1
|
Song H, Sgouros G. Alpha and Beta Radiation for Theragnostics. PET Clin 2024; 19:307-323. [PMID: 38688775 DOI: 10.1016/j.cpet.2024.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
Targeted radionuclide therapy (TRT) has significantly evolved from its beginnings with iodine-131 to employing carrier molecules with beta emitting isotopes like lutetium-177. With the success of Lu-177-DOTATATE for neuroendocrine tumors and Lu-177-PSMA-617 for prostate cancer, several other beta emitting radioisotopes, such as Cu-67 and Tb-161, are being explored for TRT. The field has also expanded into targeted alpha therapy (TAT) with agents like radium-223 for bone metastases in prostate cancer, and several other alpha emitter radioisotopes with carrier molecules, such as Ac-225, and Pb-212 under clinical trials. Despite these advancements, the scope of TRT in treating diverse solid tumors and integration with other therapies like immunotherapy remains under investigation. The success of antibody-drug conjugates further complements treatments with TRT, though challenges in treatment optimization continue.
Collapse
Affiliation(s)
- Hong Song
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Stanford University, Stanford, CA 94305, USA.
| | - George Sgouros
- Division of Radiological Physics, Department of Radiology and Radiological Sciences, The Johns Hopkins University, Baltimore, MD 21205, USA
| |
Collapse
|
2
|
Dellal F, Santo Domingo Porqueras D, Narayanin-Richenapin S, Thimotee M, Delahaye V, Diouf Y, Piasta K, Gumienna-Kontecka E, Kozlowski H, Beyler M, Tripier R, Moyeux A, Gager O, Besnard V, Salerno M. Multistep synthesis of a novel copper complex with potential for Alzheimer's disease diagnosis. J Biol Inorg Chem 2023; 28:777-790. [PMID: 37978078 DOI: 10.1007/s00775-023-02028-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 09/12/2023] [Indexed: 11/19/2023]
Abstract
Positron emission tomography (PET) imaging of Aβ plaques, is recognized as a tool for the diagnosis of Alzheimer's disease. As a contribution to the development of new strategies for early diagnosis of the disease, using PET medical imaging technique, a new copper complex, the [Cu(TE1PA-ONO)]+ was synthesized in ten steps. The key step of our strategy is the coupling of a monopicolinate-N-alkylated cyclam-based ligand with a moiety capable of recognizing Aβ plaques via a successful and challenging Buchwald-Hartwig coupling reaction. To our knowledge, it is the first time that such a strategy is used to functionalize polyazamacrocyclic derivatives. The thermodynamic stability constants determined in MeOH/H2O solvent indicate that the attachment of this moiety does not weaken the chelating properties of TE1PA-ONO ligand in relation to parent HTE1PA. The novel complex described here is able to recognize amyloid plaques in brain sections from Alzheimer's disease patients and shows low toxicity to human neuronal cells.
Collapse
Affiliation(s)
- Fatma Dellal
- Université Sorbonne Paris Nord, UMR-CNRS 7244, Laboratoire Chimie, Structures, Propriétés de Biomatériaux et d'Agents Thérapeutiques (CSPBAT), équipe NBD, 1 rue de Chablis, 93000, Bobigny, France
| | - Diego Santo Domingo Porqueras
- Université Sorbonne Paris Nord, UMR-CNRS 7244, Laboratoire Chimie, Structures, Propriétés de Biomatériaux et d'Agents Thérapeutiques (CSPBAT), équipe NBD, 1 rue de Chablis, 93000, Bobigny, France
| | - Stacy Narayanin-Richenapin
- Université Sorbonne Paris Nord, UMR-CNRS 7244, Laboratoire Chimie, Structures, Propriétés de Biomatériaux et d'Agents Thérapeutiques (CSPBAT), équipe NBD, 1 rue de Chablis, 93000, Bobigny, France
| | - Marine Thimotee
- Université Sorbonne Paris Nord, UMR-CNRS 7244, Laboratoire Chimie, Structures, Propriétés de Biomatériaux et d'Agents Thérapeutiques (CSPBAT), équipe NBD, 1 rue de Chablis, 93000, Bobigny, France
| | - Vanessa Delahaye
- Université Sorbonne Paris Nord, UMR-CNRS 7244, Laboratoire Chimie, Structures, Propriétés de Biomatériaux et d'Agents Thérapeutiques (CSPBAT), équipe NBD, 1 rue de Chablis, 93000, Bobigny, France
| | - Yacine Diouf
- Université Sorbonne Paris Nord, UMR-CNRS 7244, Laboratoire Chimie, Structures, Propriétés de Biomatériaux et d'Agents Thérapeutiques (CSPBAT), équipe NBD, 1 rue de Chablis, 93000, Bobigny, France
| | - Karolina Piasta
- Faculty of Chemistry, University of Wroclaw, F. Joliot-Curie 14, 50-383, Wroclaw, Poland
| | | | - Henryk Kozlowski
- Department of Health Sciences, University of Opole, Katowicka 68, 45-060, Opole, Poland
| | - Maryline Beyler
- Univ Brest, UMR-CNRS 6521 CEMCA, UFR des Sciences et Techniques, 6 avenue Victor le Gorgeu, C.S. 93837, 29238, Brest, France
| | - Raphael Tripier
- Univ Brest, UMR-CNRS 6521 CEMCA, UFR des Sciences et Techniques, 6 avenue Victor le Gorgeu, C.S. 93837, 29238, Brest, France
| | - Alban Moyeux
- Université Sorbonne Paris Nord, UMR-CNRS 7244, Laboratoire Chimie, Structures, Propriétés de Biomatériaux et d'Agents Thérapeutiques (CSPBAT), équipe NBD, 1 rue de Chablis, 93000, Bobigny, France
| | - Olivier Gager
- Université Sorbonne Paris Nord, UMR-CNRS 7244, Laboratoire Chimie, Structures, Propriétés de Biomatériaux et d'Agents Thérapeutiques (CSPBAT), équipe NBD, 1 rue de Chablis, 93000, Bobigny, France
| | - Valérie Besnard
- Université Sorbonne Paris Nord, UMR1272, Laboratoire Hypoxie et Poumon, Plateforme TisCel 13, 1 rue de Chablis, 93000, Bobigny, France
| | - Milena Salerno
- Université Sorbonne Paris Nord, UMR-CNRS 7244, Laboratoire Chimie, Structures, Propriétés de Biomatériaux et d'Agents Thérapeutiques (CSPBAT), équipe NBD, 1 rue de Chablis, 93000, Bobigny, France.
| |
Collapse
|
3
|
Su Y, Zhang X, Li S, Xie W, Guo J. Emerging roles of the copper-CTR1 axis in tumorigenesis. Mol Cancer Res 2022; 20:1339-1353. [PMID: 35604085 DOI: 10.1158/1541-7786.mcr-22-0056] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/09/2022] [Accepted: 05/17/2022] [Indexed: 11/16/2022]
Abstract
Physiological roles of copper in metabolic homeostasis have been well established, however, whether and how copper is dysregulated in tumors and contributes to tumorigenesis are not recapitulated. Here, we comprehensively summarize the potential origins of copper accumulation in diseases especially in cancers by dysregulating copper transporter 1 (CTR1) or ATPase copper transporting alpha/beta (ATP7A/B) and further demonstrate the underlying mechanism of copper contributing to tumorigenesis. Specifically, in addition to modulating reactive oxygen species (ROS), angiogenesis, immune response, and metabolic homeostasis, copper recently has drawn more attention by directly binding to oncoproteins such as MEK, ULK, Memo, and PDK1 to activate distinct oncogenic signals and account for tumorigenesis. In the end, we disclose the emerging applications of copper in cancer diagnosis and highlight the promising strategies to target the copper-CTR1 axis for cancer therapies.
