1
|
Rosendo GBO, Ferreira RLU, Aquino SLS, Barbosa F, Pedrosa LFC. Glycemic Changes Related to Arsenic Exposure: An Overview of Animal and Human Studies. Nutrients 2024; 16:665. [PMID: 38474793 DOI: 10.3390/nu16050665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 10/18/2023] [Accepted: 10/26/2023] [Indexed: 03/14/2024] Open
Abstract
BACKGROUND Arsenic (As) is a risk factor associated with glycemic alterations. However, the mechanisms of action and metabolic aspects associated with changes in glycemic profiles have not yet been completely elucidated. Therefore, in this review, we aimed to investigate the metabolic aspects of As and its mechanism of action associated with glycemic changes. METHODS We searched the PubMed (MEDLINE) and Google Scholar databases for relevant articles published in English. A combination of free text and medical subject heading keywords and search terms was used to construct search equations. The search yielded 466 articles; however, only 50 were included in the review. RESULTS We observed that the relationship between As exposure and glycemic alterations in humans may be associated with sex, smoking status, body mass index, age, occupation, and genetic factors. The main mechanisms of action associated with changes induced by exposure to As in the glycemic profile identified in animals are increased oxidative stress, reduced expression of glucose transporter type 4, induction of inflammatory factor expression and dysfunction of pancreatic β cells. CONCLUSIONS Therefore, As exposure may be associated with glycemic alterations according to inter-individual differences.
Collapse
Affiliation(s)
| | | | - Séphora Louyse Silva Aquino
- Postgraduate Program in Health Sciences, Federal University of Rio Grande do Norte, Natal 59012-570, RN, Brazil
| | - Fernando Barbosa
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040-903, SP, Brazil
| | - Lucia Fatima Campos Pedrosa
- Postgraduate Program in Health Sciences, Federal University of Rio Grande do Norte, Natal 59012-570, RN, Brazil
- Department of Nutrition, Federal University of Rio Grande do Norte, Natal 59078-970, RN, Brazil
| |
Collapse
|
2
|
Schrenk D, Bignami M, Bodin L, Chipman JK, del Mazo J, Grasl‐Kraupp B, Hogstrand C, Hoogenboom L(R, Leblanc J, Nebbia CS, Nielsen E, Ntzani E, Petersen A, Sand S, Vleminckx C, Wallace H, Barregård L, Benford D, Broberg K, Dogliotti E, Fletcher T, Rylander L, Abrahantes JC, Gómez Ruiz JÁ, Steinkellner H, Tauriainen T, Schwerdtle T. Update of the risk assessment of inorganic arsenic in food. EFSA J 2024; 22:e8488. [PMID: 38239496 PMCID: PMC10794945 DOI: 10.2903/j.efsa.2024.8488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2024] Open
Abstract
The European Commission asked EFSA to update its 2009 risk assessment on arsenic in food carrying out a hazard assessment of inorganic arsenic (iAs) and using the revised exposure assessment issued by EFSA in 2021. Epidemiological studies show that the chronic intake of iAs via diet and/or drinking water is associated with increased risk of several adverse outcomes including cancers of the skin, bladder and lung. The CONTAM Panel used the benchmark dose lower confidence limit based on a benchmark response (BMR) of 5% (relative increase of the background incidence after adjustment for confounders, BMDL05) of 0.06 μg iAs/kg bw per day obtained from a study on skin cancer as a Reference Point (RP). Inorganic As is a genotoxic carcinogen with additional epigenetic effects and the CONTAM Panel applied a margin of exposure (MOE) approach for the risk characterisation. In adults, the MOEs are low (range between 2 and 0.4 for mean consumers and between 0.9 and 0.2 at the 95th percentile exposure, respectively) and as such raise a health concern despite the uncertainties.
Collapse
|
3
|
Rahimi Kakavandi N, Mousavi T, Asadi T, Moradi A, Esmaeili M, Habibian Sezavar A, Nikfar S, Abdollahi M. An updated systematic review and dose-response meta-analysis on the relation between exposure to arsenic and risk of type 2 diabetes. Toxicol Lett 2023; 384:115-127. [PMID: 37562716 DOI: 10.1016/j.toxlet.2023.08.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/20/2023] [Accepted: 08/07/2023] [Indexed: 08/12/2023]
Abstract
Arsenic is among the most critical environmental toxicants associated with many human disorders. However, its effect on type 2 diabetes mellitus (T2DM) is contradictory. This systematic review and dose-response meta-analysis aim to update information on the association between arsenic exposure and the risk of T2DM. The sample type (drinking water, urine, blood, and nails) conducted the subgroup analysis. Evaluation of the high vs. low arsenic concentrations showed a significant association between drinking water arsenic (OR: 1.58, 95% CI: 1.20-2.08) and urinary arsenic (OR: 1.37, 95% CI: 1.24-1.51) with the risk of T2DM. The linear dose-response meta-analysis showed that each 1 μg/L increase in levels of drinking water arsenic (OR: 1.01, 95% CI: 1.00-1.01) and urinary arsenic (OR: 1.01, 95% CI: 1.00-1.02) was associated with a 1% increased risk of T2DM. The non-linear dose-response analysis indicated that arsenic in urine was associated with the risk of T2DM (Pnon-linearity<0.001). However, this effect was not statistically significant for arsenic in drinking water (Pnon-linearity=0.941). Our findings suggest that blood arsenic was not significantly linked to the increased risk of T2DM in high vs. low (OR: 1.21, 95% CI: 0.85-1.71), linear (OR: 1.04, 95% CI: 0.99-1.09), and non-linear (Pnon-linearity=0.365) analysis. Also, nail arsenic was not associated with the risk of T2DM in this meta-analysis (OR: 1.33, 95% CI: 0.69-2.59). This updated dose-response meta-analysis indicated that arsenic exposure was significantly correlated with the risk of T2DM.
