1
|
Ghosh A, Jani V, Sonavane U, Naphade AN, Joshi R, Kulkarni MJ, Giri AP. The multi-dimensional impact of captopril modification on human serum albumin. Int J Biol Macromol 2024; 274:133289. [PMID: 38908639 DOI: 10.1016/j.ijbiomac.2024.133289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 06/16/2024] [Accepted: 06/19/2024] [Indexed: 06/24/2024]
Abstract
Captopril is a thiol drug, widely used for the management of hypertension and cardiovascular diseases. Reactive thiols are found to covalently modify the cysteines of plasma proteins and affect their structure and function. Human serum albumin (HSA) is prone to undergo modification by various low molecular weight compounds, including drugs. Cysteine34 (Cys34) in HSA has a free thiol group with antioxidant properties, considered to be the most redox-sensitive amino acid in plasma. Through mass-spectrometric analysis, we demonstrate for the first time that captopril forms a disulfide adduct at Cys34 residue and increases the protease susceptibility of HSA to trypsin. As evidenced by our biophysical and electron microscopy studies, HSA undergoes structural alteration, aggregation and morphological changes when treated with different captopril concentrations. Molecular dynamics studies further revealed the regions of secondary structural changes in HSA due to disulfide adduct formation by captopril at Cys34. It also elucidated the residues involved in the noncovalent interactions with captopril. It is envisaged that structural change in HSA may influence the efficacy of drug delivery as well as its own biological function. These findings may thus provide significant insights into the field of pharmacology intriguing further investigation into the effects of long-term captopril treatment.
Collapse
Affiliation(s)
- Amrita Ghosh
- Biochemical Sciences Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| | - Vinod Jani
- High-Performance Computation, Medical and Bioinformatics Applications Group, Centre for Development of Advanced Computing (C-DAC), Pune 411008, India
| | - Uddhavesh Sonavane
- High-Performance Computation, Medical and Bioinformatics Applications Group, Centre for Development of Advanced Computing (C-DAC), Pune 411008, India
| | - Anvi N Naphade
- Biochemical Sciences Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India
| | - Rajendra Joshi
- High-Performance Computation, Medical and Bioinformatics Applications Group, Centre for Development of Advanced Computing (C-DAC), Pune 411008, India
| | - Mahesh J Kulkarni
- Biochemical Sciences Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Ashok P Giri
- Biochemical Sciences Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
2
|
Pan SW, Zou Y, Xu TJ, Ma CH, Li XM, Yu CL. To explore the protective effect of gastrodin on PC12 cells against oxidative stress induced by lead acetate based on network pharmacology. Toxicol Res (Camb) 2024; 13:tfae085. [PMID: 38883411 PMCID: PMC11179722 DOI: 10.1093/toxres/tfae085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 04/08/2024] [Accepted: 05/10/2024] [Indexed: 06/18/2024] Open
Abstract
Objective Screening and predicting potential targets for gastrodin antioxidant stress based on network pharmacology methods, and exploring the effect of gastrodin on lead acetate induced oxidative stress in PC12 cells through cell experiments. Methods Through the Pharmaper database Predict the target of action of gastrodin. Through OMIM and GeneCards to collect oxidative stress targets from database, and intersect with drug targets to obtain drug disease intersection targets; Construct a PPI network diagram using the STRING database. Perform GO enrichment analysis and KEGG pathway enrichment analysis on intersection targets through the DAVID platform. Lead acetate (PbAc) exposure was used to establish a lead poisoning cell model, and intracellular ROS levels, ALB, AKT1, and Caspase-3 levels were measured. Results A total of 288 targets of gastrodin action, 638 targets related to oxidative stress, and 62 drug disease intersection targets were obtained, among which core targets such as ALB, AKT1, CASP3 may be closely related to oxidative stress. KEGG pathway analysis showed that gastrodin antioxidant stress mainly involved in lipid, cancer pathway and other signaling pathways. The results of the cell experiment showed that 50 μM is the optimal effective concentration for PbAc induced ROS production in PC12 cells. Gastrodin significantly increased the ROS content of PC12 cells treated with PbAc, Upregulation of ALB expression and downregulation of AKT1 and CASP3 expression. Conclusions Gastrodin may alleviate PbAc-induced ROS in PC12 cells, indicating potential protective effects against oxidative stress. Further studies are needed to confirm these findings and explore the underlying mechanisms.