Collapse
Affiliation(s)
- Yaqing Su
- First Affiliated Hospital of Sun Yat-sen University, guangzhou, guangdong, China
| | - Xiaomei Zhang
- First Affiliated Hospital of Sun Yat-sen University, China
| | - Shaoqiang Li
- The First Affiliatd Hospital of Sun Yat-sen University, Guangzhou, China
| | - Wei Xie
- First Affiliated Hospital of Sun Yat-sen University, China
| | - Jianping Guo
- First Affiliated Hospital of Sun Yat-sen University, guangzhou, guangdong, China
| |
Collapse
|
4
|
Holik HA, Ibrahim FM, Elaine AA, Putra BD, Achmad A, Kartamihardja AHS. The Chemical Scaffold of Theranostic Radiopharmaceuticals: Radionuclide, Bifunctional Chelator, and Pharmacokinetics Modifying Linker. Molecules 2022; 27:3062. [PMID: 35630536 PMCID: PMC9143622 DOI: 10.3390/molecules27103062] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/27/2022] [Accepted: 05/05/2022] [Indexed: 11/16/2022] Open
Abstract
Therapeutic radiopharmaceuticals have been researched extensively in the last decade as a result of the growing research interest in personalized medicine to improve diagnostic accuracy and intensify intensive therapy while limiting side effects. Radiometal-based drugs are of substantial interest because of their greater versatility for clinical translation compared to non-metal radionuclides. This paper comprehensively discusses various components commonly used as chemical scaffolds to build radiopharmaceutical agents, i.e., radionuclides, pharmacokinetic-modifying linkers, and chelators, whose characteristics are explained and can be used as a guide for the researcher.
Collapse
Affiliation(s)
- Holis Abdul Holik
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia; (F.M.I.); (A.A.E.); (B.D.P.)
| | - Faisal Maulana Ibrahim
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia; (F.M.I.); (A.A.E.); (B.D.P.)
| | - Angela Alysia Elaine
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia; (F.M.I.); (A.A.E.); (B.D.P.)
| | - Bernap Dwi Putra
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia; (F.M.I.); (A.A.E.); (B.D.P.)
| | - Arifudin Achmad
- Department of Nuclear Medicine and Molecular Theranostics, Faculty of Medicine, Universitas Padjadjaran/Hasan Sadikin General Hospital, Bandung 40161, Indonesia; (A.A.); (A.H.S.K.)
- Oncology and Stem Cell Working Group, Faculty of Medicine, Universitas Padjadjaran, Bandung 40161, Indonesia
| | - Achmad Hussein Sundawa Kartamihardja
- Department of Nuclear Medicine and Molecular Theranostics, Faculty of Medicine, Universitas Padjadjaran/Hasan Sadikin General Hospital, Bandung 40161, Indonesia; (A.A.); (A.H.S.K.)
| |
Collapse
|
5
|
A New Preclinical Decision Support System Based on PET Radiomics: A Preliminary Study on the Evaluation of an Innovative 64Cu-Labeled Chelator in Mouse Models. J Imaging 2022; 8:jimaging8040092. [PMID: 35448219 PMCID: PMC9025273 DOI: 10.3390/jimaging8040092] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/16/2022] [Accepted: 03/23/2022] [Indexed: 02/05/2023] Open
Abstract
The 64Cu-labeled chelator was analyzed in vivo by positron emission tomography (PET) imaging to evaluate its biodistribution in a murine model at different acquisition times. For this purpose, nine 6-week-old female Balb/C nude strain mice underwent micro-PET imaging at three different time points after 64Cu-labeled chelator injection. Specifically, the mice were divided into group 1 (acquisition 1 h after [64Cu] chelator administration, n = 3 mice), group 2 (acquisition 4 h after [64Cu]chelator administration, n = 3 mice), and group 3 (acquisition 24 h after [64Cu] chelator administration, n = 3 mice). Successively, all PET studies were segmented by means of registration with a standard template space (3D whole-body Digimouse atlas), and 108 radiomics features were extracted from seven organs (namely, heart, bladder, stomach, liver, spleen, kidney, and lung) to investigate possible changes over time in [64Cu]chelator biodistribution. The one-way analysis of variance and post hoc Tukey Honestly Significant Difference test revealed that, while heart, stomach, spleen, kidney, and lung districts showed a very low percentage of radiomics features with significant variations (p-value < 0.05) among the three groups of mice, a large number of features (greater than 60% and 50%, respectively) that varied significantly between groups were observed in bladder and liver, indicating a different in vivo uptake of the 64Cu-labeled chelator over time. The proposed methodology may improve the method of calculating the [64Cu]chelator biodistribution and open the way towards a decision support system in the field of new radiopharmaceuticals used in preclinical imaging trials.
Collapse
|
6
|
Chiaravalloti A, Cimini A, Ricci M, Quartuccio N, Arnone G, Filippi L, Calabria F, Leporace M, Bagnato A, Schillaci O. Positron emission tomography imaging in primary brain tumors. Nucl Med Mol Imaging 2022. [DOI: 10.1016/b978-0-12-822960-6.00042-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
7
|
Lee CH, Lim I, Woo SK, Kim KI, Lee KC, Song K, Choi CW, Lim SM. The Feasibility of 64Cu-PSMA I&T PET for Prostate Cancer. Cancer Biother Radiopharm 2021; 37:417-423. [DOI: 10.1089/cbr.2020.4189] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Affiliation(s)
- Chul-Hee Lee
- Department of Nuclear Medicine, Korea Cancer Centre Hospital, Korea Institute of Radiological and Medical Sciences, Seoul, Republic of Korea
- Division of Applied RI, Research Institute of Radiological & Medical Sciences, Korea Institute of Radiological and Medical Sciences, Seoul, Republic of Korea
- Department of Urology, Korea Cancer Centre Hospital, Korea Institute of Radiological and Medical Sciences, Seoul, Republic of Korea
| | - Ilhan Lim
- Department of Nuclear Medicine, Korea Cancer Centre Hospital, Korea Institute of Radiological and Medical Sciences, Seoul, Republic of Korea
| | - Sang-Keun Woo
- Department of Nuclear Medicine, Korea Cancer Centre Hospital, Korea Institute of Radiological and Medical Sciences, Seoul, Republic of Korea
- Department of Nuclear Medicine, Seoul. National University Hospital, Seoul, Republic of Korea
| | - Kwang Il Kim
- Department of Nuclear Medicine, Seoul. National University Hospital, Seoul, Republic of Korea
| | - Kyo Chul Lee
- Department of Nuclear Medicine, Seoul. National University Hospital, Seoul, Republic of Korea
| | - Kanghyon Song
- Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
| | - Chang Woon Choi
- Department of Nuclear Medicine, Korea Cancer Centre Hospital, Korea Institute of Radiological and Medical Sciences, Seoul, Republic of Korea
| | - Sang Moo Lim
- Department of Nuclear Medicine, Korea Cancer Centre Hospital, Korea Institute of Radiological and Medical Sciences, Seoul, Republic of Korea
| |
Collapse
|
8
|
Mukai H, Watanabe Y. Review: PET imaging with macro- and middle-sized molecular probes. Nucl Med Biol 2021; 92:156-170. [PMID: 32660789 DOI: 10.1016/j.nucmedbio.2020.06.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 06/22/2020] [Accepted: 06/22/2020] [Indexed: 12/16/2022]
Abstract
Recent progress in radiolabeling of macro- and middle-sized molecular probes has been extending possibilities to use PET molecular imaging for dynamic application to drug development and therapeutic evaluation. Theranostics concept also accelerated the use of macro- and middle-sized molecular probes for sharpening the contrast of proper target recognition even the cellular types/subtypes and proper selection of the patients who should be treated by the same molecules recognition. Here, brief summary of the present status of immuno-PET, and then further development of advanced technologies related to immuno-PET, peptidic PET probes, and nucleic acids PET probes are described.