Collapse
Affiliation(s)
- Nader Rahimi Kakavandi
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences (TUMS), Tehran, Iran; Health and Environment Research Center, Ilam University of Medical Sciences, Ilam, Iran
| | - Taraneh Mousavi
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences (TUMS), Tehran, Iran; Toxicology and Diseases Group (TDG), Pharmaceutical Sciences Research Center (PSRC), Tehran University of Medical Sciences, Tehran, Iran
| | - Tayebeh Asadi
- Health and Environment Research Center, Ilam University of Medical Sciences, Ilam, Iran
| | - Ayda Moradi
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahta Esmaeili
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmad Habibian Sezavar
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences (TUMS), Tehran, Iran; Toxicology and Diseases Group (TDG), Pharmaceutical Sciences Research Center (PSRC), Tehran University of Medical Sciences, Tehran, Iran
| | - Shekoufeh Nikfar
- Department of Pharmacoeconomics and Pharmaceutical Administration, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Abdollahi
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences (TUMS), Tehran, Iran; Toxicology and Diseases Group (TDG), Pharmaceutical Sciences Research Center (PSRC), Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
4
|
Singh RD, Tiwari R, Sharma V, Khan H, Gangopadhyay S, Singh S, Koshta K, Shukla S, Arjaria N, Mandrah K, Jagdale PR, Patnaik S, Roy SK, Singh D, Giri AK, Srivastava V. Prenatal arsenic exposure induces immunometabolic alteration and renal injury in rats. Front Med (Lausanne) 2023; 9:1045692. [PMID: 36714129 PMCID: PMC9874122 DOI: 10.3389/fmed.2022.1045692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 12/12/2022] [Indexed: 01/12/2023] Open
Abstract
Arsenic (As) exposure is progressively associated with chronic kidney disease (CKD), a leading public health concern present worldwide. The adverse effect of As exposure on the kidneys of people living in As endemic areas have not been extensively studied. Furthermore, the impact of only prenatal exposure to As on the progression of CKD also has not been fully characterized. In the present study, we examined the effect of prenatal exposure to low doses of As 0.04 and 0.4 mg/kg body weight (0.04 and 0.4 ppm, respectively) on the progression of CKD in male offspring using a Wistar rat model. Interestingly, only prenatal As exposure was sufficient to elevate the expression of profibrotic (TGF-β1) and proinflammatory (IL-1α, MIP-2α, RANTES, and TNF-α) cytokines at 2-day, 12- and 38-week time points in the exposed progeny. Further, alteration in adipogenic factors (ghrelin, leptin, and glucagon) was also observed in 12- and 38-week old male offspring prenatally exposed to As. An altered level of these factors coincides with impaired glucose metabolism and homeostasis accompanied by progressive kidney damage. We observed a significant increase in the deposition of extracellular matrix components and glomerular and tubular damage in the kidneys of 38-week-old male offspring prenatally exposed to As. Furthermore, the overexpression of TGF-β1 in kidneys corresponds with hypermethylation of the TGF-β1 gene-body, indicating a possible involvement of prenatal As exposure-driven epigenetic modulations of TGF-β1 expression. Our study provides evidence that prenatal As exposure to males can adversely affect the immunometabolism of offspring which can promote kidney damage later in life.
