1
|
Saar D, Lennartsson CLE, Weidner P, Burgermeister E, Kragelund BB. The Myotubularin Related Proteins and the Untapped Interaction Potential of Their Disordered C-Terminal Regions. Proteins 2025; 93:831-854. [PMID: 39614773 DOI: 10.1002/prot.26774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 11/11/2024] [Accepted: 11/13/2024] [Indexed: 03/05/2025]
Abstract
Intrinsically disordered regions (IDRs) of proteins remain understudied with enigmatic sequence features relevant to their functions. Members of the myotubularin-related protein (MTMR) family contain uncharacterized IDRs. After decades of research on their phosphatase activity, recent work on the C-terminal IDRs of MTMR7 revealed new interactions and important new functions beyond the phosphatase function. Here we take a broader look at the C-terminal domains (CTDs) of 14 human MTMRs and use bioinformatic tools and biophysical methods to ask which other functions may be probable in this protein family. The predictions show that the CTDs are disordered and carry short linear motifs (SLiMs) important for targeting of MTMRs to defined subcellular compartments and implicating them in signaling, phase separation, interaction with diverse proteins, including transcription factors and are of relevance for cancer research and neuroscience. We also present experimental methods to study the CTDs and use them to characterize the coiled coil (CC) domains of MTMR7 and MTMR9. We show homo- and hetero-oligomerization with preference for MTMR7-CC to form dimers, while MTMR9-CC forms trimers. We relate the results to sequence features and make predictions for the structural landscape of other MTMRs. Our work gives a broad insight into the so far unrecognized features and SLiMs in MTMR-CTDs, and provides the basis for more in-depth experimental research on this diverse protein family and understudied IDRs in proteins in general.
Collapse
Affiliation(s)
- Daniel Saar
- REPIN, University of Copenhagen, Copenhagen, Denmark
- The Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, Denmark
- Structural Biology and NMR Laboratory, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | | | - Philip Weidner
- Department of Medicine II, University Medical Center Mannheim, Heidelberg University, Mannheim, Germany
| | - Elke Burgermeister
- Department of Medicine II, University Medical Center Mannheim, Heidelberg University, Mannheim, Germany
| | - Birthe B Kragelund
- REPIN, University of Copenhagen, Copenhagen, Denmark
- The Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, Denmark
- Structural Biology and NMR Laboratory, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
2
|
Dai N, Groenendyk J, Michalak M. Interplay between myotubularins and Ca 2+ homeostasis. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119739. [PMID: 38710289 DOI: 10.1016/j.bbamcr.2024.119739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/24/2024] [Accepted: 04/25/2024] [Indexed: 05/08/2024]
Abstract
The myotubularin family, encompassing myotubularin 1 (MTM1) and 14 myotubularin-related proteins (MTMRs), represents a conserved group of phosphatases featuring a protein tyrosine phosphatase domain. Nine members are characterized by an active phosphatase domain C(X)5R, dephosphorylating the D3 position of PtdIns(3)P and PtdIns(3,5)P2. Mutations in myotubularin genes result in human myopathies, and several neuropathies including X-linked myotubular myopathy and Charcot-Marie-Tooth type 4B. MTM1, MTMR6 and MTMR14 also contribute to Ca2+ signaling and Ca2+ homeostasis that play a key role in many MTM-dependent myopathies and neuropathies. Here we explore the evolving roles of MTM1/MTMRs, unveiling their influence on critical aspects of Ca2+ signaling pathways.
Collapse
Affiliation(s)
- Ning Dai
- Department of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | - Jody Groenendyk
- Department of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | - Marek Michalak
- Department of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada.