Collapse
Affiliation(s)
- Hidefumi Mukai
- Laboratory for Molecular Delivery and Imaging Technology, RIKEN Center for Biosystems Dynamics Research, 6-7-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan.
| | - Yasuyoshi Watanabe
- Laboratory for Pathophysiological and Health Science, RIKEN Center for Biosystems Dynamics Research, 6-7-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan.
| |
Collapse
|
9
|
Lee W, Jeon M, Choi J, Oh C, Kim G, Jung S, Kim C, Ye SJ, Im HJ. Europium-Diethylenetriaminepentaacetic Acid Loaded Radioluminescence Liposome Nanoplatform for Effective Radioisotope-Mediated Photodynamic Therapy. ACS NANO 2020; 14:13004-13015. [PMID: 32820903 DOI: 10.1021/acsnano.0c04324] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Photodynamic therapy (PDT) is an effective anticancer strategy with a higher selectivity and fewer adverse effects than conventional therapies; however, shallow tissue penetration depth of light has hampered the clinical utility of PDT. Recently, reports have indicated that Cerenkov luminescence-induced PDT may overcome the tissue penetration limitation of conventional PDT. However, the effectiveness of this method is controversial because of its low luminescence intensity. Herein, we developed a radiolabeled diethylenetriaminepentaacetic acid chelated Eu3+ (Eu-DTPA)/photosensitizer (PS) loaded liposome (Eu/PS-lipo) that utilizes ionizing radiation from radioisotopes for effective in vivo imaging and radioluminescence-induced PDT. We utilized Victoria blue-BO (VBBO) as a PS and observed an efficient luminescence resonance energy transfer between Eu-DTPA and VBBO. Furthermore, 64Cu-labeled Eu lipo demonstrated a strong radioluminescence with a 2-fold higher intensity than Cerenkov luminescence from free 64Cu. In our radioluminescence liposome, radioluminescence energy transfer showed a 6-fold higher energy transfer efficiency to VBBO than Cerenkov luminescence energy transfer (CLET). 64Cu-labeled Eu/VBBO lipo (64Cu-Eu/VBBO lipo) showed a substantial tumor uptake of up to 19.3%ID/g by enhanced permeability and retention effects, as revealed by in vivo positron emission tomography. Finally, the PDT using 64Cu-Eu/VBBO lipo demonstrated significantly higher in vitro and in vivo therapeutic effects than Cerenkov luminescence-induced PDT using 64Cu-VBBO lipo. This study envisions a great opportunity for clinical PDT application by establishing the radioluminescence liposome which has high tumor targeting and efficient energy transfer capability from radioisotopes.
Collapse
Affiliation(s)
- Wooseung Lee
- Department of Applied Bioengineering, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Republic of Korea
| | - Miyeon Jeon
- Department of Applied Bioengineering, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Republic of Korea
| | - Jinyeong Choi
- Department of Applied Bioengineering, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Republic of Korea
| | - Chiwoo Oh
- Department of Applied Bioengineering, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Republic of Korea
| | - Gaeun Kim
- Department of Applied Bioengineering, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Republic of Korea
| | - Seongmoon Jung
- Department of Applied Bioengineering, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Republic of Korea
- Department of Radiation Oncology, Seoul National University Hospital, Seoul 03080, Republic of Korea
| | - Changsoon Kim
- Department of Intelligence and Information, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Republic of Korea
- Inter-University Semiconductor Research Center, Seoul National University, Seoul 08826, Republic of Korea
| | - Sung-Joon Ye
- Department of Applied Bioengineering, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Republic of Korea
| | - Hyung-Jun Im
- Department of Applied Bioengineering, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Republic of Korea
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
10
|
Greifenstein L, Späth D, Sinnes JP, Grus T, Rösch F. Mild and efficient 64Cu labeling of perhydro-1, 4-diazepine derivatives for potential use with large peptides, proteins and antibodies. RADIOCHIM ACTA 2020. [DOI: 10.1515/ract-2019-3167] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Abstract
DATA (6-Amino-1,4-diazapine-triacetate) and AAZTA (6-Amino-1,4-diazapine-tetracetate) chelators represent a novel approach representing hybrid-chelates: possessing significant cyclic and acyclic character. It is believed that flexibility of the acyclic part facilitates rapid complexation, whilst the preorganized cyclic part minimizes the energy barrier to complexation and inhibits decomplexation processes. So far, these chelators have been used exclusively with 44Sc and 68Ga only. Recent results with natCu predict high stabilities for Cu-AAZTA, yet no radioactive labeling of AAZTA or DATA with 64Cu or any additional radioactive isotope has been reported. We present the one pot synthesis of the bifunctional derivatives AAZTA5OMe and DATA5mOMe and their labeling with 64Cu. In addition, in vitro stability of the respective complexes are presented.
Collapse
Affiliation(s)
- Lukas Greifenstein
- Institute of Nuclear Chemistry , Johannes Gutenberg University , Fritz-Straßmann-Weg 2 , 55128 Mainz , Germany
| | - Denise Späth
- Institute of Nuclear Chemistry , Johannes Gutenberg University , Fritz-Straßmann-Weg 2 , 55128 Mainz , Germany
| | - Jean Phillip Sinnes
- Institute of Nuclear Chemistry , Johannes Gutenberg University , Fritz-Straßmann-Weg 2 , 55128 Mainz , Germany
| | - Tilmann Grus
- Institute of Nuclear Chemistry , Johannes Gutenberg University , Fritz-Straßmann-Weg 2 , 55128 Mainz , Germany
| | - Frank Rösch
- Institute of Nuclear Chemistry , Johannes Gutenberg University , Fritz-Straßmann-Weg 2 , 55128 Mainz , Germany
| |
Collapse
|
11
|
Bonaccorso C, Marzo T, La Mendola D. Biological Applications of Thiocarbohydrazones and Their Metal Complexes: A Perspective Review. Pharmaceuticals (Basel) 2019; 13:E4. [PMID: 31881715 PMCID: PMC7169414 DOI: 10.3390/ph13010004] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Revised: 12/10/2019] [Accepted: 12/18/2019] [Indexed: 12/28/2022] Open
Abstract
Although organic compounds account for more than 99% of currently approved clinical drugs, the established clinical use of cisplatin in cancer or auranofin in rheumatoid arthritis have paved the way to several research initiatives to identify metal-based drugs for a wide range of human diseases. Nitrogen and sulfur donor ligands, characterized by different binding motifs, have been the subject in recent years of one of the main research areas in coordination chemistry. Among the nitrogen/sulfur compounds, very little is known about thiocarbohydrazones (TCH), the higher homologues of the well-known thiosemicarbazones (TSC), and their metal complexes. The extra hydrazine moiety provides the ligands of variable metal binding modes, structural diversity and promising biological implications. The interesting coordination chemistry of TCH has mainly been focused on symmetric derivatives, which are relatively simple to synthesize while few examples of asymmetric ligands have been reported. This informative review on TCHs and their metal complexes will be helpful for improving the design of metal-based pharmaceuticals for applications ranging from anticancer to antinfective therapy.