Collapse
Affiliation(s)
- Radha Dutt Singh
- Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research, Lucknow, Uttar Pradesh, India,Academy of Scientific and Innovative Research, New Delhi, India,Radha Dutt Singh, ,
| | - Ratnakar Tiwari
- Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research, Lucknow, Uttar Pradesh, India
| | - Vineeta Sharma
- Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research, Lucknow, Uttar Pradesh, India,Department of Biotechnology, Faculty of Engineering and Technology, Manav Rachna International Institute of Research and Studies, Faridabad, Haryana, India
| | - Hafizurrahman Khan
- Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research, Lucknow, Uttar Pradesh, India,Academy of Scientific and Innovative Research, New Delhi, India
| | - Siddhartha Gangopadhyay
- Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research, Lucknow, Uttar Pradesh, India,Academy of Scientific and Innovative Research, New Delhi, India
| | - Sukhveer Singh
- Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research, Lucknow, Uttar Pradesh, India,Academy of Scientific and Innovative Research, New Delhi, India
| | - Kavita Koshta
- Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research, Lucknow, Uttar Pradesh, India,Academy of Scientific and Innovative Research, New Delhi, India
| | - Shagun Shukla
- Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research, Lucknow, Uttar Pradesh, India
| | - Nidhi Arjaria
- Advanced Imaging Facility, CSIR-Indian Institute of Toxicology Research, Lucknow, Uttar Pradesh, India
| | - Kapil Mandrah
- Academy of Scientific and Innovative Research, New Delhi, India,Regulatory Toxicology Group, CSIR-Indian Institute of Toxicology Research, Lucknow, Uttar Pradesh, India
| | - Pankaj Ramji Jagdale
- Regulatory Toxicology Group, CSIR-Indian Institute of Toxicology Research, Lucknow, Uttar Pradesh, India
| | - Satyakam Patnaik
- Academy of Scientific and Innovative Research, New Delhi, India,Regulatory Toxicology Group, CSIR-Indian Institute of Toxicology Research, Lucknow, Uttar Pradesh, India
| | - Somendu Kumar Roy
- Academy of Scientific and Innovative Research, New Delhi, India,Regulatory Toxicology Group, CSIR-Indian Institute of Toxicology Research, Lucknow, Uttar Pradesh, India
| | - Dhirendra Singh
- Regulatory Toxicology Group, CSIR-Indian Institute of Toxicology Research, Lucknow, Uttar Pradesh, India
| | - Ashok Kumar Giri
- Molecular and Human Genetics Division, CSIR-Indian Institute of Chemical Biology, Kolkata, West Bengal, India
| | - Vikas Srivastava
- Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research, Lucknow, Uttar Pradesh, India,Academy of Scientific and Innovative Research, New Delhi, India,*Correspondence: Vikas Srivastava, ,
| |
Collapse
|
5
|
Research for type 2 diabetes mellitus in endemic arsenism areas in central China: role of low level of arsenic exposure and KEAP1 rs11545829 polymorphism. Arch Toxicol 2022; 96:1673-1683. [PMID: 35420349 DOI: 10.1007/s00204-022-03279-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 03/14/2022] [Indexed: 11/02/2022]
Abstract
Type 2 diabetes mellitus (T2DM) is one of the major public health problems worldwide; both genetic and environmental factors are its risk factors. Arsenic, an environmental pollutant, might be a risk factor for T2DM, but the association of low-to-moderate level arsenic exposure with the risk of T2DM is still inconsistent. Single nucleotide polymorphisms (SNPs) can affect the development of T2DM, but the study on KEAP1 rs11545829 (G>A) SNP is few. In this paper, we explored the effect of KEAP1 rs11545829 (G>A) SNP and low-to-moderate level arsenic exposure on risk of T2DM in a cross-sectional case-control study conducted in Shanxi, China. Total of 938 participants, including 318 T2DM cases and 618 controls, were enrolled. Blood glycosylated haemoglobin (HbA1c) was detected by Automatic Biochemical Analyzer, and participants with HbA1c≧6.5% were diagnosed as T2DM. Urinary total arsenic (tAs, mg/L), as the indicator of arsenic exposure, was detected by liquid chromatography-atomic fluorescence spectrometry (LC-AFS). Genomic DNA was extracted and the genotypes of KEAP1 rs11545829 SNP were examined by multiplex polymerase chain reaction (PCR). The urinary tAs concentration in recruited participants was 0.075 (0.03-0.15) mg/L, and was associated with an increased risk of T2DM (OR = 8.45, 95% CI 2.63-27.17); rs11545829 mutation homozygote AA genotype had a protective effect on risk of T2DM (OR = 0.42, 95 % CI 0.25-0.73). Although this protective effect of AA genotype was found in participants with higher urinary tAs level (>0.032 mg/L) (OR = 0.48, 95% CI 0.26-0.86), there was no interaction effect for arsenic exposure and rs11545829 SNP on risk of T2DM. In addition, BMI modified the association between rs11545829 SNP and the risk of T2DM (RERI = -1.11, 95% CI -2.18-0.04). The present study suggest that low-to-moderate level arsenic exposure may be a risk factor, while KEAP1 rs11545829 SNP mutation homozygote AA genotype may be a protective factor for risk of T2DM, especially for T2DM patients with urinary tAs level>0.032 mg/L.
Collapse
|
6
|
Martínez-Castillo M, García-Montalvo EA, Arellano-Mendoza MG, Sánchez-Peña LDC, Soria Jasso LE, Izquierdo-Vega JA, Valenzuela OL, Hernández-Zavala A. Arsenic exposure and non-carcinogenic health effects. Hum Exp Toxicol 2021; 40:S826-S850. [PMID: 34610256 DOI: 10.1177/09603271211045955] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Inorganic arsenic (iAs) exposure is a serious health problem that affects more than 140 million individuals worldwide, mainly, through contaminated drinking water. Acute iAs poisoning produces several symptoms such as nausea, vomiting, abdominal pain, and severe diarrhea, whereas prolonged iAs exposure increased the risk of several malignant disorders such as lung, urinary tract, and skin tumors. Another sensitive endpoint less described of chronic iAs exposure are the non-malignant health effects in hepatic, endocrine, renal, neurological, hematological, immune, and cardiovascular systems. The present review outlines epidemiology evidence and possible molecular mechanisms associated with iAs-toxicity in several non-carcinogenic disorders.
