbu Medical College, 2600 Dong Hai Avenue, Bengbu 233030, China
| | - Qin Gao
- Department of Physiology, Bengbu Medical College, 2600 Dong Hai Avenue, Bengbu 233030, China
- Science Research Center, Bengbu Medical College, 2600 Dong Hai Avenue, Bengbu 233030, China
| | - Wanning Xia
- Department of Epidemiology and Statistics, Bengbu Medical College, 2600 Dong Hai Avenue, Bengbu 233030, China
| | - Lina Zhang
- Department of Neurology, First Affiliated Hospital of Bengbu Medical College, Bengbu 233004, China
| | - Zhiyuan Hu
- Science Research Center, Bengbu Medical College, 2600 Dong Hai Avenue, Bengbu 233030, China
| | - Xuesen Wu
- Department of Epidemiology and Statistics, Bengbu Medical College, 2600 Dong Hai Avenue, Bengbu 233030, China
| | - Xianjie Jia
- Department of Epidemiology and Statistics, Bengbu Medical College, 2600 Dong Hai Avenue, Bengbu 233030, China
| |
Collapse
|
7
|
Delles C, Carrick E, Graham D, Nicklin SA. Utilizing proteomics to understand and define hypertension: where are we and where do we go? Expert Rev Proteomics 2018; 15:581-592. [PMID: 29999442 PMCID: PMC6092739 DOI: 10.1080/14789450.2018.1493927] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 06/25/2018] [Indexed: 12/21/2022]
Abstract
INTRODUCTION Hypertension is a complex and multifactorial cardiovascular disorder. With different mechanisms contributing to a different extent to an individual's blood pressure, the discovery of novel pathogenetic principles of hypertension is challenging. However, there is an urgent and unmet clinical need to improve prevention, detection, and therapy of hypertension in order to reduce the global burden associated with hypertension-related cardiovascular diseases. Areas covered: Proteomic techniques have been applied in reductionist experimental models including angiotensin II infusion models in rodents and the spontaneously hypertensive rat in order to unravel mechanisms involved in blood pressure control and end organ damage. In humans proteomic studies mainly focus on prediction and detection of organ damage, particularly of heart failure and renal disease. While there are only few proteomic studies specifically addressing human primary hypertension, there are more data available in hypertensive disorders in pregnancy, such as preeclampsia. We will review these studies and discuss implications of proteomics on precision medicine approaches. Expert commentary: Despite the potential of proteomic studies in hypertension there has been moderate progress in this area of research. Standardized large-scale studies are required in order to make best use of the potential that proteomics offers in hypertension and other cardiovascular diseases.
Collapse
Affiliation(s)
- Christian Delles
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | - Emma Carrick
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | - Delyth Graham
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | - Stuart A. Nicklin
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| |
Collapse
|
8
|
Impact and influence of “omics” technology on hyper tension studies. Int J Cardiol 2017; 228:1022-1034. [DOI: 10.1016/j.ijcard.2016.11.179] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 11/06/2016] [Indexed: 12/14/2022]
|
9
|
Exercise Training and Epigenetic Regulation: Multilevel Modification and Regulation of Gene Expression. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1000:281-322. [PMID: 29098627 DOI: 10.1007/978-981-10-4304-8_16] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Exercise training elicits acute and adaptive long term changes in human physiology that mediate the improvement of performance and health state. The responses are integrative and orchestrated by several mechanisms, as gene expression. Gene expression is essential to construct the adaptation of the biological system to exercise training, since there are molecular processes mediating oxidative and non-oxidative metabolism, angiogenesis, cardiac and skeletal myofiber hypertrophy, and other processes that leads to a greater physiological status. Epigenetic is the field that studies about gene expression changes heritable by meiosis and mitosis, by changes in chromatin and DNA conformation, but not in DNA sequence, that studies the regulation on gene expression that is independent of genotype. The field approaches mechanisms of DNA and chromatin conformational changes that inhibit or increase gene expression and determine tissue specific pattern. The three major studied epigenetic mechanisms are DNA methylation, Histone modification, and regulation of noncoding RNA-associated genes. This review elucidates these mechanisms, focusing on the relationship between them and their relationship with exercise training, physical performance and the enhancement of health status. On this chapter, we clarified the relationship of epigenetic modulations and their intimal relationship with acute and chronic effect of exercise training, concentrating our effort on skeletal muscle, heart and vascular responses, that are the most responsive systems against to exercise training and play crucial role on physical performance and improvement of health state.