Collapse
Affiliation(s)
- Carmela Bonaccorso
- Dipartimento di Scienze Chimiche, Università degli Studi di Catania, Viale A. Doria 6, 95125 Catania, Italy
| | - Tiziano Marzo
- Dipartimento di Farmacia, Università di Pisa, Via Bonanno Pisano 6, 56126 Pisa, Italy;
| | - Diego La Mendola
- Dipartimento di Farmacia, Università di Pisa, Via Bonanno Pisano 6, 56126 Pisa, Italy;
| |
Collapse
|
12
|
van der Meulen NP, Hasler R, Blanc A, Farkas R, Benešová M, Talip Z, Müller C, Schibli R. Implementation of a new separation method to produce qualitatively improved 64
Cu. J Labelled Comp Radiopharm 2019; 62:460-470. [DOI: 10.1002/jlcr.3730] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 03/06/2019] [Accepted: 03/20/2019] [Indexed: 12/18/2022]
Affiliation(s)
- Nicholas P. van der Meulen
- Laboratory of Radiochemistry; Paul Scherrer Institute; Villigen-PSI Switzerland
- Center for Radiopharmaceutical Sciences ETH-PSI-USZ; Paul Scherrer Institute; Villigen-PSI Switzerland
| | - Roger Hasler
- Center for Radiopharmaceutical Sciences ETH-PSI-USZ; Paul Scherrer Institute; Villigen-PSI Switzerland
| | - Alain Blanc
- Center for Radiopharmaceutical Sciences ETH-PSI-USZ; Paul Scherrer Institute; Villigen-PSI Switzerland
| | - Renata Farkas
- Center for Radiopharmaceutical Sciences ETH-PSI-USZ; Paul Scherrer Institute; Villigen-PSI Switzerland
| | - Martina Benešová
- Center for Radiopharmaceutical Sciences ETH-PSI-USZ; Paul Scherrer Institute; Villigen-PSI Switzerland
- Department of Chemistry and Applied Biosciences; ETH Zurich; Zurich Switzerland
| | - Zeynep Talip
- Center for Radiopharmaceutical Sciences ETH-PSI-USZ; Paul Scherrer Institute; Villigen-PSI Switzerland
| | - Cristina Müller
- Center for Radiopharmaceutical Sciences ETH-PSI-USZ; Paul Scherrer Institute; Villigen-PSI Switzerland
- Department of Chemistry and Applied Biosciences; ETH Zurich; Zurich Switzerland
| | - Roger Schibli
- Center for Radiopharmaceutical Sciences ETH-PSI-USZ; Paul Scherrer Institute; Villigen-PSI Switzerland
- Department of Chemistry and Applied Biosciences; ETH Zurich; Zurich Switzerland
| |
Collapse
|
13
|
Zhou Y, Li J, Xu X, Zhao M, Zhang B, Deng S, Wu Y. 64Cu-based Radiopharmaceuticals in Molecular Imaging. Technol Cancer Res Treat 2019; 18:1533033819830758. [PMID: 30764737 PMCID: PMC6378420 DOI: 10.1177/1533033819830758] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Copper-64 (T1/2 = 12.7 hours; β+: 19%, β-: 38%) has a unique decay profile and can be used for positron emission tomography imaging and radionuclide therapy. The well-established coordination chemistry of copper allows for its reaction with different types of chelator systems. It can be linked to antibodies, proteins, peptides, and other biologically relevant small molecules. Two potential ways to produce copper-64 radioisotopes concern the use of the cyclotron or the reactor. This review summarized several commonly used biomarkers of copper-64 radionuclide.
Collapse
Affiliation(s)
- Yeye Zhou
- 1 Department of Nuclear Medicine, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jihui Li
- 1 Department of Nuclear Medicine, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xin Xu
- 1 Department of Nuclear Medicine, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Man Zhao
- 1 Department of Nuclear Medicine, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Bin Zhang
- 1 Department of Nuclear Medicine, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Shengming Deng
- 1 Department of Nuclear Medicine, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yiwei Wu
- 1 Department of Nuclear Medicine, The First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
14
|
Preparation of Zirconium-89 Solutions for Radiopharmaceutical Purposes: Interrelation Between Formulation, Radiochemical Purity, Stability and Biodistribution. Molecules 2019; 24:molecules24081534. [PMID: 31003494 PMCID: PMC6514948 DOI: 10.3390/molecules24081534] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 04/15/2019] [Accepted: 04/16/2019] [Indexed: 02/06/2023] Open
Abstract
Zirconium-89 is a promising radionuclide for nuclear medicine. The aim of the present work was to find a suitable method for obtaining zirconium-89 solutions for radiopharmaceutical purposes. For this purpose, the ion exchange behavior of zirconium-89 solutions was studied. Radio-TLC (thin layer chromatography) and biodistribution studies were carried out to understand speciation of zirconium-89 complexes and their role in the development of new radiopharmaceuticals. Three methods of zirconium-89 isolation were studied using ZR (hydroxamate) and Chelex-100 resins. It was found that ZR-resin alone is not enough to obtain stable zirconium-89 formulations. An easy and effective method of reconstitution of [89Zr]Zr-oxalate to [89Zr]Zr-citrate using Chelex-100 resin was developed. Developed procedures allow obtaining [89Zr]Zr-oxalate (in 0.1 M sodium oxalate solution) and [89Zr]Zr-citrate (in 0.1–1.0 M sodium citrate solution). These solutions are perfectly suitable and convenient for radiopharmaceutical purposes. Our results prove [89Zr]Zr-citrate to be advantageous over [89Zr]Zr-oxalate. During evaluation of speciation of zirconium-89 complexes, a new TLC method was developed, since it was proved that there is no comprehensive method for analysis or zirconium-89 preparations. The new method provides valuable insights about the content of “active” ionic form of zirconium-89. The interrelation of the chromatographic behavior of zirconium-89 preparations and their biodistribution was studied.
Collapse
|
15
|
Tse J, Geoghegan S. Calculations of dose point kernels of 64 Cu in different media with PENELOPE Monte Carlo code. Med Phys 2019; 46:2422-2429. [PMID: 30822361 DOI: 10.1002/mp.13465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 02/22/2019] [Accepted: 02/22/2019] [Indexed: 11/06/2022] Open
Abstract
PURPOSE The unique decay properties of copper-64 (64 Cu) has made it a radionuclide of interest in theragnostic applications of nuclear medicine. This study aims to calculate the dose point kernels (DPKs) of 64 Cu in various media with PENELOPE Monte Carlo code. METHODS Monte Carlo simulations were performed using PENELOPE code (version 2014). To calculate DPKs, the simulation comprised an isotropic point radiation source positioned at the origin of a spherical object of radius 50 cm. The absorbed dose along the radial direction outwards from the point source were scored with a resolution of 20 μm. Validations were firstly performed by calculating the DPKs of monoenergetic electrons and photons in water and the results were compared against the literature values. The continuous energy spectra of the beta minus and positron emissions from 64 Cu were numerically modeled and used as inputs to the simulation. DPKs of 64 Cu were calculated in water, soft tissue, lung tissue, and cortical bone, including all emissions types. RESULTS The simulations have been successfully validated against literature values. The largest deviations have been observed with 10 keV monoenergetic electrons with the average and maximum dose difference of -1.01% and -10.56%. The modeled energy spectra closely compared with the average energies from Brookhaven Laboratory National Nuclear Data Centre and the combined spectral shapes from the RAdiation Dose Assessment Resource (RADAR). The DPKs of 64 Cu demonstrated different radial dose deposition in different media owing to the different physical density and effective atomic number. CONCLUSIONS The DPKs of 64 Cu have been calculated with Monte Carlo simulations in four different media. They will be useful to study the dosimetric properties of 64 Cu-labeled radiopharmaceuticals and perform therapeutic dose planning.
Collapse
Affiliation(s)
- Jason Tse
- Medical Physics Department, Austin Hospital, Melbourne, VIC, Australia.,Faculty of Health Sciences, University of Sydney, Sydney, NSW, Australia
| | - Sean Geoghegan
- Department of Medical Physics, Royal Adelaide Hospital, Adelaide, SA, Australia
| |
Collapse
|
16
|
Abstract
Targeted therapies hold great promise for cancer treatment and may exhibit even greater efficacy when combined with patient selection tools. The clinical impact of identifying likely responders includes reducing the number of unnecessary and ineffective therapies as well as more accurately determining drug effects. Positron emission tomography (PET) imaging using zirconium-89 radiolabeled monoclonal antibodies (mAbs), also referred to as zirconium-89 (89Zr)-immuno-PET, provides a potential biomarker to measure target expression and verify optimal delivery of targeted agents to tumors. Antibody-drug conjugates (ADCs) combine the high affinity and specificity of mAbs with the potency of cytotoxic drugs to target tumor-expressing antigen and destroy cancer cells. Thus, 89Zr-immuno-PET of whole-body biodistribution, pharmacokinetics, and tumor targeting of antibodies and ADCs to predict toxicity and efficacy could help guide individualized treatment. Here, we review how 89Zr-immuno-PET is being used as a companion diagnostic with the development of ADCs. Furthermore, we discuss how 89Zr-immuno-PET may be utilized in future clinical trials as an adjunct tool with novel ADCs to select cancer patients who have the greatest potential to benefit from treatment and improve ADC dosing regimens.