Collapse
Affiliation(s)
- Macario Martínez-Castillo
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, 27740Instituto Politécnico Nacional, Ciudad de México, México
| | | | - Mónica G Arellano-Mendoza
- Laboratorio de Investigación en Enfermedades Crónico-Degenerativas, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, 27740Instituto Politécnico Nacional, Ciudad de México, México
| | - Luz Del C Sánchez-Peña
- Departamento de Toxicología, 540716Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de Mexico, México
| | - Luis E Soria Jasso
- Centro de Investigación en Biología de la Reproducción, Área Académica de Medicina del Instituto de Ciencias de la Salud, 103794Universidad Autónoma del Estado de Hidalgo, Pachuca, México
| | - Jeannett A Izquierdo-Vega
- Área Académica de Medicina, Instituto de Ciencias de la Salud, 103794Universidad Autónoma del Estado de Hidalgo, Pachuca, México
| | - Olga L Valenzuela
- Facultad de Ciencias Químicas, 428055Universidad Veracruzana, Orizaba, México
| | - Araceli Hernández-Zavala
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, 27740Instituto Politécnico Nacional, Ciudad de México, México
| |
Collapse
|
7
|
Farkhondeh T, Samarghandian S, Azimi-Nezhad M. The role of arsenic in obesity and diabetes. J Cell Physiol 2019; 234:12516-12529. [PMID: 30667058 DOI: 10.1002/jcp.28112] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Accepted: 12/07/2018] [Indexed: 12/12/2022]
Abstract
As many individuals worlwide are exposed to arsenic, it is necessary to unravel the role of arsenic in the risk of obesity and diabetes. Therefore, the present study reviewed the effects of arsenic exposure on the risk and potential etiologic mechanisms of obesity and diabetes. It has been suggested that inflammation, oxidative stress, and apoptosis contribute to the pathogenesis of arsenic-induced diabetes and obesity. Though arsenic is known to cause diabetes through different mechanisms, the role of adipose tissue in diabetes is still unclear. This review exhibited the effects of arsenic on the metabolism and signaling pathways within adipose tissue (such as sirtuin 3 [SIRT3]- forkhead box O3 [FOXO3a], mitogen-activated protein kinase [MAPK], phosphoinositide-dependant kinase-1 [PDK-1], unfolded protein response, and C/EBP homologous protein [CHOP10]). Different types of adipokines involved in arsenic-induced diabetes are yet to be elucidated. Arsenic exerts negative effects on the white adipose tissue by decreasing adipogenesis and enhancing lipolysis. Some epidemiological studies have shown that arsenic can promote obesity. Nevertheless, few studies have indicated that arsenic may induce lipodystrophy. Arsenic multifactorial effects include accelerating birth and postnatal weight gains, elevated body fat content, glucose intolerance, insulin resistance, and increased serum lipid profile. Arsenic also elevated cord blood and placental, as well as postnatal serum leptin levels. The data from human studies indicate an association between inorganic arsenic exposure and the risk of diabetes and obesity. However, the currently available evidence is insufficient to conclude that low-moderate dose arsenic is associated with diabetes or obesity development. Therefore, more investigations are needed to determine biological mechanisms linking arsenic exposure to obesity and diabetes.
Collapse
Affiliation(s)
- Tahereh Farkhondeh
- Cardiovascular Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Saeed Samarghandian
- Department of Basic Medical Sciences, Neyshabur University of Medical Sciences, Neyshabur, Iran
| | - Mohsen Azimi-Nezhad
- Department of Basic Medical Sciences, Neyshabur University of Medical Sciences, Neyshabur, Iran
| |
Collapse
|
8
|
Muñoz MP, Valdés M, Muñoz-Quezada MT, Lucero B, Rubilar P, Pino P, Iglesias V. Urinary Inorganic Arsenic Concentration and Gestational Diabetes Mellitus in Pregnant Women from Arica, Chile. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018; 15:ijerph15071418. [PMID: 29976896 PMCID: PMC6069383 DOI: 10.3390/ijerph15071418] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 07/02/2018] [Accepted: 07/03/2018] [Indexed: 12/25/2022]
Abstract
Introduction: The association of total arsenic exposure with impaired glucose tolerance and gestational diabetes has been shown; however, evidence regarding urinary inorganic arsenic in pregnant women is still limited. Our aim was to evaluate the association between urinary inorganic arsenic concentration and gestational diabetes among pregnant women living in Arica, Chile. Methods: Cross-sectional study of pregnant women receiving care at primary health centers in urban Arica. The exposure was urinary inorganic arsenic concentration, while gestational diabetes was the outcome. The association was evaluated using multiple logistic regression models adjusted by age, education level, ethnicity, and pre-pregnancy body mass index. Results: 244 pregnant women were surveyed. The median urinary inorganic arsenic was 14.95 μg/L, and the prevalence of gestational diabetes was 8.6%. After adjusting, we did not find a significant association between gestational diabetes and inorganic arsenic exposure tertiles (Odds ratio (OR) 2.98, 95% CI = 0.87–10.18), (OR 1.07, 95% CI = 0.26–4.33). Conclusion: This study did not provide evidence on the relationship between urinary inorganic arsenic concentration and gestational diabetes. Further research is needed to elucidate the factors underlying this association.
