1
|
Carvalho BF, Gomez GVB, Carron J, Macedo LT, Gonçalves GM, Vazquez VDL, Serrano SV, Lourenço GJ, Lima CSP. TNFRSF1B Gene Variants in Clinicopathological Aspects and Prognosis of Patients with Cutaneous Melanoma. Int J Mol Sci 2024; 25:2868. [PMID: 38474115 DOI: 10.3390/ijms25052868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/23/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024] Open
Abstract
Regulatory T lymphocytes play a critical role in immune regulation and are involved in the aberrant cell elimination by facilitating tumor necrosis factor connection to the TNFR2 receptor, encoded by the TNFRSF1B polymorphic gene. We aimed to examine the effects of single nucleotide variants TNFRSF1B c.587T>G, c.*188A>G, c.*215C>T, and c.*922C>T on the clinicopathological characteristics and survival of cutaneous melanoma (CM) patients. Patients were genotyped using RT-PCR. TNFRSF1B levels were measured using qPCR. Luciferase reporter assay evaluated the interaction of miR-96 and miR-1271 with the 3'-UTR of TNFRSF1B. The c.587TT genotype was more common in patients younger than 54 years old than in older patients. Patients with c.*922CT or TT, c.587TG or GG + c.*922CT or TT genotypes, as well as those with the haplotype TATT, presented a higher risk of tumor progression and death due to the disease effects. Individuals with the c.*922TT genotype had a higher TNFRSF1B expression than those with the CC genotype. miR-1271 had less efficient binding with the 3'-UTR of the T allele when compared with the C allele of the SNV c.*922C>T. Our findings, for the first time, demonstrate that TNFRSF1B c.587T>G and c.*922C>T variants can serve as independent prognostic factors in CM patients.
Collapse
Affiliation(s)
- Bruna Fernandes Carvalho
- Laboratory of Cancer Genetics, School of Medical Sciences, University of Campinas, Campinas 13083-888, SP, Brazil
| | - Gabriela Vilas Bôas Gomez
- Laboratory of Cancer Genetics, School of Medical Sciences, University of Campinas, Campinas 13083-888, SP, Brazil
| | - Juliana Carron
- Laboratory of Cancer Genetics, School of Medical Sciences, University of Campinas, Campinas 13083-888, SP, Brazil
| | - Ligia Traldi Macedo
- Laboratory of Cancer Genetics, School of Medical Sciences, University of Campinas, Campinas 13083-888, SP, Brazil
- Department of Anesthesiology, Oncology, and Radiology, School of Medical Sciences, University of Campinas, Campinas 13083-888, SP, Brazil
| | - Gisele Melo Gonçalves
- Melanoma and Sarcoma Surgery Department, Barretos Cancer Hospital, Barretos 14784-400, SP, Brazil
| | - Vinicius de Lima Vazquez
- Melanoma and Sarcoma Surgery Department, Barretos Cancer Hospital, Barretos 14784-400, SP, Brazil
| | - Sergio Vicente Serrano
- Department of Medical Oncology, Barretos Cancer Hospital, Barretos 14784-400, SP, Brazil
| | - Gustavo Jacob Lourenço
- Laboratory of Cancer Genetics, School of Medical Sciences, University of Campinas, Campinas 13083-888, SP, Brazil
| | - Carmen Silvia Passos Lima
- Laboratory of Cancer Genetics, School of Medical Sciences, University of Campinas, Campinas 13083-888, SP, Brazil
- Department of Anesthesiology, Oncology, and Radiology, School of Medical Sciences, University of Campinas, Campinas 13083-888, SP, Brazil