Collapse
Affiliation(s)
- Kendra S Carmon
- 1 Institute of Molecular Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Ali Azhdarinia
- 1 Institute of Molecular Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| |
Collapse
|
17
|
Radiobiological Characterization of 64CuCl₂ as a Simple Tool for Prostate Cancer Theranostics. Molecules 2018; 23:molecules23112944. [PMID: 30423862 PMCID: PMC6278521 DOI: 10.3390/molecules23112944] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 11/07/2018] [Accepted: 11/09/2018] [Indexed: 12/11/2022] Open
Abstract
64CuCl2 has recently been proposed as a promising agent for prostate cancer (PCa) theranostics, based on preclinical studies in cellular and animal models, and on the increasing number of human studies documenting its use for PCa diagnosis. Nevertheless, the use of 64CuCl2 raises important radiobiological questions that have yet to be addressed. In this work, using a panel of PCa cell lines in comparison with a non-tumoral prostate cell line, we combined cytogenetic approaches with radiocytotoxicity assays to obtain significant insights into the cellular consequences of exposure to 64CuCl2. PCa cells were found to exhibit increased 64CuCl2 uptake, which could not be attributed to increased expression of the main copper cellular importer, hCtr1, as had been previously suggested. Early DNA damage and genomic instability were also higher in PCa cells, with the tumoral cell lines exhibiting deficient DNA-damage repair upon exposure to 64CuCl2. This was corroborated by the observation that 64CuCl2 was more cytotoxic in PCa cells than in non-tumoral cells. Overall, we showed for the first time that PCa cells had a higher sensitivity to 64CuCl2 than healthy cells, supporting the idea that this compound deserved to be further evaluated as a theranostic agent in PCa.
Collapse
|
18
|
Aguilar-Ortíz E, Jalilian AR, Ávila-Rodríguez MA. Porphyrins as ligands for 64copper: background and trends. MEDCHEMCOMM 2018; 9:1577-1588. [PMID: 30429966 PMCID: PMC6194497 DOI: 10.1039/c8md00263k] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 08/17/2018] [Indexed: 12/13/2022]
Abstract
Porphyrins and 64Cu have emerged as a novel synergic option for applications in PET molecular imaging. Both the characteristics and photophysical properties of macrocyclic porphyrins and the relatively long half-life of the copper isotope, in addition to the increased tumor-specific uptake of porphyrins compared to normal cells, make this complex an attractive option not only for diagnosis but also for therapeutic applications. Herein, we present an overview of the latest results on the development of PET agents based on porphyrins and 64Cu, including methods used to improve the selectivity of these macrocycles when conjugated with biological units such as monoclonal antibodies, peptides or proteins.
Collapse
Affiliation(s)
- Edgar Aguilar-Ortíz
- Unidad Radiofarmacia-Ciclotrón , División de Investigación , Facultad de Medicina , Universidad Nacional Autónoma de México , 04510 Cd. Mx. , Mexico . ;
| | - Amir R Jalilian
- Department of Nuclear Sciences and Applications , International Atomic Energy Agency (IAEA) , Vienna , Austria
| | - Miguel A Ávila-Rodríguez
- Unidad Radiofarmacia-Ciclotrón , División de Investigación , Facultad de Medicina , Universidad Nacional Autónoma de México , 04510 Cd. Mx. , Mexico . ;
| |
Collapse
|
19
|
Ahmedova A, Todorov B, Burdzhiev N, Goze C. Copper radiopharmaceuticals for theranostic applications. Eur J Med Chem 2018; 157:1406-1425. [DOI: 10.1016/j.ejmech.2018.08.051] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 08/15/2018] [Accepted: 08/18/2018] [Indexed: 12/12/2022]
|
20
|
The emerging role of copper-64 radiopharmaceuticals as cancer theranostics. Drug Discov Today 2018; 23:1489-1501. [DOI: 10.1016/j.drudis.2018.04.002] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 03/02/2018] [Accepted: 04/03/2018] [Indexed: 12/12/2022]
|
21
|
Retracted: The Copper Radioisotopes: A Systematic Review with Special Interest to 64Cu. BIOMED RESEARCH INTERNATIONAL 2018; 2018:3860745. [PMID: 30069467 PMCID: PMC6057420 DOI: 10.1155/2018/3860745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 05/01/2018] [Indexed: 11/18/2022]
|
22
|
Aluicio-Sarduy E, Ellison PA, Barnhart TE, Cai W, Nickles RJ, Engle JW. PET radiometals for antibody labeling. J Labelled Comp Radiopharm 2018; 61:636-651. [PMID: 29341227 PMCID: PMC6050152 DOI: 10.1002/jlcr.3607] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 12/29/2017] [Accepted: 01/05/2018] [Indexed: 02/06/2023]
Abstract
Recent advances in molecular characterization of tumors have made possible the emergence of new types of cancer therapies where traditional cytotoxic drugs and nonspecific chemotherapy can be complemented with targeted molecular therapies. One of the main revolutionary treatments is the use of monoclonal antibodies (mAbs) that selectively target the disseminated tumor cells while sparing normal tissues. mAbs and related therapeutics can be efficiently radiolabeled with a wide range of radionuclides to facilitate preclinical and clinical studies. Non-invasive molecular imaging techniques, such as Positron Emission Tomography (PET), using radiolabeled mAbs provide useful information on the whole-body distribution of the biomolecules, which may enable patient stratification, diagnosis, selection of targeted therapies, evaluation of treatment response, and prediction of dose limiting tissue and adverse effects. In addition, when mAbs are labeled with therapeutic radionuclides, the combination of immunological and radiobiological cytotoxicity may result in enhanced treatment efficacy. The pharmacokinetic profile of antibodies demands the use of long half-life isotopes for longitudinal scrutiny of mAb biodistribution and precludes the use of well-stablished short half-life isotopes. Herein, we review the most promising PET radiometals with chemical and physical characteristics that make the appealing for mAb labeling, highlighting those with theranostic radioisotopes.
Collapse
Affiliation(s)
| | - Paul A. Ellison
- University of Wisconsin-Madison, Department of Medical Physics, Madison, Wisconsin, USA
| | - Todd E. Barnhart
- University of Wisconsin-Madison, Department of Medical Physics, Madison, Wisconsin, USA
| | - Weibo Cai
- University of Wisconsin-Madison, Department of Medical Physics, Madison, Wisconsin, USA
- University of Wisconsin-Madison, Department of Radiology, Madison, Wisconsin, USA
- University of Wisconsin-Madison Carbone Cancer Center, Carbon Cancer Center, Madison, Wisconsin, USA
| | - Robert Jerry Nickles
- University of Wisconsin-Madison, Department of Medical Physics, Madison, Wisconsin, USA
| | - Jonathan W. Engle
- University of Wisconsin-Madison, Department of Medical Physics, Madison, Wisconsin, USA
- University of Wisconsin-Madison, Department of Radiology, Madison, Wisconsin, USA
| |
Collapse
|
23
|
Xie F, Peng F. Radiopharmaceuticals for Assessment of Altered Metabolism and Biometal Fluxes in Brain Aging and Alzheimer's Disease with Positron Emission Tomography. J Alzheimers Dis 2018; 59:527-536. [PMID: 28671127 DOI: 10.3233/jad-170280] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Aging is a risk factor for Alzheimer's disease (AD). There are changes of brain metabolism and biometal fluxes due to brain aging, which may play a role in pathogenesis of AD. Positron emission tomography (PET) is a versatile tool for tracking alteration of metabolism and biometal fluxes due to brain aging and AD. Age-dependent changes in cerebral glucose metabolism can be tracked with PET using 2-deoxy-2-[18F]-fluoro-D-glucose (18F-FDG), a radiolabeled glucose analogue, as a radiotracer. Based on different patterns of altered cerebral glucose metabolism, 18F-FDG PET was clinically used for differential diagnosis of AD and Frontotemporal dementia (FTD). There are continued efforts to develop additional radiopharmaceuticals or radiotracers for assessment of age-dependent changes of various metabolic pathways and biometal fluxes due to brain aging and AD with PET. Elucidation of age-dependent changes of brain metabolism and altered biometal fluxes is not only significant for a better mechanistic understanding of brain aging and the pathophysiology of AD, but also significant for identification of new targets for the prevention, early diagnosis, and treatment of AD.