| |
Collapse
|
3
|
miR-100-5p Promotes Epidermal Stem Cell Proliferation through Targeting MTMR3 to Activate PIP3/AKT and ERK Signaling Pathways. Stem Cells Int 2022; 2022:1474273. [PMID: 36045954 PMCID: PMC9421352 DOI: 10.1155/2022/1474273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 07/22/2022] [Accepted: 08/02/2022] [Indexed: 12/04/2022] Open
Abstract
Skin epidermal stem cells (EpSCs) play a critical role in wound healing and are ideal seed cells for skin tissue engineering. Exosomes from human adipose-derived stem cells (ADSC-Exos) promote human EpSC proliferation, but the underlying mechanism remains unclear. Here, we investigated the effect of miR-100-5p, one of the most abundant miRNAs in ADSC-Exos, on the proliferation of human EpSCs and explored the mechanisms involved. MTT and BrdU incorporation assays showed that miR-100-5p mimic transfection promoted EpSC proliferation in a time-dependent manner. Cell cycle analysis showed that miR-100-5p mimic transfection significantly decreased the percentage of cells in the G1 phase and increased the percentage of cells in the G2/M phase. Myotubularin-related protein 3 (MTMR3), a lipid phosphatase, was identified as a direct target of miR-100-5p. Knockdown of MTMR3 in EpSCs by RNA interference significantly enhanced cell proliferation, decreased the percentage of cells in the G1 phase and increased the percentage of cells in the S phase. Overexpression of MTMR3 reversed the proproliferative effect of miR-100-5p on EpSCs, indicating that miR-100-5p promoted EpSC proliferation by downregulating MTMR3. Mechanistic studies showed that transfection of EpSCs with miR-100-5p mimics elevated the intracellular PIP3 level, induced AKT and ERK phosphorylation, and upregulated cyclin D1, E1, and A2 expression, which could be attenuated by MTMR3 overexpression. Consistently, intradermal injection of ADSC-Exos or miR-100-5p-enriched ADSC-Exos into cultured human skin tissues significantly reduced MTMR3 expression and increased the thickness of the epidermis and the number of EpSCs in the basal layer of the epidermis. The aforementioned effect of miR-100-5p-enriched ADSC-Exos was stronger than that of ADSC-Exos and was reversed by MTMR3 overexpression. Collectively, our findings indicate that miR-100-5p promotes EpSC proliferation through MTMR3-mediated elevation of PIP3 and activation of AKT and ERK. miR-100-5p-enriched ADSC-Exos can be used to treat skin wound and expand EpSCs for generating epidermal autografts and engineered skin equivalents.
Collapse
|
4
|
Qureshi AW, Javed B, Khan L. Analysis of internal transcribed spacer1 (ITS1) region of rDNA for genetic characterization of Paramphistomum sp.. Saudi J Biol Sci 2021; 28:5617-5620. [PMID: 34588872 PMCID: PMC8459073 DOI: 10.1016/j.sjbs.2021.05.079] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 05/26/2021] [Accepted: 05/30/2021] [Indexed: 11/25/2022] Open
Abstract
Paramphistomosis is the most prevalent disease of domestic ruminants, causing heavy economic loss in many countries across the world. The morphological identification of these parasites is difficult, therefore molecular characterization is used to discriminate Paramphistomum species. The present study was conducted to identify Paramphistomum sp. at Mardan District, Khyber Pakhtunkhwa (KPK), Pakistan. All samples of these rumen flukes were collected from buffalo. The gDNA was isolated from the adult parasites and the ITS1 region was amplified for the sequence analysis. All flukes had 100% similarity and there was no intraspecific variation. The Blast results showed that all flukes were P. cervi as they form a single cluster with P. cervi reported from China. The results of the ITS1 sequences of the present study with reference sequencing from China showed eight specific SNPs. This was the first study in which P. cervi was genetically characterized through the ITS1 region of rDNA at District Mardan, Pakistan. It can also be used as a marker for the genetic identification of Paramphistomum species.