| |
Collapse
|
2
|
Homa-Mlak I, Mlak R, Mazurek M, Brzozowska A, Powrózek T, Rahnama-Hezavah M, Małecka-Massalska T. TNFRSF1A Gene Polymorphism (−610 T > G, rs4149570) as a Predictor of Malnutrition and a Prognostic Factor in Patients Subjected to Intensity-Modulated Radiation Therapy Due to Head and Neck Cancer. Cancers (Basel) 2022; 14:cancers14143407. [PMID: 35884467 PMCID: PMC9317796 DOI: 10.3390/cancers14143407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/04/2022] [Accepted: 07/12/2022] [Indexed: 11/16/2022] Open
Abstract
Background: Malnutrition is a nutritional disorder observed in 52% of patients with head and neck cancer (HNC). Malnutrition is frequently related to the increased level of proinflammatory cytokines. In turn, ongoing inflammation is associated with increased catabolism of skeletal muscle and lipolysis. Tumor necrosis factor α (TNF-α) is a proinflammatory cytokine that plays a pivotal role in the development of malnutrition and cachexia in cancer patients. The aim of the study was to assess the relationship between a functional single-nucleotide polymorphism (SNP) −610 T > G (rs4149570) of the TNFRSF1A gene and the occurrence of nutritional disorders in patients subjected to RT due to HNC. Methods: The study group consisted of 77 patients with HNC treated at the Oncology Department of the Medical University in Lublin. Genotyping of the TNFRSF1A gene was performed using capillary electrophoresis (Genetic Analyzer 3500). Results: Multivariable analysis revealed that the TT genotype of the TNFRSF1A gene (−610 T > G) was an independent predictor of severe malnutrition (odds ratio—OR = 5.05; p = 0.0350). Moreover, the TT genotype of this gene was independently related to a higher risk of critical weight loss (CWL) (OR = 24.85; p = 0.0009). Conclusions: SNP (−610 T > G) of the TNFRSF1A may be a useful marker in the assessment of the risk of nutritional deficiencies in HNC patients treated with intensity-modulated radiotherapy (IMRT).
Collapse
Affiliation(s)
- Iwona Homa-Mlak
- Department of Human Physiology, Medical University of Lublin, Radziwiłłowska 11 St., 20-059 Lublin, Poland; (R.M.); (M.M.); (T.P.); (T.M.-M.)
- Correspondence: ; Tel.: +48-81-448-60-80
| | - Radosław Mlak
- Department of Human Physiology, Medical University of Lublin, Radziwiłłowska 11 St., 20-059 Lublin, Poland; (R.M.); (M.M.); (T.P.); (T.M.-M.)
| | - Marcin Mazurek
- Department of Human Physiology, Medical University of Lublin, Radziwiłłowska 11 St., 20-059 Lublin, Poland; (R.M.); (M.M.); (T.P.); (T.M.-M.)
| | - Anna Brzozowska
- II Department of Radiotherapy, Center of Oncology of the Lublin Region St. John of Dukla, Jaczewskiego 7 St., 20-059 Lublin, Poland;
| | - Tomasz Powrózek
- Department of Human Physiology, Medical University of Lublin, Radziwiłłowska 11 St., 20-059 Lublin, Poland; (R.M.); (M.M.); (T.P.); (T.M.-M.)
| | - Mansur Rahnama-Hezavah
- Chair and Department of Dental Surgery, Medical University of Lublin, 20-093 Lublin, Poland;
| | - Teresa Małecka-Massalska
- Department of Human Physiology, Medical University of Lublin, Radziwiłłowska 11 St., 20-059 Lublin, Poland; (R.M.); (M.M.); (T.P.); (T.M.-M.)