Collapse
Affiliation(s)
- María Pía Muñoz
- Escuela de Salud Pública, Facultad de Medicina, Universidad de Chile, 8380453 Santiago, Chile.
| | - Macarena Valdés
- Escuela de Salud Pública, Facultad de Medicina, Universidad de Chile, 8380453 Santiago, Chile.
| | | | - Boris Lucero
- Facultad de Ciencias de la Salud, Universidad Católica del Maule, 3480112 Talca, Chile.
| | - Paola Rubilar
- Escuela de Salud Pública, Facultad de Medicina, Universidad de Chile, 8380453 Santiago, Chile.
| | - Paulina Pino
- Escuela de Salud Pública, Facultad de Medicina, Universidad de Chile, 8380453 Santiago, Chile.
| | - Verónica Iglesias
- Escuela de Salud Pública, Facultad de Medicina, Universidad de Chile, 8380453 Santiago, Chile.
| |
Collapse
|
9
|
Bjørklund G, Aaseth J, Chirumbolo S, Urbina MA, Uddin R. Effects of arsenic toxicity beyond epigenetic modifications. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2018; 40:955-965. [PMID: 28484874 DOI: 10.1007/s10653-017-9967-9] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 04/21/2017] [Indexed: 05/24/2023]
Abstract
Worldwide chronic arsenic (As) poisoning by arsenic-contaminated groundwater is one of the most threatening public health problems. Chronic inorganic As (inAs) exposure has been associated with various forms of cancers and numerous other pathological effects in humans, collectively known as arsenicosis. Over the past decade, evidence indicated that As-induced epigenetic modifications have a role in the adverse effects on human health. The main objective of this article is to review the evidence on epigenetic modifications induced by arsenicals. The epigenetic components play a crucial role in the regulation of gene expression, at both transcriptional and posttranscriptional levels. We synthesized the large body of existing research on arsenic exposure and epigenetic mechanisms of health outcomes with an emphasis on recent publications. Changes in patterns of DNA methylation, histone posttranslational modifications, and microRNAs have been repeatedly observed after inAs exposure in laboratory studies and in studies of human populations. Such alterations have the potential to disturb cellular homeostasis, resulting in the modulation of key pathways in the As-induced carcinogenesis. The present article reviews recent data on As-induced epigenetic effects and concludes that it is time for heightened awareness of pathogenic arsenic exposure, particularly for pregnant women and children, given the potential for a long-lasting disturbed cellular homeostasis.
Collapse
Affiliation(s)
- Geir Bjørklund
- Council for Nutritional and Environmental Medicine, Toften 24, 8610, Mo i Rana, Norway.
| | - Jan Aaseth
- Innlandet Hospital Trust and Inland Norway University of Applied Sciences, Elverum, Norway
| | - Salvatore Chirumbolo
- Department of Neurological and Movement Sciences, University of Verona, Verona, Italy
| | - Mauricio A Urbina
- Departamento de Zoología, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Casilla 160-C, Concepción, Chile
| | - Riaz Uddin
- Department of Pharmacy, Stamford University Bangladesh, Dhaka, Bangladesh
| |
Collapse
|
10
|
Yuan Y, Xiao Y, Yu Y, Liu Y, Feng W, Qiu G, Wang H, Liu B, Wang J, Zhou L, Liu K, Xu X, Yang H, Li X, Qi L, Zhang X, He M, Hu FB, Pan A, Wu T. Associations of multiple plasma metals with incident type 2 diabetes in Chinese adults: The Dongfeng-Tongji Cohort. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 237:917-925. [PMID: 29429611 DOI: 10.1016/j.envpol.2018.01.046] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 01/16/2018] [Accepted: 01/16/2018] [Indexed: 06/08/2023]
Abstract
The long-term associations between multiple metals and incident diabetes are uncertain. We aimed to examine the relationship between plasma concentrations of 23 metals and the incidence of type 2 diabetes among Chinese senior adults. We quantified fasting plasma concentrations of 23 metals by inductively coupled plasma mass spectrometry among 1039 incident diabetes cases and 1039 controls (age and sex matched) nested in a prospective study, the Dongfeng-Tongji cohort. Both cases and controls were free of diabetes at baseline (2008-2010), incident diabetes were identified using the following criteria: fasting glucose ≥ 7.0 mmoL/l; or hemoglobin A1c (HbA1c) ≥ 6.5%; or self-reported physician diagnosis of diabetes or use of anti-diabetic medication during the follow-up visits in 2013. In the conditional logistic regression models, the multivariable adjusted ORs (95% CIs) of diabetes across quartiles (Q1-Q4) of metal concentrations were as follows: titanium, 1.00, 0.92, 1.31, 1.38 (1.00-1.91, Ptrend = 0.011); selenium, 1.00, 1.08, 1.45, 1.27 (0.93-1.74, Ptrend = 0.05); and antimony, 1.00, 0.79, 0.77, 0.60 (0.44-0.83, Ptrend = 0.002). Arsenic was significantly associated with diabetes in the crude model (ORs comparing extreme quartiles 1.30; 1.02-1.65; Ptrend = 0.006), but was not significant after adjustment for socio-demographic factors. No significant associations were found for other metals. In conclusion, titanium and selenium were positively while antimony was negatively associated with incident diabetes.