Collapse
Affiliation(s)
- Asma Waheed Qureshi
- Department of Zoology, Government College Women University Sialkot, Pakistan
| | - Bushra Javed
- Department of Zoology, Abdul Wali Khan University Mardan, Pakistan
| | - Luqman Khan
- School of Medicine, University of California San Francisco, 94158 CA, USA
| |
Collapse
|
5
|
Vinette V, Aubry I, Insull H, Uetani N, Hardy S, Tremblay ML. Protein tyrosine phosphatome metabolic screen identifies TC-PTP as a positive regulator of cancer cell bioenergetics and mitochondrial dynamics. FASEB J 2021; 35:e21708. [PMID: 34169549 DOI: 10.1096/fj.202100207r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 04/29/2021] [Accepted: 05/17/2021] [Indexed: 12/20/2022]
Abstract
Metabolic reprogramming occurs in cancer cells and is regulated partly by the opposing actions of tyrosine kinases and tyrosine phosphatases. Several members of the protein tyrosine phosphatase (PTP) superfamily have been linked to cancer as either pro-oncogenic or tumor-suppressive enzymes. In order to investigate which PTPs can modulate the metabolic state of cancer cells, we performed an shRNA screen of PTPs in HCT116 human colorectal cancer cells. Among the 72 PTPs efficiently targeted, 24 were found to regulate mitochondrial respiration, 8 as negative and 16 as positive regulators. Of the latter, we selected TC-PTP (PTPN2) for further characterization since inhibition of this PTP resulted in major functional defects in oxidative metabolism without affecting glycolytic flux. Transmission electron microscopy revealed an increase in the number of damaged mitochondria in TC-PTP-null cells, demonstrating the potential role of this PTP in regulating mitochondrial homeostasis. Downregulation of STAT3 by siRNA-mediated silencing partially rescued the mitochondrial respiration defect observed in TC-PTP-deficient cells, supporting the role of this signaling axis in regulating mitochondrial activity. In addition, mitochondrial stress prevented an increased expression of electron transport chain-related genes in cells with TC-PTP silencing, correlating with decreased ATP production, cellular proliferation, and migration. Our shRNA-based metabolic screen revealed that PTPs can serve as either positive or negative regulators of cancer cell metabolism. Taken together, our findings uncover a new role for TC-PTP as an activator of mitochondrial metabolism, validating this PTP as a key target for cancer therapeutics.
Collapse
Affiliation(s)
- Valerie Vinette
- Department of Biochemistry, McGill University, Montreal, QC, Canada.,Rosalind and Morris Goodman Cancer Research Centre, McGill University, Montreal, QC, Canada
| | - Isabelle Aubry
- Department of Biochemistry, McGill University, Montreal, QC, Canada.,Rosalind and Morris Goodman Cancer Research Centre, McGill University, Montreal, QC, Canada
| | - Hayley Insull
- Department of Biochemistry, McGill University, Montreal, QC, Canada.,Rosalind and Morris Goodman Cancer Research Centre, McGill University, Montreal, QC, Canada
| | - Noriko Uetani
- Department of Biochemistry, McGill University, Montreal, QC, Canada.,Rosalind and Morris Goodman Cancer Research Centre, McGill University, Montreal, QC, Canada
| | - Serge Hardy
- Department of Biochemistry, McGill University, Montreal, QC, Canada.,Rosalind and Morris Goodman Cancer Research Centre, McGill University, Montreal, QC, Canada
| | - Michel L Tremblay
- Department of Biochemistry, McGill University, Montreal, QC, Canada.,Rosalind and Morris Goodman Cancer Research Centre, McGill University, Montreal, QC, Canada
| |
Collapse
|
6
|
Mardani A, Mohamadnia Z, Kazemi F. Coagulation performance of cationic polyelectrolyte/TiO
2
nanocomposites prepared under LED irradiation. J Appl Polym Sci 2020. [DOI: 10.1002/app.49113] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Atefeh Mardani
- Department of ChemistryInstitute for Advanced Studies in Basic Sciences (IASBS) Zanjan Iran
| | - Zahra Mohamadnia
- Department of ChemistryInstitute for Advanced Studies in Basic Sciences (IASBS) Zanjan Iran
| | - Foad Kazemi
- Department of ChemistryInstitute for Advanced Studies in Basic Sciences (IASBS) Zanjan Iran