Collapse
Affiliation(s)
- Si-Wen Pan
- College of Pathology, Qiqihar Medical University, 333 Bukui North Street, Jianhua District, Qiqihar, Heilongjiang 161006, China
| | - Yu Zou
- College of Pharmacy, Qiqihar Medical University, 333 Bukui North Street, Jianhua District, Qiqihar, Heilongjiang 161006, China
| | - Tian-Jiao Xu
- The Institute of Medicine, Qiqihar Medical University, 333 Bukui North Street, Jianhua District, Qiqihar, Heilongjiang 161006, China
| | - Chun-Hui Ma
- Personnel Department, Qiqihar Medical University, 333 Bukui North Street, Jianhua District, Qiqihar, Heilongjiang 161006, China
| | - Xiao-Ming Li
- The Institute of Medicine, Qiqihar Medical University, 333 Bukui North Street, Jianhua District, Qiqihar, Heilongjiang 161006, China
| | - Chun-Lei Yu
- The Institute of Medicine, Qiqihar Medical University, 333 Bukui North Street, Jianhua District, Qiqihar, Heilongjiang 161006, China
| |
Collapse
|
3
|
Uzun G, Unal A, Basarici I, Kucuk M, Donmez L, Nacitarhan C, Özdem S. Can lipid mediators and free fatty acids guide acute coronary syndrome diagnosis and treatment? Lab Med 2024; 55:88-95. [PMID: 37307428 DOI: 10.1093/labmed/lmad042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023] Open
Abstract
OBJECTIVE The aim of this study was to investigate fatty acids, lipid mediator levels, and the desaturase index rates on different acute coronary syndrome types and their possible relationship with routine lipid parameters. METHODS The study included 81 patients with myocardial infarction (MI), 20 patients with unstable angina pectoris, and 31 healthy people. Fatty acids, CD59, lipoxin A4, 8-isoprostane, serum lipids, albumin, C-reactive protein (CRP), and high sensitive troponin levels were measured in all participants. RESULTS When the fatty acid groups were evaluated as a ratio of albumin, MUFA/albumin and SFA/albumin ratios were significantly higher in the MI group compared to the control group. Although CD59 and lipoxin A4 levels were higher in the control group, there was no significant differences between the groups. When lipoxin A4/CRP and CD59/CRP ratios were evaluated, the results were significantly lower than those in the control group. CONCLUSION Lipid mediators may be useful in treating atherosclerosis by contributing to the resolution of inflammation.
Collapse
Affiliation(s)
- Gulbahar Uzun
- Department of Medical Biochemistry, Akdeniz University Medical Faculty, Antalya, Turkey
| | - Aslihan Unal
- Department of Emergency Medicine, Akdeniz University Medical Faculty, Antalya, Turkey
| | - Ibrahim Basarici
- Department of Cardiology, Akdeniz University Medical Faculty, Antalya, Turkey
| | - Murathan Kucuk
- Department of Cardiology, Akdeniz University Medical Faculty, Antalya, Turkey
| | - Levent Donmez
- Department of Public Health, and, Akdeniz University Medical Faculty, Antalya, Turkey
| | - Cahit Nacitarhan
- Department of Clinical Pharmacology, Akdeniz University Medical Faculty, Antalya, Turkey
| | - Sebahat Özdem
- Department of Medical Biochemistry, Akdeniz University Medical Faculty, Antalya, Turkey
| |
Collapse
|
4
|
Zoanni B, Brioschi M, Mallia A, Gianazza E, Eligini S, Carini M, Aldini G, Banfi C. Novel insights about albumin in cardiovascular diseases: Focus on heart failure. MASS SPECTROMETRY REVIEWS 2023; 42:1113-1128. [PMID: 34747521 DOI: 10.1002/mas.21743] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 08/27/2021] [Accepted: 09/02/2021] [Indexed: 06/07/2023]
Abstract
The Human Plasma Proteome has always been the most investigated compartment in proteomics-based biomarker discovery, and is considered the largest and deepest version of the human proteome, reflecting the state of the body in health and disease. Even if efforts have been always dedicated to the refinement of proteomic approaches to investigate more deeply the plasma proteome, it should not be forgotten that also highly abundant plasma proteins, like human serum albumin (HSA), often neglected in these studies, might provide fundamental physiological functions in plasma, and should be better considered. This review summarizes the important roles of HSA in the context of cardiovascular diseases (CVD), and in particular in heart failure. Notwithstanding much attention has been historically directed toward the association of HSA levels and CVD risk, the advances in the field of mass spectrometry research allow also a better characterization of the effects of oxidative modifications that could alter not only the structure but also the function of HSA.
Collapse
Affiliation(s)
| | | | - Alice Mallia
- Centro Cardiologico Monzino, IRCCS, Milano, Italy
| | | | | | - Marina Carini
- Dipartimento di Scienze Farmaceutiche, Università di Milano, Milan, Italy
| | - Giancarlo Aldini
- Dipartimento di Scienze Farmaceutiche, Università di Milano, Milan, Italy
| | | |
Collapse
|
5
|
Kannan S, Souchelnytskyi S. The Exposure to Human Breast Cancer Cells Altered 14 Post-Translational Modifications of Human Serum Albumin. EJIFCC 2022; 33:295-308. [PMID: 36605305 PMCID: PMC9768621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Purpose Serum albumin is in contact with practically all cells in the human body, including tumor cells in cancer patients. The purpose of this study was to explore whether cancer cells affect post-translational modifications (PTMs) of albumin. Material and methods Mass spectrometry was used to identify the PTMs. Purified human serum albumin was incubated with human breast cancer cells MDA-MB-231, MDA-MB-468, MCF7, or kept in water or in cell culture media. PTMs which were affected upon exposure of the albumin to cancer cells were identified. Three-dimensional analysis was performed to locate PTMs in albumin. Results We report here that an exposure to human breast cancer cells affected post-translational modifications (PTMs) of 14 peptides of human serum albumin (HSA). PTMs at 8 peptides were observed upon exposure of HSA to metastatic MDA-MB-231 and MDA-MB-468 breast cancer cells. PTMs at another 6 peptides were lost in MDA-MB-231 and MDA-MB-468 cells, while these 6 PTMs were observed in HSA exposed to conditionally tumorigenic MCF7 cells, or in HSA kept in water or a cell culture medium. Cancer cell altered phosphorylation, deamidation followed by methylation, acetylation, myristylation, palmitoylation, methylation, cysteine persulfide, and S-6-FMN cysteine modifications were detected in HSA. These PTMs locate predominantly in IB and IIA domains of HSA. Three-dimensional analysis showed that this region corresponds to the lipid-binding site and Sudlow's site 1. Conclusion Data reported here show that 14 PTMs of human serum albumin can be modified upon its exposure to human breast cancer cells.