| |
Collapse
|
3
|
Fricke-Galindo I, Buendía-Roldán I, Ruiz A, Palacios Y, Pérez-Rubio G, Hernández-Zenteno RDJ, Reyes-Melendres F, Zazueta-Márquez A, Alarcón-Dionet A, Guzmán-Vargas J, Bravo-Gutiérrez OA, Quintero-Puerta T, Gutiérrez-Pérez IA, Nava-Quiroz KJ, Bañuelos-Flores JL, Mejía M, Rojas-Serrano J, Ramos-Martínez E, Guzmán-Guzmán IP, Chávez-Galán L, Falfán-Valencia R. TNFRSF1B and TNF variants are associated with differences in soluble TNF receptors' levels in patients with severe COVID-19. J Infect Dis 2022; 226:778-787. [PMID: 35294530 PMCID: PMC8992340 DOI: 10.1093/infdis/jiac101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 03/14/2022] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND The impact of genetic variants in the expression of TNF-α and its receptors in COVID-19 severity has not been previously explored. We evaluated the association of TNF (rs1800629 and rs361525), TNFRSF1A (rs767455 and rs1800693), and TNFRSF1B (rs1061622 and rs3397) variants with COVID-19 severity, assessed as invasive mechanical ventilation (IMV) requirement, and the plasma levels of soluble TNF-α, TNFR1, and TNFR2 in patients with severe COVID-19. METHODS The genetic study included 1,353 patients. Taqman assays assessed the genetic variants. ELISA determined the soluble TNF, TNFR1, and TNFR2 in plasma samples from 334 patients. RESULTS Patients carrying TT (TNFRSF1B rs3397) exhibited lower PaO2/FiO2 levels than those with CT+CC genotypes. Differences in plasma levels of TNFR1 and TNFR2 were observed according to the genotype of TNFRSF1B rs1061622, TNF rs1800629, and rs361525. According to the studied genetic variants, there were no differences in the soluble TNF-α levels. Higher soluble TNFR1 and TNFR2 levels were detected in patients with COVID-19 requiring IMV. CONCLUSION Genetic variants in TNF and TNFRSFB1 influence the plasma levels of soluble TNFR1 and TNFR2, implicated in the COVID-19 severity.
Collapse
Affiliation(s)
- Ingrid Fricke-Galindo
- HLA Laboratory, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas. Mexico
| | - Ivette Buendía-Roldán
- Translational Research Laboratory on Aging and Pulmonary Fibrosis. Instituto Nacional de Enfermedades Respiratorias Ismael Cosio Villegas. Mexico
| | - Andy Ruiz
- Laboratory of Integrative Immunology, Instituto Nacional de Enfermedades Respiratorias Ismael Cosio Villegas, Mexico
| | - Yadira Palacios
- Laboratory of Integrative Immunology, Instituto Nacional de Enfermedades Respiratorias Ismael Cosio Villegas, Mexico
| | - Gloria Pérez-Rubio
- HLA Laboratory, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas. Mexico
| | | | - Felipe Reyes-Melendres
- HLA Laboratory, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas. Mexico
| | - Armando Zazueta-Márquez
- HLA Laboratory, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas. Mexico
| | - Aimé Alarcón-Dionet
- Translational Research Laboratory on Aging and Pulmonary Fibrosis. Instituto Nacional de Enfermedades Respiratorias Ismael Cosio Villegas. Mexico
| | - Javier Guzmán-Vargas
- HLA Laboratory, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas. Mexico
| | | | - Teresa Quintero-Puerta
- HLA Laboratory, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas. Mexico
| | | | - Karol J Nava-Quiroz
- HLA Laboratory, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas. Mexico
| | - José Luis Bañuelos-Flores
- Clinical Laboratory Service, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas. Mexico
| | - Mayra Mejía
- Interstitial Pulmonary Diseases and Rheumatology Unit, Instituto Nacional de Enfermedades Respiratorias Ismael Cosio Villegas. Mexico
| | - Jorge Rojas-Serrano
- Interstitial Pulmonary Diseases and Rheumatology Unit, Instituto Nacional de Enfermedades Respiratorias Ismael Cosio Villegas. Mexico
| | - Espiridión Ramos-Martínez
- Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico
| | | | - Leslie Chávez-Galán