- Center for Climate and Global Warming (CCGW)Institute for Advanced Studies in Basic Sciences (IASBS) Zanjan Iran
| |
Collapse
|
7
|
Alanazi IO, Benabdelkamel H, Alghamdi W, Alfadda AA, Mahbubani KT, Almalik A, Alradwan I, Altammami M, Slater NKH, Masood A. A proteomic approach towards understanding crypoprotective action of Me2SO on the CHO cell proteome. Cryobiology 2020; 94:107-115. [PMID: 32259523 DOI: 10.1016/j.cryobiol.2020.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 02/25/2020] [Accepted: 04/01/2020] [Indexed: 10/24/2022]
Abstract
Chinese hamster ovary (CHO) cell lines are the most widely used in vitro cells for research and production of recombinant proteins such as rhGH, tPA, and erythropoietin. We aimed to investigate changes in protein profiles after cryopreservation using 2D-DIGE MALDI-TOF MS and network pathway analysis. The proteome changes that occur in CHO cells between freshly prepared cells and cryopreserved cells with and without Me2SO were compared to determine the key proteins and pathways altered during recovery from cryopreservation. A total of 54 proteins were identified and successfully matched to 37 peptide mass fingerprints (PMF). 14 protein spots showed an increase while 23 showed decrease abundance in the Me2SO free group compared to the control. The proteins with increased abundance included vimentin, heat shock protein 60 kDa, mitochondrial, heat shock 70 kDa protein 9, protein disulfide-isomerase A3, voltage-dependent anion-selective channel protein 2. Those with a decrease in abundance were myotubularin, glutathione peroxidase, enolase, phospho glyceromutase, chloride intracellular channel protein 1. The main canonical functional pathway affected involved the unfolded protein response, aldosterone Signaling in Epithelial Cells, 14-3-3-mediated signaling. 2D-DIGE MALDI TOF mass spectrometry and network pathway analysis revealed the differential proteome expression of FreeStyle CHO cells after cryopreservation with and without 5% Me2SOto involve pathways related to post-translational modification, protein folding and cell death and survival (score = 56, 22 focus molecules). This study revealed, for the first time to our knowledge the proteins and their regulated pathways involved in the cryoprotective action of 5% Me2SO. The use of 5% Me2SO as a cryoprotectant maintained the CHO cell proteome in the cryopreserved cells, similar to that of fresh CHO cells.
Collapse
Affiliation(s)
- Ibrahim O Alanazi
- The National Center for Genomic Technology (NCGT), Life Science and Environment Research Institute, King Abdulaziz City for Science and Technology (KACST), PO Box 6086, Riyadh, Saudi Arabia
| | - Hicham Benabdelkamel
- Proteomics Resource Unit, Obesity Research Center, College of Medicine, King Saud University, PO Box 2925, Riyadh, 11461, Saudi Arabia
| | - Waleed Alghamdi
- Technology Transfer Office, King Abdulaziz City for Science and Technology (KACST), PO Box 6086, Riyadh, Saudi Arabia.
| | - Assim A Alfadda
- Proteomics Resource Unit, Obesity Research Center, College of Medicine, King Saud University, PO Box 2925, Riyadh, 11461, Saudi Arabia
| | - Krishnaa T Mahbubani
- Department of Chemical Engineering and Biotechnology, University of Cambridge, New Museums Site, Pembroke Street, Cambridge, CB2 3RA, United Kingdom
| | - Abdulaziz Almalik
- Institute of Biotechnology and Environment, King Abdulaziz City for Science and Technology (KACST), PO Box 6086, Riyadh, Saudi Arabia
| | - Ibrahim Alradwan
- Institute of Biotechnology and Environment, King Abdulaziz City for Science and Technology (KACST), PO Box 6086, Riyadh, Saudi Arabia
| | - Musaad Altammami
- Institute of Biotechnology and Environment, King Abdulaziz City for Science and Technology (KACST), PO Box 6086, Riyadh, Saudi Arabia
| | - Nigel K H Slater
- Department of Chemical Engineering and Biotechnology, University of Cambridge, New Museums Site, Pembroke Street, Cambridge, CB2 3RA, United Kingdom
| | - Afshan Masood
- Proteomics Resource Unit, Obesity Research Center, College of Medicine, King Saud University, PO Box 2925, Riyadh, 11461, Saudi Arabia.