Collapse
Affiliation(s)
- Surya Kannan
- College of Medicine, QU Health, Qatar University, Doha, Qatar
| | - Serhiy Souchelnytskyi
- Oranta Cancer Diagnostics AB, Uppsala, Sweden,Lviv National University, Lviv, Ukraine,Corresponding author: Serhiy Souchelnytskyi Oranta Cancer Diagnostics AB Uppsala, 75263 Sweden E-mail:
| |
Collapse
|
6
|
Georgieva E, Karamalakova Y, Arabadzhiev G, Atanasov V, Kostandieva R, Mitev M, Tsoneva V, Yovchev Y, Nikolova G. Site-Directed Spin Labeling EPR Spectroscopy for Determination of Albumin Structural Damage and Hypoalbuminemia in Critical COVID-19. Antioxidants (Basel) 2022; 11:antiox11122311. [PMID: 36552520 PMCID: PMC9774111 DOI: 10.3390/antiox11122311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/17/2022] [Accepted: 11/20/2022] [Indexed: 11/24/2022] Open
Abstract
The main factors in the COVID-19 pathology, which can initiate extensive structural changes at the cellular and molecular levels, are the generation of free radicals in abnormal amounts, and oxidative stress. Under "oxidative shock" conditions, the proteins undergo various modifications that affect their function and activity, and as a result distribute malfunctioning protein derivatives in the body. Human serum albumin is a small globular protein characterized by a high overall binding capacity for neutral lipophilic and acidic dosage forms. The albumin concentration is crucial for the maintenance of plasma oncotic pressure, the transport of nutrients, amino acids, and drugs, the effectiveness of drug therapy, and the prevention of drug toxicity. Hypoalbuminemia and structural defects molecule in the protein suggest a risk of changed metabolism and increased plasma concentration of unbound drugs. Therefore, the albumin structural and functional changes accompanied by low protein levels can be a serious prerequisite for ineffective therapy, frequent complications, and high mortality in patients with SARS-CoV-2 infection. The current opinion aims the research community the application of Site-Directed Spin Labeling Electron Paramagnetic Resonance spectroscopy (SDSL-EPR) and 3-Maleimido-PROXYL radical in determining abnormalities of the albumin dynamics and protein concentrations in COVID-19 critical patients.
Collapse
Affiliation(s)
- Ekaterina Georgieva
- Department of “General and Clinical Pathology, Forensic Medicine, Deontology and Dermatovenerology”, Medical Faculty, Trakia University, 11 Armeiska Str., 6000 Stara Zagora, Bulgaria
- Department of “Medical Chemistry and Biochemistry”, Medical Faculty, Trakia University, 11 Armeiska Str., 6000 Stara Zagora, Bulgaria
| | - Yanka Karamalakova
- Department of “Medical Chemistry and Biochemistry”, Medical Faculty, Trakia University, 11 Armeiska Str., 6000 Stara Zagora, Bulgaria
| | - Georgi Arabadzhiev
- Department of “Surgery and Anesthesiology”, University Hospital “Prof. Dr. St. Kirkovich”, 6000 Stara Zagora, Bulgaria
| | - Vasil Atanasov
- Forensic Toxicology Laboratory, Military Medical Academy, 3 “Sv. Georgi Sofiiski Str.”, 1606 Sofia, Bulgaria
| | - Rositsa Kostandieva
- Forensic Toxicology Laboratory, Military Medical Academy, 3 “Sv. Georgi Sofiiski Str.”, 1606 Sofia, Bulgaria
| | - Mitko Mitev
- Department of “Diagnostic Imaging”, University Hospital “Prof. Dr. St. Kirkovich”, 6000 Stara Zagora, Bulgaria
| | - Vanya Tsoneva
- Department of Propaedeutics of Internal Medicine and Clinical Laboratory, Medical Faculty, Trakia University, 11 Armeiska Str., 6000 Stara Zagora, Bulgaria
| | - Yovcho Yovchev
- Department of “Surgery and Anesthesiology”, University Hospital “Prof. Dr. St. Kirkovich”, 6000 Stara Zagora, Bulgaria
| | - Galina Nikolova
- Department of “Medical Chemistry and Biochemistry”, Medical Faculty, Trakia University, 11 Armeiska Str., 6000 Stara Zagora, Bulgaria
- Correspondence: ; Tel.: +359-897771301
| |
Collapse
|
7
|
Fang Z, Luo Z, Ji Y, Yang R, Gao J, Zhang N. A network pharmacology technique used to investigate the potential mechanism of Ligustilide's effect on atherosclerosis. J Food Biochem 2022; 46:e14146. [PMID: 35365921 DOI: 10.1111/jfbc.14146] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 02/20/2022] [Accepted: 03/01/2022] [Indexed: 11/29/2022]
Abstract
Ligustilide (LIG) is a major active ingredient in traditional Chinese medicines that is also found in plant rhizomes such as carrot, coriander, and others, and it has been demonstrated to have cardiovascular preventive benefits. However, the mechanisms through which LIG protects the cardiovascular and cerebrovascular systems in atherosclerosis (AS) remain unknown. This study was aimed to investigate the mechanisms of LIG in AS utilizing the network pharmacology and molecular docking, and then to validate the putative mechanism through experiments. The network pharmacological analysis indicated that a total of 55 were performed on LIG and AS intersection targets. The genes of LIG and AS intersection targets enriched in the regulation of receptor and enzyme