Collapse
|
10
|
Santana ET, Feliciano RDS, Serra AJ, Brigidio E, Antonio EL, Tucci PJF, Nathanson L, Morris M, Silva JA. Comparative mRNA and MicroRNA Profiling during Acute Myocardial Infarction Induced by Coronary Occlusion and Ablation Radio-Frequency Currents. Front Physiol 2016; 7:565. [PMID: 27932994 PMCID: PMC5123550 DOI: 10.3389/fphys.2016.00565] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 11/07/2016] [Indexed: 12/24/2022] Open
Abstract
The ligation of the left anterior descending coronary artery is the most commonly used experimental model to induce myocardial infarction (MI) in rodents. A high mortality in the acute phase and the heterogeneity of the size of the MI obtained are drawbacks recognized in this model. In an attempt to solve the problem, our group recently developed a new MI experimental model which is based on application of myocardial ablation radio-frequency currents (AB-RF) that yielded MI with homogeneous sizes and significantly reduce acute mortality. In addition, cardiac structural, and functional changes aroused by AB-RF were similar to those seen in animals with MI induced by coronary artery ligation. Herein, we compared mRNA expression of genes that govern post-MI milieu in occlusion and ablation models. We analyzed 48 mRNAs expressions of nine different signal transduction pathways (cell survival and metabolism signs, matrix extracellular, cell cycle, oxidative stress, apoptosis, calcium signaling, hypertrophy markers, angiogenesis, and inflammation) in rat left ventricle 1 week after MI generated by both coronary occlusion and AB-RF. Furthermore, high-throughput miRNA analysis was also assessed in both MI procedures. Interestingly, mRNA expression levels and miRNA expressions showed strong similarities between both models after MI, with few specificities in each model, activating similar signal transduction pathways. To our knowledge, this is the first comparison of genomic alterations of mRNA and miRNA contents after two different MI procedures and identifies key signaling regulators modulating the pathophysiology of these two models that might culminate in heart failure. Furthermore, these analyses may contribute with the current knowledge concerning transcriptional and post-transcriptional changes of AB-RF protocol, arising as an alternative and effective MI method that reproduces most changes seem in coronary occlusion.
Collapse
Affiliation(s)
- Eduardo T Santana
- Rehabilitation Department, Universidade Nove de Julho São Paulo, Brazil
| | - Regiane Dos Santos Feliciano
- Biophotonics Department, Universidade Nove de JulhoSão Paulo, Brazil; Medicine Department, Universidade Nove de JulhoSão Paulo, Brazil
| | - Andrey J Serra
- Biophotonics Department, Universidade Nove de Julho São Paulo, Brazil
| | - Eduardo Brigidio
- Medicine Department, Universidade Nove de Julho São Paulo, Brazil
| | - Ednei L Antonio
- Cardiac Physiology Department, Universidade Federal de São Paulo São Paulo, Brazil
| | - Paulo J F Tucci
- Cardiac Physiology Department, Universidade Federal de São Paulo São Paulo, Brazil
| | - Lubov Nathanson
- Institute for Neuro-Immune Medicine, Nova Southeastern University Fort Lauderdale, FL, USA
| | - Mariana Morris
- Institute for Neuro-Immune Medicine, Nova Southeastern University Fort Lauderdale, FL, USA
| | - José A Silva
- Medicine Department, Universidade Nove de Julho São Paulo, Brazil
| |
Collapse
|
11
|
Bielecka-Dabrowa A, Gluba-Brzózka A, Michalska-Kasiczak M, Misztal M, Rysz J, Banach M. The multi-biomarker approach for heart failure in patients with hypertension. Int J Mol Sci 2015; 16:10715-33. [PMID: 25984599 PMCID: PMC4463672 DOI: 10.3390/ijms160510715] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Revised: 04/21/2015] [Accepted: 04/23/2015] [Indexed: 01/06/2023] Open
Abstract
We assessed the predictive ability of selected biomarkers using N-terminal pro-brain natriuretic peptide (NT-proBNP) as the benchmark and tried to establish a multi-biomarker approach to heart failure (HF) in hypertensive patients. In 120 hypertensive patients with or without overt heart failure, the incremental predictive value of the following biomarkers was investigated: Collagen III N-terminal propeptide (PIIINP), cystatin C (CysC), lipocalin-2/NGAL, syndecan-4, tumor necrosis factor-α (TNF-α), interleukin 1 receptor type I (IL1R1), galectin-3, cardiotrophin-1 (CT-1), transforming growth factor β (TGF-β) and N-terminal pro-brain natriuretic peptide (NT-proBNP). The highest discriminative value for HF was observed for NT-proBNP (area under the receiver operating characteristic curve (AUC) = 0.873) and TGF-β (AUC = 0.878). On the basis of ROC curve analysis we found that CT-1 > 152 pg/mL, TGF-β < 7.7 ng/mL, syndecan > 2.3 ng/mL, NT-proBNP > 332.5 pg/mL, CysC > 1 mg/L and NGAL > 39.9 ng/mL were significant predictors of overt HF. There was only a small improvement in predictive ability of the multi-biomarker panel including the four biomarkers with the best performance in the detection of HF—NT-proBNP, TGF-β, CT-1, CysC—compared to the panel with NT-proBNP, TGF-β and CT-1 only. Biomarkers with different pathophysiological backgrounds (NT-proBNP, TGF-β, CT-1, CysC) give additive prognostic value for incident HF in hypertensive patients compared to NT-proBNP alone.