| |
Collapse
|
8
|
Wang Z, Zhang M, Shan R, Wang YJ, Chen J, Huang J, Sun LQ, Zhou WB. MTMR3 is upregulated in patients with breast cancer and regulates proliferation, cell cycle progression and autophagy in breast cancer cells. Oncol Rep 2019; 42:1915-1923. [PMID: 31485632 PMCID: PMC6775797 DOI: 10.3892/or.2019.7292] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 07/23/2019] [Indexed: 12/31/2022] Open
Abstract
As a member of the myotubularin family, myotubularin related protein 3 (MTMR3) has been demonstrated to participate in tumor development, including oral and colon cancer. However, little is known about its functional roles in breast cancer. In the present study, the expression of MTMR3 in breast cancer was evaluated by immunohistochemical staining of tumor tissues from 172 patients. Online data was then used for survival analysis from the PROGgeneV2 database. In vitro, MTMR3 expression was silenced in MDA-MB-231 cells via lentiviral shRNA transduction. MTT, colony formation and flow cytometry assays were performed in the control and MTMR3-silenced cells to evaluate the cell growth, proliferation and cell cycle phase distribution, respectively. Western blotting was used to evaluate the protein expression levels of autophagy-related markers. The results demonstrated that the expression of MTMR3 in breast cancer tissues was significantly increased compared with adjacent normal tissues. MTMR3 was highly expressed in triple-negative breast cancer and was associated with disease recurrence. MTMR3 knockdown in MDA-MB-231 cells inhibited cell proliferation and induced cell cycle arrest and autophagy. The present results indicated that MTMR3 may have an important role in promoting the progression of breast cancer, and its inhibition may serve as a promising therapeutic target for breast cancer treatment.
Collapse
Affiliation(s)
- Zhan Wang
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Min Zhang
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Rong Shan
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Yu-Jie Wang
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Juan Chen
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Juan Huang
- Hunan Province Clinic Meditech Research Center for Breast Cancer, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Lun-Quan Sun
- Center for Molecular Medicine, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Wei-Bing Zhou
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| |
Collapse
|
9
|
Chen H, Xu B, Wang J, Luan L, Zhou T, Nie X, Mo YL. Interfacial Debonding Detection for Rectangular CFST Using the MASW Method and Its Physical Mechanism Analysis at the Meso-Level. SENSORS 2019; 19:s19122778. [PMID: 31226855 PMCID: PMC6631991 DOI: 10.3390/s19122778] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 06/15/2019] [Accepted: 06/17/2019] [Indexed: 02/01/2023]
Abstract
In this study, the transient multichannel analysis of surface waves (MASW) is proposed to detect the existence, the location and the length of interface debonding defects in rectangular concrete-filled steel tubes (CFST). Mesoscale numerical analysis is performed to validate the feasibility of MASW-based interfacial debonding detection. Research findings indicate that the coaxial characteristics in the Rayleigh wave disperse at the starting point of the debonding area and gradually restores at the end of the defect. For healthy specimens, the surface wave mode in CFST is closer to the Rayleigh wave. However, it can be treated as a Lamb wave since the steel plate is boundary-free on both sides in the debonding area. The displacement curves are further investigated with forward analysis to obtain the dispersion curves. The mesoscale numerical simulation results indicate that the propagation characteristic of the surface wave is dominated by the debonding defect. The detectability of interfacial debonding detection for rectangular CFST using the MASW approach is numerically verified in this study. The proposed MASW-based nondestructive testing technique can achieve bond-slip detection by comparing the variation trend of the coaxial characteristics in the time-history output signals and the dispersion curves obtained from the forward analysis, for avoiding misjudgment of the experimental observations.
Collapse
Affiliation(s)
- Hongbing Chen
- Department of Civil Engineering, Tsinghua University, Beijing 100084, China.
| | - Bin Xu
- College of Civil Engineering, Huaqiao University, Xiamen 361021, China.
- Fujian Provincial Key Lab of Intelligent Infrastructures and Monitoring, Huaqiao University, Xiamen 361021, China.
| | - Jiang Wang
- College of Civil Engineering, Huaqiao University, Xiamen 361021, China.
| | - Lele Luan
- Department of Civil and Environmental Engineering, Northeastern University, Boston, MA 02115, USA.
| | - Tianmin Zhou
- Department of Civil and Environmental Engineering, University of Houston, Houston, TX 77204-4006, USA.
| | - Xin Nie
- Department of Civil Engineering, Tsinghua University, Beijing 100084, China.
| | - Yi-Lung Mo
- Department of Civil and Environmental Engineering, University of Houston, Houston, TX 77204-4006, USA.