Collapse
Affiliation(s)
- Yu Yuan
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yang Xiao
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yanqiu Yu
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yiyi Liu
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Feng
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Gaokun Qiu
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hao Wang
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bing Liu
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jing Wang
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lue Zhou
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kang Liu
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xuedan Xu
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Handong Yang
- Dongfeng Central Hospital, Hubei University of Medicine, Shiyan, China
| | - Xiulou Li
- Dongfeng Central Hospital, Hubei University of Medicine, Shiyan, China
| | - Lu Qi
- Department of Epidemiology, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, United States
| | - Xiaomin Zhang
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Meian He
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Frank B Hu
- Department of Nutrition and Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, United States
| | - An Pan
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tangchun Wu
- Department of Occupational and Environmental Health, Key Laboratory of Environment and Health, Ministry of Education and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
11
|
Renu K, Madhyastha H, Madhyastha R, Maruyama M, Arunachlam S, V.G. A. Role of arsenic exposure in adipose tissue dysfunction and its possible implication in diabetes pathophysiology. Toxicol Lett 2018; 284:86-95. [DOI: 10.1016/j.toxlet.2017.11.032] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Revised: 11/22/2017] [Accepted: 11/27/2017] [Indexed: 02/08/2023]
|
12
|
Cui Q, Fu J, Hu Y, Li Y, Yang B, Li L, Sun J, Chen C, Sun G, Xu Y, Zhang Q, Pi J. Deficiency of long isoforms of Nfe2l1 sensitizes MIN6 pancreatic β cells to arsenite-induced cytotoxicity. Toxicol Appl Pharmacol 2017; 329:67-74. [PMID: 28549828 DOI: 10.1016/j.taap.2017.05.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 05/13/2017] [Accepted: 05/15/2017] [Indexed: 12/25/2022]
Abstract
Increasing evidence indicates that chronic inorganic arsenic exposure is associated with type 2 diabetes (T2D), a disease of growing prevalence. Pancreatic β-cells were targeted and damaged by oxidative stress induced by arsenite. We previously showed that nuclear factor erythroid 2 like 2 (Nfe2l2)-deficient pancreatic β-cells were vulnerable to cell damage induced by oxidative stressors including arsenite, due to a muted antioxidant response. Like nuclear factor erythroid 2 like 2 (NFE2L2), NFE2L1 also belongs to the cap 'n' collar (CNC) basic-region leucine zipper (bZIP) transcription factor family, and regulates antioxidant response element (ARE) related genes. Our prior work showed NFE2L1 regulates glucose-stimulated insulin secretion (GSIS) in pancreatic β-cells and isolated islets. In the current study, we demonstrated that MIN6 cells with a specific knockdown of long isoforms of Nfe2l1 (L-Nfe2l1) by lentiviral shRNA (Nfe2l1(L)-KD) were vulnerable to arsenite-induced apoptosis and cell damage. The expression levels of antioxidant genes, such as Gclc, Gclm and Ho-1, and intracellular reactive oxygen species (ROS) levels were not different in Scramble and Nfe2l1(L)-KD cells, while the expression of arsenic metabolism related-genes, such as Gsto1, Gstm1 and Nqo1, increased in Nfe2l1(L)-KD cells with or without arsenite treatment. The up-regulation of arsenic biotransformation genes was due to activated NFE2L2 in Nfe2l1(L)-KD MIN6 cells. Furthermore, the level of intracellular monomethylarsenic (MMA) was higher in Nfe2l1(L)-KD MIN6 cells than in Scramble cells. These results showed that deficiency of L-Nfe2l1 in pancreatic β-cells increased susceptibility to acute arsenite-induced cytotoxicity by promoting arsenic biotransformation and intracellular MMA levels.
Collapse
Affiliation(s)
- Qi Cui
- Program of Environmental Toxicology, School of Public Health, China Medical University, No 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning 110122, PR China
| | - Jingqi Fu
- Program of Environmental Toxicology, School of Public Health, China Medical University, No 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning 110122, PR China.
| | - Yuxin Hu
- Experimental and Teaching Center, School of Public Health, China Medical University, No 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning 110122, PR China
| | - Yongfang Li
- Research Center of Environment and Non-Communicable Disease, School of Public Health, China Medical University, No 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning 110122, PR China
| | - Bei Yang
- Department of Histology and Embryology, School of Basic Medical Sciences, China Medical University, No 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning 110122, PR China
| | - Lu Li
- Program of Environmental Toxicology, School of Public Health, China Medical University, No 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning 110122, PR China
| | - Jing Sun
- Program of Environmental Toxicology, School of Public Health, China Medical University, No 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning 110122, PR China
| | - Chengjie Chen
- Program of Environmental Toxicology, School of Public Health, China Medical University, No 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning 110122, PR China
| | - Guifan Sun
- Research Center of Environment and Non-Communicable Disease, School of Public Health, China Medical University, No 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning 110122, PR China
| | - Yuanyuan Xu
- Program of Environmental Toxicology, School of Public Health, China Medical University, No 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning 110122, PR China
| | - Qiang Zhang
- Department of Environmental Health, Rollins School of Public Health, Emory University, 1518 Clifton Rd NE, Atlanta, GA 30322, USA
| | - Jingbo Pi
- Program of Environmental Toxicology, School of Public Health, China Medical University, No 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning 110122, PR China.