activity, cytokines-related, and transcription factors, indicating that these targets were primarily involved in cell proliferation and migration, regulating cell differentiation and skeletal activities in the development of AS. Finally, molecular docking was used to validate the major targets of LIG and AS intersection targets. Further experiments revealed that LIG may inhibit cell migration induced by AngII by reducing calcium influx, and regulating phenotypic translation-related proteins SM-22α and OPN. The present study investigated the potential targets and signaling pathways of LIG, which provides new insight into its anti-atherosclerosis actions in terms of reducing inflammation, cell proliferation, and migration, and may constitute a novel target for the treatment of AS. PRACTICAL APPLICATIONS: LIG has been shown to have cardiovascular protective benefits, the mechanism by which it protects the cardiovascular and cerebrovascular systems in AS remains unknown. This study uses a holistic network pharmacology strategy to investigate putative treatment pathways and conducts exploratory experimentation. The findings demonstrate that LIG reduces VSMC migration in the treatment of AS, acts as an anti-inflammatory agent, and prevents excessive cell proliferation and migration. Finally, the goal of our research is to uncover the molecular mechanism of LIG's influence on AS. The findings will provide a new research avenue for LIG as well as suggestions for the study of other herbal treatments. These research results will provide a new research direction for LIG and provide guidance for the research of other herbal medicines. This work revealed the multi-component, multi-target, multi-pathway, and multi-disease mechanism of LIG.
Collapse
Affiliation(s)
- Zicen Fang
- Department of Pathology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Zhenhui Luo
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, China
| | - Yanying Ji
- Department of Pathology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Rihong Yang
- Department of Pathology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jintian Gao
- Department of Pathology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Nana Zhang
- Department of Pathology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
8
|
Sastre-Oliva T, Corbacho-Alonso N, Albo-Escalona D, Lopez JA, Lopez-Almodovar LF, Vázquez J, Padial LR, Mourino-Alvarez L, Barderas MG. The Influence of Coronary Artery Disease in the Development of Aortic Stenosis and the Importance of the Albumin Redox State. Antioxidants (Basel) 2022; 11:antiox11020317. [PMID: 35204200 PMCID: PMC8868205 DOI: 10.3390/antiox11020317] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/01/2022] [Accepted: 02/03/2022] [Indexed: 12/14/2022] Open
Abstract
Calcific aortic valve and coronary artery diseases are related cardiovascular pathologies in which common processes lead to the calcification of the corresponding affected tissue. Among the mechanisms involved in calcification, the oxidative stress that drives the oxidation of sulfur-containing amino acids such ascysteines is of particular interest. However, there are important differences between calcific aortic valve disease and coronary artery disease, particularly in terms of the reactive oxygen substances and enzymes involved. To evaluate what effect coronary artery disease has on aortic valves, we analyzed valve tissue from patients with severe calcific aortic stenosis with and without coronary artery disease. Proteins and peptides with oxidized cysteines sites were quantified, leading to the identification of 16 proteins with different levels of expression between the two conditions studied, as well as differences in the redox state of the tissue. We also identified two specific sites of cysteine oxidation in albumin that have not been described previously. These results provide evidence that coronary artery disease affects valve calcification, modifying the molecular profile of aortic valve tissue. In addition, the redox proteome is also altered when these conditions coincide, notably affecting human serum albumin.
Collapse
Affiliation(s)
- Tamara Sastre-Oliva
- Department of Vascular Physiopathology, Hospital Nacional de Paraplejicos, Servicio de Salud de Castilla-La Mancha (SESCAM), 45071 Toledo, Spain; (T.S.-O.); (N.C.-A.); (D.A.-E.)
| | - Nerea Corbacho-Alonso
- Department of Vascular Physiopathology, Hospital Nacional de Paraplejicos, Servicio de Salud de Castilla-La Mancha (SESCAM), 45071 Toledo, Spain; (T.S.-O.); (N.C.-A.); (D.A.-E.)
| | - Diego Albo-Escalona
- Department of Vascular Physiopathology, Hospital Nacional de Paraplejicos, Servicio de Salud de Castilla-La Mancha (SESCAM), 45071 Toledo, Spain; (T.S.-O.); (N.C.-A.); (D.A.-E.)
| | - Juan A. Lopez
- Cardiovascular Proteomics Laboratory and Centro de Investigación Biomédica en Red Enfermedades Cardiovasculares (CIBER-CV), Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain; (J.A.L.); (J.V.)