| |
Collapse
|
10
|
Yan Y, Yan H, Wang Q, Zhang L, Liu Y, Yu H. Micro
RNA
10a induces glioma tumorigenesis by targeting myotubularin‐related protein 3 and regulating the Wnt/β‐catenin signaling pathway. FEBS J 2019; 286:2577-2592. [PMID: 30927504 DOI: 10.1111/febs.14824] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 12/21/2018] [Accepted: 03/27/2019] [Indexed: 12/14/2022]
Affiliation(s)
- Yan Yan
- Department of Clinical Laboratory Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Diseases Tianjin Huan Hu Hospital China
| | - Hua Yan
- Department of Clinical Laboratory Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Diseases Tianjin Huan Hu Hospital China
| | - Qin Wang
- Department of Clinical Laboratory Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Diseases Tianjin Huan Hu Hospital China
| | - Le Zhang
- Department of Clinical Laboratory Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Diseases Tianjin Huan Hu Hospital China
| | - Ying Liu
- Department of Clinical Laboratory Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Diseases Tianjin Huan Hu Hospital China
| | - Haimiao Yu
- Department of Clinical Laboratory Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Diseases Tianjin Huan Hu Hospital China
| |
Collapse
|
11
|
Li Z, Rong L, Lian H, Cheng J, Wu X, Li X. Knockdown MTMR14 promotes cell apoptosis and inhibits migration in liver cancer cells. Gene 2018; 691:106-113. [PMID: 30586604 DOI: 10.1016/j.gene.2018.11.099] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 11/12/2018] [Accepted: 11/29/2018] [Indexed: 12/19/2022]
Abstract
Myotubularin-related protein 14 (MTMR14) is a member of the myotubularin (MTM)-related protein family and plays a key role in cardiomyopathy and autophagy. However, its potential implication in human cancer is unclear. In this study, we have investigated the expression profile of MTMR14 and its functional impact in liver cancer for the first time. Expression analysis by quantitative real-time polymerase chain reaction (qRT-PCR) and immunohistochemistry demonstrated that MTMR14 expression is obviously overexpressed in liver cancer, and positively correlated with clinical stage. A loss-of-function study showed that knockdown of MTMR14 promotes cell apoptosis and inhibits cell migration. MTMR14 knockdown also inhibits tumor migration in vivo in liver cancer peritoneal implantation nude mouse model. A molecular mechanistic study by western blot showed that Knockdown MTMR14 causes downregulation of N-cadherin and E-cadherin, and promotes the cleavage and activation of caspase12, caspase9 and caspase3, but excluding caspase8. These results suggest that MTMR14 affects cell migration through N-cadherin and E-cadherin. Additionally, MTMR14 affects cell apoptosis through mitochondrial pathway but not the death receptor pathway. Herein, our results indicate MTMR14 could have an oncogenic role in human liver cancer and thus demonstrates its potential as a target for the diagnosis and/or treatment of liver cancer.
Collapse
Affiliation(s)
- Zhaodong Li
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, 74#Linjiang Road, Yuzhong District, Chongqing City 400001, PR China
| | - Li Rong
- Department of Gastroenterology, Chongqing Infectious Disease Medical Center, Chongqing City 400030, PR China
| | - Haifeng Lian
- Department of Gastroenterology, The Affiliated Hospital of Binzhou Medical University, Binzhou, Shandong 256603, PR China
| | - Junning Cheng
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, 74#Linjiang Road, Yuzhong District, Chongqing City 400001, PR China
| | - Xiaoling Wu
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, 74#Linjiang Road, Yuzhong District, Chongqing City 400001, PR China.
| | - Xiang Li
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, 1#Yixueyuan Road, Yuzhong District, Chongqing 400016, PR China.
| |
Collapse
|
12
|
Narla G, Sangodkar J, Ryder CB. The impact of phosphatases on proliferative and survival signaling in cancer. Cell Mol Life Sci 2018; 75:2695-2718. [PMID: 29725697 PMCID: PMC6023766 DOI: 10.1007/s00018-018-2826-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 03/24/2018] [Accepted: 04/23/2018] [Indexed: 02/06/2023]
Abstract
The dynamic and stringent coordination of kinase and phosphatase activity controls a myriad of physiologic processes. Aberrations that disrupt the balance of this interplay represent the basis of numerous diseases. For a variety of reasons, early work in this area portrayed kinases as the dominant actors in these signaling events with phosphatases playing a secondary role. In oncology, these efforts led to breakthroughs that have dramatically altered the course of certain diseases and directed vast resources toward the development of additional kinase-targeted therapies. Yet, more recent scientific efforts have demonstrated a prominent and sometimes driving role for phosphatases across numerous malignancies. This maturation of the phosphatase field has brought with it the promise of further therapeutic advances in the field of oncology. In this review, we discuss the role of phosphatases in the regulation of cellular proliferation and survival signaling using the examples of the MAPK and PI3K/AKT pathways, c-Myc and the apoptosis machinery. Emphasis is placed on instances where these signaling networks are perturbed by dysregulation of specific phosphatases to favor growth and persistence of human cancer.