- Laboratory of Integrative Immunology, Instituto Nacional de Enfermedades Respiratorias Ismael Cosio Villegas, Mexico
| | - Ramcés Falfán-Valencia
- HLA Laboratory, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas. Mexico
| |
Collapse
|
4
|
PREDICTION TO HYPERTROPHIC FORMS OF GINGIVITIS IN CHILDREN WITH GENETIC ASSESSMENT. WORLD OF MEDICINE AND BIOLOGY 2022. [DOI: 10.26724/2079-8334-2022-1-79-54-58] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
5
|
Association of Tumor Necrosis Factor Receptor 1 Promoter Gene Polymorphisms (-580 A/G and -609 G/T) and TNFR1 Serum Levels with the Susceptibility to Gastric Precancerous Lesions and Gastric Cancer Related to H. pylori Infection in a Moroccan Population. BIOMED RESEARCH INTERNATIONAL 2020; 2020:2451854. [PMID: 33029495 PMCID: PMC7532377 DOI: 10.1155/2020/2451854] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 09/08/2020] [Accepted: 09/13/2020] [Indexed: 01/11/2023]
Abstract
Chronic inflammation due to H. pylori infection is the risk factor of gastric cancer (GC). Through its receptor (TNFR1), TNF-α plays a fundamental role in inflammatory, infectious, and tumor processes. Dysregulation of TNFR1 gene expression could impact many biological processes that can lead to cancer. This study is aimed at evaluating the association of TNFR1 promoter gene polymorphisms (-580 A/G and -609 G/T) and TNFR1 serum levels with GC and precancerous lesion susceptibility. Patients suffering from gastric lesions (65 chronic gastritis, 50 precancerous lesions, and 40 GC) related to H. pylori infection and 63 healthy controls (HC) were involved in this study. Individuals are genotyped by TNFR1 gene promoter sequencing, and TNFR1 serum levels were measured by the ELISA quantitative method. Concerning TNFR1 -609 G/T locus, we noticed that the T allele was associated with an attenuated susceptibility to GC (OR = 0.4; p value = 0.02). At the genotypic level and under the recessive model, the TNFR1 -609 TT genotype showed a decreased risk of GC (OR = 0.3, p value = 0.03) compared to the combined (GG/GT) genotypes. TNFR1 serum levels have been increased together with gastric lesion severity (p value < 0.05). The TNFR1 -609 TT genotype seemed linked to a low level of sTNFR1 compared to GT and GG genotypes (p value = 0.07). Concerning TNFR1 -580 A/G locus, no significant relation was noticed between this polymorphism and GC susceptibility, as well as with the TNFR1 serum level. Our results suggest that the TNFR1 -609 T allele appears to have a protective effect against GC. High levels of TNFR1 serum levels seemed to be associated with the aggressiveness of gastric lesions. Therefore, our results suggest that TNFR1 -609 T/G polymorphism and the TNFR1 serum levels may be related to GC susceptibility.
Collapse
|
6
|
A Perspective Review on the Role of Nanomedicine in the Modulation of TNF-TNFR2 Axis in Breast Cancer Immunotherapy. JOURNAL OF ONCOLOGY 2019; 2019:6313242. [PMID: 31239840 PMCID: PMC6556275 DOI: 10.1155/2019/6313242] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 04/23/2019] [Indexed: 12/24/2022]
Abstract
In the past decade, nanomedicine research has provided us with highly useful agents (nanoparticles) delivering therapeutic drugs to target cancer cells. The present review highlights nanomedicine applications for breast cancer immunotherapy. Recent studies have suggested that tumour necrosis factor (TNF) and its receptor 2 (TNFR2) expressed on breast cancer cells have important functional consequences. This cytokine/receptor interaction is also critical for promoting highly immune-suppressive phenotypes by regulatory T cells (Tregs). This review generally provides a background for nanoparticles as potential drug delivery agents for immunomodulators and further discusses in depth the potential of TNF antagonists delivery to modulate TNF-TNFR2 interactions and inhibit breast cancer progression.