Collapse
Affiliation(s)
- Fang Xie
- Department of Radiology, and Advanced ImagingResearch Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Fangyu Peng
- Department of Radiology, and Advanced ImagingResearch Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
24
|
Fimognari R, Cinninger LM, Lynch VM, Holliday BJ, Sessler J. Copper Selective Polymeric Extractant Synthesized by Ring-Opening Metathesis Polymerization. Inorg Chem 2017; 57:392-399. [PMID: 29251502 DOI: 10.1021/acs.inorgchem.7b02639] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Novel polymers bearing pendant picolinic acid functionalities have been synthesized by ring-opening metathesis polymerization (ROMP) for applications in separations-based purification protocols. These polymers and their corresponding monomer were shown to be selective for Cu2+ over a variety of other divalent metal cations as inferred from pH dependent studies carried out under both liquid-liquid and solid-liquid extraction conditions. The polymer system of this study also showed high selectivity for Cu2+ over Ni2+ in mock protocols that could be relevant to the purification of Cu radioisotopes. Separation factors as high as 290 were achieved for extractions from solutions containing a 100-fold excess of Ni2+ relative to Cu2+.
Collapse
Affiliation(s)
- Robert Fimognari
- Department of Chemistry, The University of Texas at Austin , Austin, Texas 78712-1224, United States
| | - Leander M Cinninger
- Department of Chemistry, The University of Texas at Austin , Austin, Texas 78712-1224, United States
| | - Vincent M Lynch
- Department of Chemistry, The University of Texas at Austin , Austin, Texas 78712-1224, United States
| | | | | |
Collapse
|
25
|
Pibida L, Zimmerman B, Bergeron DE, Fitzgerald R, Cessna JT, King L. Determination of photon emission probability for the main gamma ray and half-life measurements of 64Cu. Appl Radiat Isot 2017; 129:6-12. [PMID: 28783614 PMCID: PMC6290464 DOI: 10.1016/j.apradiso.2017.07.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 06/30/2017] [Accepted: 07/02/2017] [Indexed: 11/19/2022]
Abstract
The National Institute of Standards and Technology (NIST) performed new standardization measurements for 64Cu. As part of this work the photon emission probability for the main gamma-ray line and the half-life were determined using several high-purity germanium (HPGe) detectors. Half-life determinations were also carried out with a NaI(Tl) well counter and two pressurized ionization chambers.
Collapse
Affiliation(s)
- L Pibida
- National Institute of Standards and Technology, 100 Bureau Dr, MS 8462, Gaithersburg, MD, 20899-8462, USA.
| | - B Zimmerman
- National Institute of Standards and Technology, 100 Bureau Dr, MS 8462, Gaithersburg, MD, 20899-8462, USA
| | - D E Bergeron
- National Institute of Standards and Technology, 100 Bureau Dr, MS 8462, Gaithersburg, MD, 20899-8462, USA
| | - R Fitzgerald
- National Institute of Standards and Technology, 100 Bureau Dr, MS 8462, Gaithersburg, MD, 20899-8462, USA
| | - J T Cessna
- National Institute of Standards and Technology, 100 Bureau Dr, MS 8462, Gaithersburg, MD, 20899-8462, USA
| | - L King
- National Institute of Standards and Technology, 100 Bureau Dr, MS 8462, Gaithersburg, MD, 20899-8462, USA
| |
Collapse
|
26
|
Fernandes RS, de Aguiar Ferreira C, Soares DCF, Maffione AM, Townsend DM, Rubello D, de Barros ALB. The role of radionuclide probes for monitoring anti-tumor drugs efficacy: A brief review. Biomed Pharmacother 2017; 95:469-476. [PMID: 28865367 DOI: 10.1016/j.biopha.2017.08.079] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 08/17/2017] [Accepted: 08/20/2017] [Indexed: 02/06/2023] Open
Abstract
Despite recent advances in the development of new therapeutic agents and diagnostic imaging modalities, cancer is still one of the main causes of death worldwide. A better understanding of the molecular signature of cancer has promoted the development of a new generation of anti-cancer drugs and diagnostic agents that specifically target molecular components such as genes, ligands, receptors and signaling pathways. However, intrinsic heterogeneity of tumors has hampered the overall success of target therapies even among patients with similar tumor types but unpredictable different responses to therapy. In this sense, post-treatment response monitoring becomes indispensable and nuclear medicine imaging modalities could provide the tools for an early indication of therapeutic efficacy. Herein, we briefly discuss the current role of PET and SPECT imaging in monitoring cancer therapy together with an update on the current radiolabeled probes that are currently investigated for tumor therapy response assessment.
Collapse
Affiliation(s)
- Renata Salgado Fernandes
- Laboratório de radioisótopos, Departamento de análises Clinicas, Universidade Federal de Minas Gerais (UFMG), Avenida Presidente Antônio Carlos, 6627, Belo Horizonte, Minas Gerais, Brazil
| | | | - Daniel Cristian Ferreira Soares
- Laboratório de Bioengenharia, Universidade Federal de Itajubá (UNIFEI), Rua Irmã Ivone Drumond, 200, Itabira, Minas Gerais, Brazil
| | - Anna Margherita Maffione
- Department of Nuclear Medicine, Radiology, Medical Physics and Clinical Pathology, Santa Maria della Misericordia Hospital, Rovigo, Italy
| | - Danyelle M Townsend
- Department of Drug Discovery and Pharmaceutical Sciences, Medical University of South Carolina, USA
| | - Domenico Rubello
- Department of Nuclear Medicine, Radiology, Medical Physics and Clinical Pathology, Santa Maria della Misericordia Hospital, Rovigo, Italy.
| | - André Luís Branco de Barros
- Laboratório de radioisótopos, Departamento de análises Clinicas, Universidade Federal de Minas Gerais (UFMG), Avenida Presidente Antônio Carlos, 6627, Belo Horizonte, Minas Gerais, Brazil.
| |
Collapse
|
27
|
Niccoli Asabella A, Di Palo A, Altini C, Ferrari C, Rubini G. Multimodality Imaging in Tumor Angiogenesis: Present Status and Perspectives. Int J Mol Sci 2017; 18:ijms18091864. [PMID: 28846661 PMCID: PMC5618513 DOI: 10.3390/ijms18091864] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 08/19/2017] [Accepted: 08/22/2017] [Indexed: 01/22/2023] Open
Abstract
Angiogenesis is a complex biological process that plays a central role in progression of tumor growth and metastasis. It led to a search for antiangiogenic molecules, and to design antiangiogenic strategies for cancer treatment. Noninvasive molecular imaging, such as positron emission tomography (PET) and single photon emission computed tomography (SPECT), could be useful for lesion detection, to select patients likely to respond to antiangiogenic therapies, to confirm successful targeting, and dose optimization. Additionally, nuclear imaging techniques could also aid in the development of new angiogenesis-targeted drugs and their validation. Angiogenesis imaging can be categorized as targeted at three major cell types: (I) non-endothelial cell targets, (II) endothelial cell targets, and (III) extracellular matrix proteins and matrix proteases. Even if radiopharmaceuticals studying the metabolism and hypoxia can be also used for the study of angiogenesis, many of the agents used in nuclear imaging for this purpose are yet to be investigated. The purpose of this review is to describe the role of molecular imaging in tumor angiogenesis, highlighting the advances in this field.