| |
Collapse
|
13
|
Phan K, Kim KW, Huoy L, Phan S, Se S, Capon AG, Hashim JH. Current status of arsenic exposure and social implication in the Mekong River basin of Cambodia. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2016; 38:763-772. [PMID: 26298061 DOI: 10.1007/s10653-015-9759-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 08/12/2015] [Indexed: 06/04/2023]
Abstract
To evaluate the current status of arsenic exposure in the Mekong River basin of Cambodia, field interview along with urine sample collection was conducted in the arsenic-affected area of Kandal Province, Cambodia. Urine samples were analyzed for total arsenic concentrations by inductively coupled plasma mass spectrometry. As a result, arsenicosis patients (n = 127) had As in urine (UAs) ranging from 3.76 to 373 µg L(-1) (mean = 78.7 ± 69.8 µg L(-1); median = 60.2 µg L(-1)). Asymptomatic villagers (n = 108) had UAs ranging from 5.93 to 312 µg L(-1) (mean = 73.0 ± 52.2 µg L(-1); median = 60.5 µg L(-1)). About 24.7 % of all participants had UAs greater than 100 µg L(-1) which indicated a recent arsenic exposure. A survey found that females and adults were more likely to be diagnosed with skin sign of arsenicosis than males and children, respectively. Education level, age, gender, groundwater drinking period, residence time in the village and amount of water drunk per day may influence the incidence of skin signs of arsenicosis. This study suggests that residents in Kandal study area are currently at risk of arsenic although some mitigation has been implemented. More commitment should be made to address this public health concern in rural Cambodia.
Collapse
Affiliation(s)
- Kongkea Phan
- Faculty of Science and Technology, International University, Phnom Penh, 12101, Cambodia.
- Research and Development Unit, Cambodian Chemical Society, Phnom Penh, Cambodia.
| | - Kyoung-Woong Kim
- School of Environmental Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, 500-712, Republic of Korea
| | - Laingshun Huoy
- Department of Bioengineering, Faculty of Engineering, Royal University of Phnom Penh, Phnom Penh, 12358, Cambodia
| | - Samrach Phan
- Department of Chemistry, Faculty of Science, Royal University of Phnom Penh, Phnom Penh, 12358, Cambodia
| | - Soknim Se
- Department of Chemical Engineering and Food Technology, Institute of Technology of Cambodia, Phnom Penh, Cambodia
| | - Anthony Guy Capon
- United Nations University-International Institute for Global Health (UNU-IIGH), UKM Medical Centre, 56000, Kuala Lumpur, Malaysia
| | - Jamal Hisham Hashim
- United Nations University-International Institute for Global Health (UNU-IIGH), UKM Medical Centre, 56000, Kuala Lumpur, Malaysia
- Department of Community Health, UKM Medical Centre, National University of Malaysia, 56000, Kuala Lumpur, Malaysia
| |
Collapse
|
14
|
Liu B, Feng W, Wang J, Li Y, Han X, Hu H, Guo H, Zhang X, He M. Association of urinary metals levels with type 2 diabetes risk in coke oven workers. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2016; 210:1-8. [PMID: 26689646 DOI: 10.1016/j.envpol.2015.11.046] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Revised: 11/25/2015] [Accepted: 11/25/2015] [Indexed: 05/22/2023]
Abstract
BACKGROUND Studies indicated that occupationally exposed to metals could result in oxidative damage and inflammation and increase cardiovascular diseases risk. However, epidemiological studies about the associations of metals exposure with diabetes risk among coke oven workers were limited. OBJECTIVES This study aims to investigate the potential associations of 23 metals levels with the risk of diabetes among coke oven workers. METHODS The analysis was conducted in a cross-sectional study including 1493 participants. Urinary metals and urinary polycyclic aromatic hydrocarbons (PAHs) metabolites levels were determined by inductively coupled plasma mass spectrometer and gas chromatograph-mass spectrometer respectively. Multivariate logistic regression was used to investigate the associations of urinary metal levels with diabetes risk with adjustment for potential confounding factors including gender, age, BMI, education, smoking, drinking, physical activity, hypertension, hyperlipidemia and urinary PAHs metabolites levels. RESULTS Compared with the normoglycemia group, the levels of urinary copper, zinc, arsenic, selenium, molybdenum, and cadmium were significantly higher in the diabetes group (all p < 0.05). Participants with the highest tertile of urinary copper and zinc had 2.12 (95%CI: 1.12-4.01) and 5.43 (95%CI: 2.61-11.30) fold risk of diabetes. Similar results were found for hyperglycemia risk. Besides, participants with the highest tertile of manganese, barium, and lead had 1.65(1.22-2.23), 1.60(1.19-2.16) and 1.45(1.05-1.99) fold risk of hyperglycemia when compared with the lowest tertlie. CONCLUSION The results indicated that the urinary copper and zinc levels were positively associated with the risk of diabetes and hyperglycemia among coke oven workers. Urinary manganese, barium and lead levels were also associated with increased risk of hyperglycemia independently of other traditional risk factors. These findings need further validation in prospective study with larger sample size.