Collapse
|
7
|
Martínez-Reza I, Díaz L, García-Becerra R. Preclinical and clinical aspects of TNF-α and its receptors TNFR1 and TNFR2 in breast cancer. J Biomed Sci 2017; 24:90. [PMID: 29202842 PMCID: PMC5713022 DOI: 10.1186/s12929-017-0398-9] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 11/28/2017] [Indexed: 01/23/2023] Open
Abstract
Breast cancer is the most common malignancy in women and a public health problem worldwide. Breast cancer is often accompanied by an inflammatory process characterized by the presence of proinflammatory cytokines such as tumor necrosis factor (TNF-α), which has important implications in the course of the disease. Inflammation has been described primarily as a favorable environment for tumor development. However, under certain conditions TNF-α can promote signals for activation, differentiation, survival or cell death, so the study of the variants of this cytokine, its receptors, the presence of polymorphisms and its implication in different phenotypes of breast cancer is necessary. Although the clinical application of TNF-α has been limited by its toxicity and side effects, preclinical and clinical studies have shown that these effects may partially be avoided via tumor-targeted delivery strategies. In this manner, TNF-α alone or combined with chemotherapy and radiotherapy can function as an adjuvant in the treatment of breast cancer.
Collapse
Affiliation(s)
- Isela Martínez-Reza
- Departamento de Biología de la Reproducción, Dr. Carlos Gual Castro, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Avenida Vasco de Quiroga No. 15, Col. Belisario Domínguez Sección XVI, C.P.14080, Ciudad de México, México.,Posgrado en Ciencias Biomédicas, Universidad Nacional Autónoma de México, Circuito Interior, Cuidad Universitaria, Av. Universidad 3000, 04510, Coyoacán, México D.F, México
| | - Lorenza Díaz
- Departamento de Biología de la Reproducción, Dr. Carlos Gual Castro, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Avenida Vasco de Quiroga No. 15, Col. Belisario Domínguez Sección XVI, C.P.14080, Ciudad de México, México
| | - Rocío García-Becerra
- Departamento de Biología de la Reproducción, Dr. Carlos Gual Castro, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Avenida Vasco de Quiroga No. 15, Col. Belisario Domínguez Sección XVI, C.P.14080, Ciudad de México, México.
| |
Collapse
|
8
|
Batar B, Özman S, Barut K, Kasapçopur Ö, Güven M. TNF-alpha 863C > A promoter and TNFRII 196T > G exonic variationsmay be risk factors for juvenile idiopathic arthritis. Turk J Med Sci 2017; 47:1819-1825. [PMID: 29306244 DOI: 10.3906/sag-1612-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
|
9
|
Mirhafez SR, Avan A, Pasdar A, Kazemi E, Ghasemi F, Tajbakhsh A, Tabaee S, Ferns GA, Ghayour-Mobarhan M. Association of tumor necrosis factor-α promoter G-308A gene polymorphism with increased triglyceride level of subjects with metabolic syndrome. Gene 2015; 568:81-4. [DOI: 10.1016/j.gene.2015.05.019] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 04/18/2015] [Accepted: 05/08/2015] [Indexed: 01/14/2023]
|
10
|
Denis M, Enquobahrie DA, Tadesse MG, Gelaye B, Sanchez SE, Salazar M, Ananth CV, Williams MA. Placental genome and maternal-placental genetic interactions: a genome-wide and candidate gene association study of placental abruption. PLoS One 2014; 9:e116346. [PMID: 25549360 PMCID: PMC4280220 DOI: 10.1371/journal.pone.0116346] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Accepted: 12/08/2014] [Indexed: 01/02/2023] Open
Abstract
While available evidence supports the role of genetics in the pathogenesis of placental abruption (PA), PA-related placental genome variations and maternal-placental genetic interactions have not been investigated. Maternal blood and placental samples collected from participants in the Peruvian Abruptio Placentae Epidemiology study were genotyped using Illumina's Cardio-Metabochip platform. We examined 118,782 genome-wide SNPs and 333 SNPs in 32 candidate genes from mitochondrial biogenesis and oxidative phosphorylation pathways in placental DNA from 280 PA cases and 244 controls. We assessed maternal-placental interactions in the candidate gene SNPS and two imprinted regions (IGF2/H19 and C19MC). Univariate and penalized logistic regression models were fit to estimate odds ratios. We examined the combined effect of multiple SNPs on PA risk using weighted genetic risk scores (WGRS) with repeated ten-fold cross-validations. A multinomial model was used to investigate maternal-placental genetic interactions. In placental genome-wide and candidate gene analyses, no SNP was significant after false discovery rate correction. The top genome-wide association study (GWAS) hits were rs544201, rs1484464 (CTNNA2), rs4149570 (TNFRSF1A) and rs13055470 (ZNRF3) (p-values: 1.11e-05 to 3.54e-05). The top 200 SNPs of the GWAS overrepresented genes involved in cell cycle, growth and proliferation. The top candidate gene hits were rs16949118 (COX10) and rs7609948 (THRB) (p-values: 6.00e-03 and 8.19e-03). Participants in the highest quartile of WGRS based on cross-validations using SNPs selected from the GWAS and candidate gene analyses had a 8.40-fold (95% CI: 5.8-12.56) and a 4.46-fold (95% CI: 2.94-6.72) higher odds of PA compared to participants in the lowest quartile. We found maternal-placental genetic interactions on PA risk for two SNPs in PPARG (chr3:12313450 and chr3:12412978) and maternal imprinting effects for multiple SNPs in the C19MC and IGF2/H19 regions. Variations in the placental genome and interactions between maternal-placental genetic variations may contribute to PA risk. Larger studies may help advance our understanding of PA pathogenesis.