| | - Luis F. Lopez-Almodovar
- Cardiac Surgery, Hospital Virgen de la Salud, Servicio de Salud de Castilla-La Mancha (SESCAM), 45004 Toledo, Spain;
| | - Jesús Vázquez
- Cardiovascular Proteomics Laboratory and Centro de Investigación Biomédica en Red Enfermedades Cardiovasculares (CIBER-CV), Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain; (J.A.L.); (J.V.)
| | - Luis R. Padial
- Department of cardiology, Hospital Virgen de la Salud, Servicio de Salud de Castilla-La Mancha (SESCAM), 45004 Toledo, Spain;
| | - Laura Mourino-Alvarez
- Department of Vascular Physiopathology, Hospital Nacional de Paraplejicos, Servicio de Salud de Castilla-La Mancha (SESCAM), 45071 Toledo, Spain; (T.S.-O.); (N.C.-A.); (D.A.-E.)
- Correspondence: or (L.M.-A.); or (M.G.B.); Tel.: +34-9253-96826 (L.M.A. & M.G.B.)
| | - Maria G. Barderas
- Department of Vascular Physiopathology, Hospital Nacional de Paraplejicos, Servicio de Salud de Castilla-La Mancha (SESCAM), 45071 Toledo, Spain; (T.S.-O.); (N.C.-A.); (D.A.-E.)
- Correspondence: or (L.M.-A.); or (M.G.B.); Tel.: +34-9253-96826 (L.M.A. & M.G.B.)
| |
Collapse
|
9
|
Assessment of Albumin ECM Accumulation and Inflammation as Novel In Vivo Diagnostic Targets for Multi-Target MR Imaging. BIOLOGY 2021; 10:biology10100964. [PMID: 34681063 PMCID: PMC8533611 DOI: 10.3390/biology10100964] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/17/2021] [Accepted: 09/22/2021] [Indexed: 01/17/2023]
Abstract
Atherosclerosis is a progressive inflammatory vascular disease characterized by endothelial dysfunction and plaque burden. Extracellular matrix (ECM)-associated plasma proteins play an important role in disease development. Our magnetic resonance imaging (MRI) study investigates the feasibility of using two different molecular MRI probes for the simultaneous assessment of ECM-associated intraplaque albumin deposits caused by endothelial damage and progressive inflammation in atherosclerosis. Male apolipoprotein E-deficient (ApoE-/-)-mice were fed a high-fat diet (HFD) for 2 or 4 months. Another ApoE-/--group was treated with pravastatin and received a HFD for 4 months. T1- and T2*-weighted MRI was performed before and after albumin-specific MRI probe (gadofosveset) administration and a macrophage-specific contrast agent (ferumoxytol). Thereafter, laser ablation inductively coupled plasma mass spectrometry and histology were performed. With advancing atherosclerosis, albumin-based MRI signal enhancement and ferumoxytol-induced signal loss areas in T2*-weighted MRI increased. Significant correlations between contrast-to-noise-ratio (CNR) post-gadofosveset and albumin stain (R2 = 0.78, p < 0.05), and signal loss areas in T2*-weighted MRI with Perls' Prussian blue stain (R2 = 0.83, p < 0.05) were observed. No interference of ferumoxytol with gadofosveset enhancement was detectable. Pravastatin led to decreased inflammation and intraplaque albumin. Multi-target MRI combining ferumoxytol and gadofosveset is a promising method to improve diagnosis and treatment monitoring in atherosclerosis.
Collapse
|
10
|
Oxidative Modifications in Advanced Atherosclerotic Plaques: A Focus on In Situ Protein Sulfhydryl Group Oxidation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:6169825. [PMID: 31998439 PMCID: PMC6973184 DOI: 10.1155/2020/6169825] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 12/17/2019] [Accepted: 12/26/2019] [Indexed: 12/21/2022]
Abstract
Although oxidative stress has been long associated with the genesis and progression of the atherosclerotic plaque, scanty data on its in situ effects on protein sulfhydryl group modifications are available. Within the arterial wall, protein sulfhydryls and low-molecular-weight (LMW) thiols are involved in the cell regulation of both Reactive Oxygen Species (ROS) and Reactive Nitrogen Species (RNS) levels and are a target for several posttranslational oxidative modifications that take place inside the atherosclerotic plaque, probably contributing to both atherogenesis and atherosclerotic plaque progression towards complicated lesions. Advanced carotid plaques are characterized by very high intraplaque GSH levels, due to cell lysis during apoptotic and/or necrotic events, probably responsible for the altered equilibrium among protein sulfhydryls and LMW thiols. Some lines of evidence show that the prooxidant environment present in atherosclerotic tissue could modify filtered proteins also by protein-SH group oxidation, and demonstrate that particularly albumin, once filtered, represents a harmful source of homocysteine and cysteinylglycine inside the plaque. The oxidative modification of protein sulfhydryls, with particular emphasis to protein thiolation by LMW thiols and its association with atherosclerosis, is the main topic of this review.