Collapse
Affiliation(s)
| | - Anna Gluba-Brzózka
- Department of Hypertension, Chair of Nephrology and Hypertension, Medical University of Lodz, Zeromskiego 113, 90-549 Lodz, Poland.
| | | | - Małgorzata Misztal
- Department of Nephrology, Hypertension and Family Medicine, Chair of Nephrology and Hypertension, Medical University of Lodz, Zeromskiego 113, 90-549 Lodz, Poland.
| | - Jacek Rysz
- Department of Hypertension, Chair of Nephrology and Hypertension, Medical University of Lodz, Zeromskiego 113, 90-549 Lodz, Poland.
| | | |
Collapse
|
12
|
Aerobic exercise training improves oxidative stress and ubiquitin proteasome system activity in heart of spontaneously hypertensive rats. Mol Cell Biochem 2015; 402:193-202. [DOI: 10.1007/s11010-015-2326-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Accepted: 01/16/2015] [Indexed: 12/22/2022]
|
13
|
Mitra A, Basak T, Ahmad S, Datta K, Datta R, Sengupta S, Sarkar S. Comparative Proteome Profiling during Cardiac Hypertrophy and Myocardial Infarction Reveals Altered Glucose Oxidation by Differential Activation of Pyruvate Dehydrogenase E1 Component Subunit β. J Mol Biol 2014; 427:2104-20. [PMID: 25451023 DOI: 10.1016/j.jmb.2014.10.026] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Revised: 10/09/2014] [Accepted: 10/29/2014] [Indexed: 12/19/2022]
Abstract
Cardiac hypertrophy and myocardial infarction (MI) are two etiologically different disease forms with varied pathological characteristics. However, the precise molecular mechanisms and specific causal proteins associated with these diseases are obscure to date. In this study, a comparative cardiac proteome profiling was performed in Wistar rat models for diseased and control (sham) groups using two-dimensional difference gel electrophoresis followed by matrix-assisted laser desorption/ionization tandem time-of-flight mass spectrometry. Proteins were identified using Protein Pilot™ software (version 4.0) and were subjected to stringent statistical analysis. Alteration of key proteins was validated by Western blot analysis. The differentially expressed protein sets identified in this study were associated with different functional groups, involving various metabolic pathways, stress responses, cytoskeletal organization, apoptotic signaling and other miscellaneous functions. It was further deciphered that altered energy metabolism during hypertrophy in comparison to MI may be predominantly attributed to induced glucose oxidation level, via reduced phosphorylation of pyruvate dehydrogenase E1 component subunit β (PDHE1-B) protein during hypertrophy. This study reports for the first time the global changes in rat cardiac proteome during two etiologically different cardiac diseases and identifies key signaling regulators modulating ontogeny of these two diseases culminating in heart failure. This study also pointed toward differential activation of PDHE1-B that accounts for upregulation of glucose oxidation during hypertrophy. Downstream analysis of altered proteome and the associated modulators would enhance our present knowledge regarding altered pathophysiology of these two etiologically different cardiac disease forms.