Collapse
Affiliation(s)
- Marie Denis
- Department of Epidemiology, Harvard School of Public Health, Boston, Massachusetts, United States of America; UMR AGAP (Amélioration Génétique et Adaptation des Plantes méditerranéennes et tropicales), CIRAD, Montpellier, France
| | - Daniel A Enquobahrie
- Center for Perinatal Studies, Swedish Medical Center, Seattle, Washington, United States of America; Department of Epidemiology, School of Public Health, University of Washington, Seattle, Washington, United States of America
| | - Mahlet G Tadesse
- Department of Mathematics and Statistics, Georgetown University, Washington, D.C., United States of America
| | - Bizu Gelaye
- Department of Epidemiology, Harvard School of Public Health, Boston, Massachusetts, United States of America
| | - Sixto E Sanchez
- Sección de Post Grado, Facultad de Medicina Humana, Universidad San Martín de Porres, Lima, Peru; A.C. PROESA, Lima, Peru
| | - Manuel Salazar
- Department of Obstetrics and Gynecology, San Marcos University, Lima, Peru
| | - Cande V Ananth
- Department of Obstetrics and Gynecology, College of Physicians and Surgeons, Columbia University Medical Center, New York, New York, United States of America; Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, New York, United States of America
| | - Michelle A Williams
- Department of Epidemiology, Harvard School of Public Health, Boston, Massachusetts, United States of America
| |
Collapse
|
11
|
Relationship between interleukin-1 type 1 and 2 receptor gene polymorphisms and the expression level of membrane-bound receptors. Cell Mol Immunol 2014; 12:222-30. [PMID: 24976267 DOI: 10.1038/cmi.2014.43] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Revised: 05/12/2014] [Accepted: 05/12/2014] [Indexed: 12/12/2022] Open
Abstract
The biological activity of the multifunctional cytokine interleukin-1 (IL-1) is mediated by its receptors. The aim of this study was to determine if an association exists between single nucleotide polymorphisms (SNPs) in the IL-1 type 1 and 2 receptor genes (IL1R1 and IL1R2) and the expression level of membrane-bound IL1Rs on subpopulations of mononuclear cells or serum levels of soluble IL-1 receptors. It was observed that healthy individuals with the genotype TT in SNP rs2234650:C>T had a lower percentage of intact CD14(+) monocytes expressing IL1R1 on their surface. The SNP rs4141134:T>C in IL1R2 has also been associated with the percentage of intact CD3(+) T cells expressing IL1R2. Furthermore, individuals carrying the CC allele of SNP rs4141134:T>C and the TT allele of SNP rs2071008:T>G in IL1R2 had a lower density of IL1R2s on the surface of CD14(+) monocytes in lipopolysaccharide (LPS)-stimulated PBMC cultures. In summary, this study demonstrated that IL-1 receptor gene polymorphisms could be one of the factors influencing the expression of membrane-bound IL-1 receptors (IL1R) on immunocompetent cells.
Collapse
|