Collapse
Affiliation(s)
| | - Jaya Sangodkar
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | |
Collapse
|
13
|
Li X, Zheng H, Gao B, Sun Y, Tang X, Xu B. Optimized preparation of micro-block CPAM by response surface methodology and evaluation of dewatering performance. RSC Adv 2017. [DOI: 10.1039/c6ra25245a] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Micro-block cationic polyacrylamide (P(AM-MAPTAC)) was synthesized through UV-initiated template copolymerization and characterized by FTIR, 1H NMR, SEM and TG/DSC analyses.
Collapse
Affiliation(s)
- Xiang Li
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment
- State Ministry of Education
- Chongqing University
- Chongqing 400045
- China
| | - Huaili Zheng
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment
- State Ministry of Education
- Chongqing University
- Chongqing 400045
- China
| | - Baoyu Gao
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse
- School of Environmental Science and Engineering
- Shandong University
- Ji'nan 250100
- China
| | - Yongjun Sun
- Jiangsu Key Laboratory of Industrial Water-Conservation & Emission Reduction
- College of Urban Construction
- Nanjing Tech University
- Nanjing
- China
| | - Xiaomin Tang
- Chongqing Key Laboratory of Catalysis and Environmental New Materials
- College of Environment and Resources
- Chongqing Technology and Business University
- Chongqing 400067
- P. R. China
| | - Bincheng Xu
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment
- State Ministry of Education
- Chongqing University
- Chongqing 400045
- China
| |
Collapse
|
14
|
Ubiquitin-specific protease 39 is overexpressed in human lung cancer and promotes tumor cell proliferation in vitro. Mol Cell Biochem 2016; 422:97-107. [DOI: 10.1007/s11010-016-2809-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 08/29/2016] [Indexed: 10/21/2022]
|
15
|
Guan Q, Zheng H, Zhai J, Liu B, Sun Y, Wang Y, Xu Z, Zhao C. Preparation, characterization, and flocculation performance of P(acrylamide-co-diallyldimethylammonium chloride) by UV-initiated template polymerization. J Appl Polym Sci 2014. [DOI: 10.1002/app.41747] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Qingqing Guan
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University; Chongqing 400045 China
- National Centre for International Research of Low-Carbon and Green Buildings, Chongqing University; Chongqing 400045 China
| | - Huaili Zheng
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University; Chongqing 400045 China
- National Centre for International Research of Low-Carbon and Green Buildings, Chongqing University; Chongqing 400045 China
| | - Jun Zhai
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University; Chongqing 400045 China
- National Centre for International Research of Low-Carbon and Green Buildings, Chongqing University; Chongqing 400045 China
| | - Bingzhi Liu
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University; Chongqing 400045 China
- National Centre for International Research of Low-Carbon and Green Buildings, Chongqing University; Chongqing 400045 China
| | - Yongjun Sun
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University; Chongqing 400045 China
- National Centre for International Research of Low-Carbon and Green Buildings, Chongqing University; Chongqing 400045 China
| | - Yili Wang
- College of Environmental Science and Engineering, Research Center for Water Pollution Source Control and Eco-remediation, Beijing Forestry University; Beijing 100083 China
| | - Zhinan Xu
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University; Chongqing 400045 China
- National Centre for International Research of Low-Carbon and Green Buildings, Chongqing University; Chongqing 400045 China
| | - Chun Zhao
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University; Chongqing 400045 China
- National Centre for International Research of Low-Carbon and Green Buildings, Chongqing University; Chongqing 400045 China
| |
Collapse
|