Collapse
|
11
|
Omeka WKM, Liyanage DS, Yang H, Lee J. Glutaredoxin 2 from big belly seahorse (Hippocampus abdominalis) and its potential involvement in cellular redox homeostasis and host immune responses. FISH & SHELLFISH IMMUNOLOGY 2019; 95:411-421. [PMID: 31586678 DOI: 10.1016/j.fsi.2019.09.071] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 09/26/2019] [Accepted: 09/30/2019] [Indexed: 06/10/2023]
Abstract
Glutaredoxins are oxidoreductases present in almost all living organisms. They belong to the thioredoxin superfamily and share the thioredoxin structure and catalytic motif. Glutaredoxin 2 has been identified as a mitochondrial protein in vertebrates. In this study, the sequence of Glutaredoxin 2 from Hippocampus abdominalis (HaGrx2) was analyzed by molecular, transcriptional, and functional assays. In-silico analysis revealed that HaGrx2 shows the highest homology with Hippocampus comes, while distinctly cluster with fish Grx2 orthologs. Tissue distribution analysis showed that HaGrx2 is ubiquitously expressed in all tissues tested, and the highest expression was observed in the brain and skin. Significant HaGrx2 transcript modulation was identified in blood and liver upon injecting bacterial and Pathogen Associated Molecular Patterns. The redox activity of HaGrx2 was revealed by Dehydroascorbic reduction and insulin disulfide reduction activity assays. Further, the deglutathionylation activity of 1 nM HaGrx2 was found to be equivalent to that of 0.84 nM HaGrx1. HaGrx2 exhibited antiapoptotic activity against H2O2-induced oxidative stress in FHM cells. Altogether, the results of this study suggest that HaGrx2 plays a role in redox homeostasis and innate immune responses in fish.
Collapse
Affiliation(s)
- W K M Omeka
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea; Marine Science Institute, Jeju National University, Jeju Self-Governing Province, 63333, Republic of Korea
| | - D S Liyanage
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea; Marine Science Institute, Jeju National University, Jeju Self-Governing Province, 63333, Republic of Korea
| | - Hyerim Yang
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea
| | - Jehee Lee
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea; Marine Science Institute, Jeju National University, Jeju Self-Governing Province, 63333, Republic of Korea.
| |
Collapse
|
12
|
Stakhneva EM, Meshcheryakova IA, Demidov EA, Starostin KV, Sadovski EV, Peltek SE, Voevoda MI, Chernyavskii AM, Volkov AM, Ragino YI. A Proteomic Study of Atherosclerotic Plaques in Men with Coronary Atherosclerosis. Diagnostics (Basel) 2019; 9:diagnostics9040177. [PMID: 31703357 PMCID: PMC6963888 DOI: 10.3390/diagnostics9040177] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 11/05/2019] [Accepted: 11/05/2019] [Indexed: 12/24/2022] Open
Abstract
Background: To study the changes in protein composition of atherosclerotic plaques at different stages of their development in coronary atherosclerosis using proteomics. Methods: The object of research consisted of homogenates of atherosclerotic plaques from coronary arteries at different stages of development, obtained from 15 patients. Plaque proteins were separated by two-dimensional electrophoresis. The resultant protein spots were identified by the matrix-assisted laser desorption ionization method with peptide mass mapping. Results: Groups of differentially expressed proteins, in which the amounts of proteins differed more than twofold (p < 0.05), were identified in pools of homogenates of atherosclerotic plaques at three stages of development. The amounts of the following proteins were increased in stable atherosclerotic plaques at the stage of lipidosis and fibrosis: vimentin, tropomyosin β-chain, actin, keratin, tubulin β-chain, microfibril-associated glycoprotein 4, serum amyloid P-component, and annexin 5. In plaques at the stage of fibrosis and calcification, the amounts of mimecan and fibrinogen were increased. In unstable atherosclerotic plaque of the necrotic–dystrophic type, the amounts of human serum albumin, mimecan, fibrinogen, serum amyloid P-component and annexin were increased. Conclusion: This proteomic study identifies the proteins present in atherosclerotic plaques of coronary arteries by comparing their proteomes at three different stages of plaque development during coronary atherosclerosis.
Collapse
Affiliation(s)
- Ekaterina M. Stakhneva
- Research Institute of Internal and Preventive Medicine - Branch of the Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630089 Novosibirsk, Russia; (E.V.S.); (M.I.V.); (Y.I.R.)
- Correspondence: ; Tel.: +7-(383)-264-2516; Fax: +73832642516
| | - Irina A. Meshcheryakova
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (I.A.M.); (E.A.D.); (K.V.S.); (S.E.P.)
| | - Evgeny A. Demidov
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (I.A.M.); (E.A.D.); (K.V.S.); (S.E.P.)
| | - Konstantin V. Starostin
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (I.A.M.); (E.A.D.); (K.V.S.); (S.E.P.)
| | - Evgeny V. Sadovski
- Research Institute of Internal and Preventive Medicine - Branch of the Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630089 Novosibirsk, Russia; (E.V.S.); (M.I.V.); (Y.I.R.)
| | - Sergey E. Peltek
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (I.A.M.); (E.A.D.); (K.V.S.); (S.E.P.)
| | - Michael I. Voevoda
- Research Institute of Internal and Preventive Medicine - Branch of the Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630089 Novosibirsk, Russia; (E.V.S.); (M.I.V.); (Y.I.R.)
| | - Alexander M. Chernyavskii
- The Federal State Budgetary Institution “National Medical Research Center named academician E.N. Meshalkin” of the Ministry of Health of the Russian Federation, 630055 Novosibirsk, Russia; (A.M.C.); (A.M.V.)