Collapse
Affiliation(s)
- Artor Niccoli Asabella
- Nuclear Medicine Unit, Department of Interdisciplinary Medicine, University of Bari "Aldo Moro", Piazza G. Cesare 11, 70124 Bari, Italy.
| | - Alessandra Di Palo
- Nuclear Medicine Unit, Department of Interdisciplinary Medicine, University of Bari "Aldo Moro", Piazza G. Cesare 11, 70124 Bari, Italy.
| | - Corinna Altini
- Nuclear Medicine Unit, Department of Interdisciplinary Medicine, University of Bari "Aldo Moro", Piazza G. Cesare 11, 70124 Bari, Italy.
| | - Cristina Ferrari
- Nuclear Medicine Unit, Department of Interdisciplinary Medicine, University of Bari "Aldo Moro", Piazza G. Cesare 11, 70124 Bari, Italy.
| | - Giuseppe Rubini
- Nuclear Medicine Unit, Department of Interdisciplinary Medicine, University of Bari "Aldo Moro", Piazza G. Cesare 11, 70124 Bari, Italy.
| |
Collapse
|
28
|
Diagnostic Accuracy of 64 Copper Prostate-specific Membrane Antigen Positron Emission Tomography/Computed Tomography for Primary Lymph Node Staging of Intermediate- to High-risk Prostate Cancer: Our Preliminary Experience. Urology 2017; 106:139-145. [DOI: 10.1016/j.urology.2017.04.019] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 04/11/2017] [Accepted: 04/14/2017] [Indexed: 11/22/2022]
|
29
|
Marciniak A, Brasuń J. Somatostatin analogues labeled with copper radioisotopes: current status. J Radioanal Nucl Chem 2017; 313:279-289. [PMID: 28804185 PMCID: PMC5533839 DOI: 10.1007/s10967-017-5323-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Indexed: 12/23/2022]
Abstract
Peptide receptor radionuclide therapy (PRRT) is a promising way to treat patients with inoperable tumors or metastatic neuroendocrine tumors. This therapeutic strategy is using radiolabeled peptides, which are capable of selective biding to receptors overexpressed in the cancer cells. One of the group of receptor-avid peptide used in the PRRT are the analogues of somatostatin (SST) connected to the complexes of radionuclides (e.g. 90Y, 177Lu or 111In). Many studies have shown that radiopharmaceuticals based on Cu radioisotopes are promising for the diagnosis and treatment of various cancers. This mini-review focuses on recent developments and summarises the results of multiple studies addressing SST agonists and antagonists radiolabeled to Cu radioisotopes.
Collapse
Affiliation(s)
- Aleksandra Marciniak
- Department of Inorganic Chemistry, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland
| | - Justyna Brasuń
- Department of Inorganic Chemistry, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland
| |
Collapse
|
30
|
67Cu-Radiolabeling of a multimeric RGD peptide for αVβ3 integrin-targeted radionuclide therapy. Nucl Med Commun 2017; 38:347-355. [DOI: 10.1097/mnm.0000000000000646] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
31
|
Ferreira CDA, Fuscaldi LL, Townsend DM, Rubello D, Barros ALBD. Radiolabeled bombesin derivatives for preclinical oncological imaging. Biomed Pharmacother 2016; 87:58-72. [PMID: 28040598 DOI: 10.1016/j.biopha.2016.12.083] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 12/15/2016] [Accepted: 12/20/2016] [Indexed: 01/04/2023] Open
Abstract
Despite efforts, cancer is still one of the leading causes of morbidity and mortality worldwide, with approximately 14 million new cases and 8.2 million cancer-related deaths each year, according to the World Health Organization. Among the strategies to reduce cancer progression and improving its management, implementing early detection technologies is crucial. Based on the fact that several types of cancer cells overexpress surface receptors, small molecule ligands, such as peptides, have been developed to allow tumor identification at earlier stages. Allied with imaging techniques such as PET and SPECT, radiolabeled peptides play a pivotal role in nuclear medicine. Bombesin, a peptide of 14 amino acids, is an amphibian homolog to the mammalian gastrin-releasing peptide (GRP), that has been extensively studied as a targeting ligand for diagnosis and therapy of GRP positive tumors, such as breast, pancreas, lungs and prostate cancers. In this context, herein we provide a review of reported bombesin derivatives radiolabeled with a multitude of radioactive isotopes for diagnostic purposes in the preclinical setting. Moreover, since animal models are highly relevant for assessing the potential of clinical translation of this radiopeptides, a brief report of the currently used GRP-positive tumor-bearing animal models is described.
Collapse
Affiliation(s)
| | - Leonardo Lima Fuscaldi
- Faculty of Pharmacy, Federal University of Minas Gerais, Av. Antônio Carlos, 6627, 31270-901, Belo Horizonte, Minas Gerais, Brazil
| | - Danyelle M Townsend
- Department of Drug Discovery and Pharmaceutical Sciences, Medical University of South Carolina, USA
| | - Domenico Rubello
- Department of Nuclear Medicine, Radiology, NeuroRadiology, Medical Physics, Clinical Laboratory, Microbiology, Pathology, Santa Maria della Misericordia Hospital, Rovigo, Italy.
| | - André Luís Branco de Barros
- Faculty of Pharmacy, Federal University of Minas Gerais, Av. Antônio Carlos, 6627, 31270-901, Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
32
|
Chakravarty R, Chakraborty S, Ningthoujam RS, Vimalnath Nair KV, Sharma KS, Ballal A, Guleria A, Kunwar A, Sarma HD, Vatsa RK, Dash A. Industrial-Scale Synthesis of Intrinsically Radiolabeled 64CuS Nanoparticles for Use in Positron Emission Tomography (PET) Imaging of Cancer. Ind Eng Chem Res 2016. [DOI: 10.1021/acs.iecr.6b03405] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Rubel Chakravarty
- Radiopharmaceuticals
Division, ‡Chemistry Division, §Molecular Biology Division, ∥Radiation and Photochemistry Division, and ⊥Radiation Biology
and Health Sciences Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085, India
| | - Sudipta Chakraborty
- Radiopharmaceuticals
Division, ‡Chemistry Division, §Molecular Biology Division, ∥Radiation and Photochemistry Division, and ⊥Radiation Biology
and Health Sciences Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085, India
| | - Raghumani Singh Ningthoujam
- Radiopharmaceuticals
Division, ‡Chemistry Division, §Molecular Biology Division, ∥Radiation and Photochemistry Division, and ⊥Radiation Biology
and Health Sciences Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085, India
| | - K. V. Vimalnath Nair
- Radiopharmaceuticals
Division, ‡Chemistry Division, §Molecular Biology Division, ∥Radiation and Photochemistry Division, and ⊥Radiation Biology
and Health Sciences Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085, India
| | - K. Shitaljit Sharma
- Radiopharmaceuticals
Division, ‡Chemistry Division, §Molecular Biology Division, ∥Radiation and Photochemistry Division, and ⊥Radiation Biology
and Health Sciences Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085, India
| | - Anand Ballal
- Radiopharmaceuticals
Division, ‡Chemistry Division, §Molecular Biology Division, ∥Radiation and Photochemistry Division, and ⊥Radiation Biology
and Health Sciences Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085, India
| | - Apurav Guleria
- Radiopharmaceuticals
Division, ‡Chemistry Division, §Molecular Biology Division, ∥Radiation and Photochemistry Division, and ⊥Radiation Biology
and Health Sciences Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085, India
| | - Amit Kunwar
- Radiopharmaceuticals
Division, ‡Chemistry Division, §Molecular Biology Division, ∥Radiation and Photochemistry Division, and ⊥Radiation Biology
and Health Sciences Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085, India
| | - Haladhar Dev Sarma
- Radiopharmaceuticals
Division, ‡Chemistry Division, §Molecular Biology Division, ∥Radiation and Photochemistry Division, and ⊥Radiation Biology
and Health Sciences Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085, India
| | - Rajesh Kumar Vatsa
- Radiopharmaceuticals
Division, ‡Chemistry Division, §Molecular Biology Division, ∥Radiation and Photochemistry Division, and ⊥Radiation Biology
and Health Sciences Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085, India
| | - Ashutosh Dash
- Radiopharmaceuticals
Division, ‡Chemistry Division, §Molecular Biology Division, ∥Radiation and Photochemistry Division, and ⊥Radiation Biology