Collapse
Affiliation(s)
- Bing Liu
- Department of Occupational and Environmental Health and Ministry of Education Key Lab for Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Wei Feng
- Department of Occupational and Environmental Health and Ministry of Education Key Lab for Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jing Wang
- Department of Occupational and Environmental Health and Ministry of Education Key Lab for Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yaru Li
- Department of Occupational and Environmental Health and Ministry of Education Key Lab for Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xu Han
- Department of Occupational and Environmental Health and Ministry of Education Key Lab for Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Hua Hu
- Department of Occupational and Environmental Health and Ministry of Education Key Lab for Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Huan Guo
- Department of Occupational and Environmental Health and Ministry of Education Key Lab for Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xiaomin Zhang
- Department of Occupational and Environmental Health and Ministry of Education Key Lab for Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Meian He
- Department of Occupational and Environmental Health and Ministry of Education Key Lab for Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
15
|
Gilbert PJ, Polya DA, Cooke DA. Arsenic hazard in Cambodian rice from a market-based survey with a case study of Preak Russey village, Kandal Province. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2015; 37:757-766. [PMID: 25893486 DOI: 10.1007/s10653-015-9696-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 03/27/2015] [Indexed: 06/04/2023]
Abstract
This study comprises a market-based survey to assess the arsenic (As) hazard of Cambodian rice, encompassing rice from seven Cambodian provinces, comparisons with rice imported from China, Vietnam and Thailand, and assessments of 15 rice varieties. Rice samples (n = 157) were collected from four large markets in Kandal Province and analysed for As using inductively coupled mass spectrometry. The mean As concentration for Cambodian rice (0.185 µg g(-1), range 0.047-0.771 µg g(-1)) was higher than that for imported rice from Vietnam and Thailand (0.162 and 0.157 µg g(-1), respectively) with mean As concentrations highest in rice from Prey Veng Province resulting in a daily dose of 1.77 µg kg(-1) b.w. (body weight) d(-1). Between unmilled rice varieties, Cambodian-grown White Sticky Rice had the highest mean As concentration (0.234 µg g(-1)), whilst White Sticky Rice produced in Thailand had the lowest (0.125 µg g(-1)), suggesting that localised conditions have greater bearing over rice As concentrations than differences in As uptake between individual varieties themselves. A rice and water consumption survey for 15 respondents in the village of Preak Russey revealed mean consumption rates of 522 g d(-1) of rice and 1.9 L d(-1) of water. At water As concentrations >1000 µg L(-1), the relative contribution to the daily dose from rice is low. When water As concentrations are lowered to 50 µg L(-1), daily doses from rice and water are both generally below the 3.0 µg kg(-1) b.w. d(-1) benchmark daily limit for a 0.5% increase in lung cancer, yet when combined they exceeded this value in all but three respondents.
Collapse
Affiliation(s)
- Peter J Gilbert
- Faculty of Engineering and Environment, Northumbria University, Ellison Building, Newcastle upon Tyne, NE1 8ST, UK,
| | | | | |
Collapse
|
16
|
Sung TC, Huang JW, Guo HR. Association between Arsenic Exposure and Diabetes: A Meta-Analysis. BIOMED RESEARCH INTERNATIONAL 2015; 2015:368087. [PMID: 26000288 PMCID: PMC4427062 DOI: 10.1155/2015/368087] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Accepted: 08/20/2014] [Indexed: 12/21/2022]
Abstract
Studies on the association between arsenic exposure and diabetes mellitus (DM) yielded inconsistent results. Epidemiologic data on the associations between arsenic exposures via inhalation and DM are limited. Therefore, we conducted a meta-analysis to evaluate the risk of DM associated with arsenic exposure. We searched the related literature through a systematic approach and analyzed the data according to the exposure route (inhalation and ingestion). We used random-effect models to estimate the summary relative risks (RRs) for DM associated with arsenic exposure and used I (2) statistics to assess the heterogeneity of studies. We identified 38 relevant studies, of which the 32 on the ingestion route showed a significant association between arsenic exposure and DM (RR = 1.57; 95% CI 1.27-1.93). Focusing on the 24 studies in which the diagnosis of DM was confirmed using laboratory tests or medical records, we found that the summary RR was 1.71 (95% CI 1.32-2.23), very close to the overall estimates. We concluded that ingested arsenic is associated with the development of DM, but the heterogeneity among the studies may affect the results.
Collapse
Affiliation(s)
- Tzu-Ching Sung
- Department of Health Care Management, University of Kang Ning, 188 Anjhong Road, Section 5, Tainan 70970, Taiwan
- Center for Occupational and Environmental Health and Preventive Medicine, National Cheng Kung University, 138 Sheng-Li Road, Tainan 70428, Taiwan
| | - Jhih-Wei Huang
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, 138 Sheng-Li Road, Tainan 70428, Taiwan
| | - How-Ran Guo
- Center for Occupational and Environmental Health and Preventive Medicine, National Cheng Kung University, 138 Sheng-Li Road, Tainan 70428, Taiwan
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, 138 Sheng-Li Road, Tainan 70428, Taiwan
- Department of Occupational and Environmental Medicine, National Cheng Kung University Hospital, 138 Sheng-Li Road, Tainan 70428, Taiwan
| |
Collapse
|