| | - Alexander M. Volkov
- The Federal State Budgetary Institution “National Medical Research Center named academician E.N. Meshalkin” of the Ministry of Health of the Russian Federation, 630055 Novosibirsk, Russia; (A.M.C.); (A.M.V.)
| | - Yuliya I. Ragino
- Research Institute of Internal and Preventive Medicine - Branch of the Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630089 Novosibirsk, Russia; (E.V.S.); (M.I.V.); (Y.I.R.)
| |
Collapse
|
13
|
Matsushita S, Nishi K, Iwao Y, Ishima Y, Watanabe H, Taguchi K, Yamasaki K, Maruyama T, Otagiri M. Recombinant Human Serum Albumin Containing 3 Copies of Domain I, Has Significant in Vitro Antioxidative Capacity Compared to the Wild-Type. Biol Pharm Bull 2017; 40:1813-1817. [PMID: 28966257 DOI: 10.1248/bpb.b17-00528] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Human serum albumin (HSA), the most abundant protein in serum, functions as carrier of drugs and contributes to maintaining serum colloid osmotic pressure. We report herein on the preparation of a genetic recombinant HSA, in which domains II and III were changed to domain I (triple domain I; TDI). Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) results indicated that the purity of the TDI was equivalent to that of the wild type (WT). Both far- and near-UV circular dichroism (CD) spectra of the TDI showed that its structural characteristics were similar to the WT. Ligand binding capacity was examined by an ultrafiltration method using 3-carboxy-4-methyl-5-propyl-2-furanpropanoic acid (CMPF) and ketoprofen as markers for site I and site II, respectively. The binding capacity of TDI for both ligands was lower than that for the wild type. TDI significantly suppressed the oxidation of dihydrorhodamine 123 (DRD) by H2O2 compared to the WT. Our current results suggest that TDI has great potential for further development as HSA a product having antioxidative functions.
Collapse
Affiliation(s)
- Sadaharu Matsushita
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University
| | - Koji Nishi
- Department of Clinical Medicine, Yokohama University of Pharmacy
| | - Yasunori Iwao
- Pharmaceutical Engineering Laboratory, School of Pharmaceutical Sciences, University of Shizuoka
| | - Yu Ishima
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University
| | - Hiroshi Watanabe
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University
| | | | - Keishi Yamasaki
- Faculty of Pharmaceutical Sciences, Sojo University.,DDS Research Institute, Sojo University
| | - Toru Maruyama
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University
| | - Masaki Otagiri
- Faculty of Pharmaceutical Sciences, Sojo University.,DDS Research Institute, Sojo University
| |
Collapse
|
14
|
Lu SS, Grigoryan H, Edmands WM, Hu W, Iavarone AT, Hubbard A, Rothman N, Vermeulen R, Lan Q, Rappaport SM. Profiling the Serum Albumin Cys34 Adductome of Solid Fuel Users in Xuanwei and Fuyuan, China. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:46-57. [PMID: 27936627 PMCID: PMC5567851 DOI: 10.1021/acs.est.6b03955] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Xuanwei and Fuyuan counties in China have the highest lung cancer rates in the world due to household air pollution from combustion of smoky coal for cooking and heating. To discover potential biomarkers of indoor combustion products, we profiled adducts at the Cys34 locus of human serum albumin (HSA) in 29 nonsmoking Xuanwei and Fuyuan females who used smoky coal, smokeless coal, or wood and 10 local controls who used electricity or gas fuel. Our untargeted "adductomics" method detected 50 tryptic peptides of HSA, containing Cys34 and prominent post-translational modifications. Putative adducts included Cys34 oxidation products, mixed disulfides, rearrangements, and truncations. The most significant differences in adduct levels across fuel types were observed for S-glutathione (S-GSH) and S-γ-glutamylcysteine (S-γ-GluCys), both of which were present at lower levels in subjects exposed to combustion products than in controls. After adjustment for age and personal measurements of airborne benzo(a)pyrene, the largest reductions in levels of S-GSH and S-γ-GluCys relative to controls were observed for users of smoky coal, compared to users of smokeless coal and wood. These results point to possible depletion of GSH, an essential antioxidant, and its precursor γ-GluCys in nonsmoking females exposed to indoor-combustion products in Xuanwei and Fuyuan, China.
Collapse
Affiliation(s)
- Sixin S. Lu
- Department of Nutritional Sciences and Toxicology, College of Natural Resources, University of California, Berkeley, CA 94720, USA
| | - Hasmik Grigoryan
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, CA 94720, USA
| | - William M.B. Edmands
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, CA 94720, USA
| | - Wei Hu
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department of Health and Human Service, Rockville, MD 20850, USA
| | - Anthony T. Iavarone
- California Institute for Quantitative Biosciences, University of California, Berkeley, CA 94720, USA
| | - Alan Hubbard
- Division of Biostatistics, School of Public Health, University of California, Berkeley, CA 94720, USA
| | - Nathaniel Rothman
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department of Health and Human Service, Rockville, MD 20850, USA
| | - Roel Vermeulen
- Division of Environmental Epidemiology, Institute for Risk Assessment Sciences, Utrecht University, 3508 TD Utrecht, The Netherlands
| | - Qing Lan
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department of Health and Human Service, Rockville, MD 20850, USA
| | - Stephen M. Rappaport
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, CA 94720, USA
- Corresponding author: Prof. S. M. Rappaport, Center for Exposure Biology, School of Public Health, University of California, Berkeley, CA 94720, USA. Tel: 510-642-4255. Fax: 510-642-5815.