Collapse
Affiliation(s)
- Arkadeep Mitra
- Department of Zoology, University of Calcutta, 35 Ballygunge Circular Road, Kolkata 700 019, India
| | - Trayambak Basak
- Genomics and Molecular Medicine Unit, CSIR Institute of Genomics and Integrative Biology, Sukhdev Vihar, Mathura Road, New Delhi 110 020, India
| | - Shadab Ahmad
- Genomics and Molecular Medicine Unit, CSIR Institute of Genomics and Integrative Biology, Sukhdev Vihar, Mathura Road, New Delhi 110 020, India
| | - Kaberi Datta
- Department of Zoology, University of Calcutta, 35 Ballygunge Circular Road, Kolkata 700 019, India
| | - Ritwik Datta
- Department of Zoology, University of Calcutta, 35 Ballygunge Circular Road, Kolkata 700 019, India
| | - Shantanu Sengupta
- Genomics and Molecular Medicine Unit, CSIR Institute of Genomics and Integrative Biology, Sukhdev Vihar, Mathura Road, New Delhi 110 020, India
| | - Sagartirtha Sarkar
- Department of Zoology, University of Calcutta, 35 Ballygunge Circular Road, Kolkata 700 019, India.
| |
Collapse
|
14
|
Petriz BA, Almeida JA, Gomes CPC, Pereira RW, Murad AM, Franco OL. NanoUPLC/MS(E) proteomic analysis reveals modulation on left ventricle proteome from hypertensive rats after exercise training. J Proteomics 2014; 113:351-65. [PMID: 25451014 DOI: 10.1016/j.jprot.2014.10.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Revised: 10/03/2014] [Accepted: 10/17/2014] [Indexed: 10/24/2022]
Abstract
UNLABELLED NanoUPLC/MS(E) was used to verify the effects of 8weeks of low (SHR-LIT=4) and high (SHR-HIT=4) intensity training over the left ventricle proteome of hypertensive rats (SHR-C=4). Training enhanced the aerobic capacity and reduced the systolic blood pressure in all exercised rats. NanoUPLC/MS(E) identified 250 proteins, with 233 in common to all groups and 16 exclusive to SHR-C, 2 to SHR-LIT, and 2 to the SHR-HIT. Cardiac hypertrophy related proteins appeared only in SHR-C. The SHR-LIT enhanced the abundance of 30 proteins and diminished 6, while SHR-HIT enhanced the abundance of 39 proteins and reduced other 7. The levels of metabolic (β and γ-enolase, adenine phosphoribosultransferase, and cytochrome b-c1), myofibril (myosin light chain 4, tropomyosin α and β-chain), and transporter proteins (hemoglobin, serum albumin, and hemopexin) were increased by both intensities. Transcription regulator and histone variants were enhanced by SHR-LIT and SHR-HIT respectively. SHR-LIT reduced the concentration of myosin binding protein C, while desmin and membrane voltage dependent anion selective channel protein-3 were reduced only by SHR-HIT. In addition, polyubiquitin B and C, and transcription regulators decreased in both intensities. Exercise also increased the concentration of anti-oxidant proteins, peroxiredozin-6 and glutathione peroxidase-1. BIOLOGICAL SIGNIFICANCE Pathologic left ventricle hypertrophy if one of the major outcomes of hypertension being a strong predictor of heart failure. Among the various risk factors for cardiovascular disorders, arterial hypertension is responsible for the highest rates of mortality worldwide. In this way, this present study contribute to the understanding of the molecular mechanisms involved in the attenuation of hypertension and the regression of pathological cardiac hypertrophy induced by exercise training.
Collapse
Affiliation(s)
- Bernardo A Petriz
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília-DF, Brazil; UDF - Centro Universitário, Brasília, DF, Brazil
| | - Jeeser A Almeida
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília-DF, Brazil; UDF - Centro Universitário, Brasília, DF, Brazil; Programa de Pós Graduação em Ciências e Tecnologias em Saúde, Universidade de Brasília - UnB, Ceilândia-DF, Brazil
| | - Clarissa P C Gomes
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília-DF, Brazil
| | - Rinaldo W Pereira
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília-DF, Brazil; Programa de Pós-Graduação em Educação Física, Universidade Católica de Brasília, Brasília-DF, Brazil
| | - André M Murad
- Embrapa Recursos Genéticos e Biotecnologia - Laboratório de Biologia Sintética, Brasília-DF, Brazil
| | - Octavio L Franco
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília-DF, Brazil; S-Inova, Pós-graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande MS, Brazil; Programa de Pós-Graduação em Educação Física, Universidade Católica de Brasília, Brasília-DF, Brazil.
| |
Collapse
|