| |
Collapse
|
15
|
Kizaki K, Yamashita F, Hayashi T, Funakoshi N. Infliximab equivalently suppresses oxidative stress compared to tocilizumab among well-controlled patients with rheumatoid arthritis. Int J Rheum Dis 2016; 21:1815-1821. [PMID: 27778459 DOI: 10.1111/1756-185x.12972] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
AIM This study was designed to investigate which biological agent, infliximab or tocilizumab, would more intensively keep suppressing oxidative stress among well-controlled patients as C-reactive protein (CRP) levels normalized in rheumatoid arthritis (RA). In addition, it was intended to clarify indicative factors of oxidative stress among well-controlled patients with RA. METHODS We recruited 61 well-controlled (CRP < 0.3 mg/dL within normal ranges) patients with RA using biological agents (infliximab n = 33; tocilizumab n = 28), active RA patients with CRP > 1.0 mg/dL (n = 10) and healthy subjects (n = 10) and examined the fraction of oxidized albumin (oxidized-albumin [%]) as a marker of oxidative stress in addition to inflammatory measures and disease activity scores such as CRP, erythrocyte sedimentation rate (ESR), matrix metalloproteinase 3 (MMP-3), serum amyloid A (SAA), Clinical Disease Activity Index, Simplified Disease Activity Index, visual analog scale (VAS), Disease Activity Index of 28 joints (DAS28)-CRP, DAS28-ESR and renal function (creatinine clearance [CCr]). RESULTS Oxidized-albumin (%) was significantly elevated among active RA patients (33.83 ± 5.31%) as compared with healthy subjects (23.00 ± 2.56%). Although oxidized-albumin (%) among well-controlled RA patients also increased, there was no difference with oxidized-albumin (%) between infliximab and tocilizumab groups (26.40 ± 5.44% in infliximab; 26.62 ± 4.53% in tocilizumab). In Pearson's correlation, oxidized-albumin (%) had significant correlations with CRP, MMP-3, ESR, SAA, age, CCr, VAS, DAS28-CRP and DAS28-ESR. With those variables, multiple stepwise forward regression analysis was conducted and revealed that CCr, DAS28-ESR and CRP are the statistically significant explanatory variables on oxidized-albumin (%) among well-controlled RA patients. CONCLUSIONS We demonstrated that there was no difference with infliximab and tocilizumab on oxidative stress and we clarified that CCr, DAS28-ESR and CRP become indicative factors of oxidative stress among well-controlled RA patients.
Collapse
Affiliation(s)
- Kazuha Kizaki
- Department of Orthopaedic Surgery and Rheumatology, Kyoto Shimogamo Hospital, Kyoto, Japan
| | - Fumiharu Yamashita
- Department of Orthopaedic Surgery and Rheumatology, Kyoto Shimogamo Hospital, Kyoto, Japan
| | - Tomoya Hayashi
- Department of Sports Science, Meiji University of Integrative Medicine, Kyoto, Japan
| | - Noboru Funakoshi
- Department of Orthopaedic Surgery and Rheumatology, Kyoto Shimogamo Hospital, Kyoto, Japan
| |
Collapse
|
16
|
Upadhyay RK. Emerging risk biomarkers in cardiovascular diseases and disorders. J Lipids 2015; 2015:971453. [PMID: 25949827 PMCID: PMC4407625 DOI: 10.1155/2015/971453] [Citation(s) in RCA: 158] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Revised: 02/24/2015] [Accepted: 02/25/2015] [Indexed: 12/16/2022] Open
Abstract
Present review article highlights various cardiovascular risk prediction biomarkers by incorporating both traditional risk factors to be used as diagnostic markers and recent technologically generated diagnostic and therapeutic markers. This paper explains traditional biomarkers such as lipid profile, glucose, and hormone level and physiological biomarkers based on measurement of levels of important biomolecules such as serum ferritin, triglyceride to HDLp (high density lipoproteins) ratio, lipophorin-cholesterol ratio, lipid-lipophorin ratio, LDL cholesterol level, HDLp and apolipoprotein levels, lipophorins and LTPs ratio, sphingolipids, Omega-3 Index, and ST2 level. In addition, immunohistochemical, oxidative stress, inflammatory, anatomical, imaging, genetic, and therapeutic biomarkers have been explained in detail with their investigational specifications. Many of these biomarkers, alone or in combination, can play important role in prediction of risks, its types, and status of morbidity. As emerging risks are found to be affiliated with minor and microlevel factors and its diagnosis at an earlier stage could find CVD, hence, there is an urgent need of new more authentic, appropriate, and reliable diagnostic and therapeutic markers to confirm disease well in time to start the clinical aid to the patients. Present review aims to discuss new emerging biomarkers that could facilitate more authentic and fast diagnosis of CVDs, HF (heart failures), and various lipid abnormalities and disorders in the future.
Collapse
Affiliation(s)
- Ravi Kant Upadhyay
- Department of Zoology, DDU Gorakhpur University, Gorakhpur 273009, India
| |
Collapse
|