and Health Sciences Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085, India
| |
Collapse
|
33
|
Ohya T, Nagatsu K, Suzuki H, Fukada M, Minegishi K, Hanyu M, Fukumura T, Zhang MR. Efficient preparation of high-quality 64 Cu for routine use. Nucl Med Biol 2016; 43:685-691. [DOI: 10.1016/j.nucmedbio.2016.07.007] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 07/27/2016] [Indexed: 11/16/2022]
|
34
|
Chakravarty R, Chakraborty S, Dash A. 64Cu2+ Ions as PET Probe: An Emerging Paradigm in Molecular Imaging of Cancer. Mol Pharm 2016; 13:3601-3612. [DOI: 10.1021/acs.molpharmaceut.6b00582] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Rubel Chakravarty
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085, India
| | - Sudipta Chakraborty
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085, India
| | - Ashutosh Dash
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085, India
| |
Collapse
|
35
|
Panichelli P, Villano C, Cistaro A, Bruno A, Barbato F, Piccardo A, Duatti A. Imaging of Brain Tumors with Copper-64 Chloride: Early Experience and Results. Cancer Biother Radiopharm 2016; 31:159-67. [PMID: 27228278 DOI: 10.1089/cbr.2016.2028] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
OBJECTIVES To conduct the first investigational study that is aimed at evaluating the ability of the simple salt (64)CuCl2 to diagnose cerebral tumors in patients affected by glioblastoma multiforme (GBM). METHODS Nineteen patients with a documented history and radiologic evidence of brain tumors were enrolled in the study. Eighteen patients were diagnosed with GBM, and one patient was diagnosed with grade II astrocytoma. After initial cerebral magnetic resonance imaging (MRI), patients were administered with (64)CuCl2 (13 MBq/kg) and brain positron emission tomography (PET)/computed tomography (CT) imaging was performed at 1, 3, and 24 hours after administration. Standardized uptake values (SUVs) were calculated and used to figure out the pharmacokinetic profile of the tracer. Absorbed radiation doses were estimated using OLINDA/EXM. RESULTS Copper-64 chloride clearly visualized brain cancerous lesions within 1 hour after injection, with stable retention of radioactivity at 3 and 24 hours. Excellent agreement was found between PET/CT and MRI. No uptake of the tracer was observed in low-grade astrocytoma. The agent cleared rapidly from the blood and was mostly excreted through the liver, without significant kidney washout. Analysis of time variation of SUVmax values showed persistent uptake in malignant tissues with a slight increase of radioactive concentration at 24 hours. CONCLUSIONS Copper-64 chloride has favorable biological properties for brain imaging and warrants further investigation as a diagnostic tracer for GBM.
Collapse
Affiliation(s)
| | | | - Angelina Cistaro
- 3 Positron Emission Tomography Centre, IRMET , Affidea, Turin, Italy
| | | | | | | | - Adriano Duatti
- 7 Department of Chemical and Pharmaceutical Sciences, University of Ferrara , Ferrara, Italy
| |
Collapse
|
36
|
Sanghera B, Wood K, Sonoda LI, Gogbashian A, Lowe G, Nunes A, Stirling J, Shepherd C, Beynon G, Wong WL. Pre-clinical Positron Emission Tomography Reconstruction Algorithm Effect on Cu-64 ATSM Lesion Hypoxia. Mol Imaging Radionucl Ther 2016; 25:19-25. [PMID: 27299284 PMCID: PMC4807345 DOI: 10.4274/mirt.18189] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Objective: Application of distinct positron emission tomography (PET) scan reconstruction algorithms can lead to statistically significant differences in measuring lesion functional properties. We looked at the influence of two-dimensional filtered back projection (2D FBP), two-dimensional ordered subset expectation maximization (2D OSEM), three-dimensional ordered subset expectation maximization (3D OSEM) without 3D maximum a posteriori and with (3D OSEM MAP) on lesion hypoxia tracer uptake using a pre-clinical PET scanner. Methods: Reconstructed images of a rodent tumor model bearing P22 carcinosarcoma injected with hypoxia tracer Copper-64-Diacetyl-bis (N4-methylthiosemicarbazone) (i.e. Cu-64 ATSM) were analyzed at 10 minute intervals till 60 minute post injection. Lesion maximum standardized uptake values (SUVmax) and SUVmax/background SUVmean (T/B) were recorded and investigated after application of multiple algorithm and reconstruction parameters to assess their influence on Cu-64 ATSM measurements and associated trends over time. Results: SUVmaxSUVmax or T/B between 2D FBP, exhibited convergence for OSEM reconstructions while ANOVA results showed a significant difference in SUVmax or T/B between 2D FBP, 2D OSEM, 3D OSEM and 3D OSEM MAP reconstructions across all time frames. SUVmax and T/B were greatest in magnitude for 2D OSEM followed by 3D OSEM MAP, 3D OSEM and then 2D FBP at all time frames respectively. Similarly SUVmax and T/B standard deviations (SD) were lowest for 2D OSEM in comparison with other algorithms. Conclusion: Significantly higher magnitude lesion SUVmax and T/B combined with lower SD were observed using 2D OSEM reconstruction in comparison with 2D FBP, 3D OSEM and 3D OSEM MAP algorithms at all time frames. Results are SUVmax or T/B between 2D FBP, consistent with other published studies however more specimens are required for full validation.
Collapse
Affiliation(s)
- Bal Sanghera
- Mount Vernon Hospital, Paul Strickland Scanner Centre, Northwood, UK, Phone: +90 192 384 43 92 E-mail:
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Wachsmann J, Peng F. Molecular imaging and therapy targeting copper metabolism in hepatocellular carcinoma. World J Gastroenterol 2016; 22:221-31. [PMID: 26755872 PMCID: PMC4698487 DOI: 10.3748/wjg.v22.i1.221] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 10/18/2015] [Accepted: 11/13/2015] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the fifth most common cancer worldwide. Significant efforts have been devoted to identify new biomarkers for molecular imaging and targeted therapy of HCC. Copper is a nutritional metal required for the function of numerous enzymatic molecules in the metabolic pathways of human cells. Emerging evidence suggests that copper plays a role in cell proliferation and angiogenesis. Increased accumulation of copper ions was detected in tissue samples of HCC and many other cancers in humans. Altered copper metabolism is a new biomarker for molecular cancer imaging with position emission tomography (PET) using radioactive copper as a tracer. It has been reported that extrahepatic mouse hepatoma or HCC xenografts can be localized with PET using copper-64 chloride as a tracer, suggesting that copper metabolism is a new biomarker for the detection of HCC metastasis in areas of low physiological copper uptake. In addition to copper modulation therapy with copper chelators, short-interference RNA specific for human copper transporter 1 (hCtr1) may be used to suppress growth of HCC by blocking increased copper uptake mediated by hCtr1. Furthermore, altered copper metabolism is a promising target for radionuclide therapy of HCC using therapeutic copper radionuclides. Copper metabolism has potential as a new theranostic biomarker for molecular imaging as well as targeted therapy of HCC.
Collapse
|
38
|
Copper-64 Dichloride as Theranostic Agent for Glioblastoma Multiforme: A Preclinical Study. BIOMED RESEARCH INTERNATIONAL 2015; 2015:129764. [PMID: 26649294 PMCID: PMC4663283 DOI: 10.1155/2015/129764] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 10/22/2015] [Indexed: 11/28/2022]
Abstract
Glioblastoma multiforme (GBM) is the most common primary malignant brain tumor in adults with a median survival time less than one year. To date, there are only a limited number of effective agents available for GBM therapy and this does not seem to add much survival advantage over the conventional approach based on surgery and radiotherapy. Therefore, the development of novel therapeutic approaches to GBM is essential and those based on radionuclide therapy could be of significant clinical impact. Experimental evidence has clearly demonstrated that cancer cells have a particularly high fractional content of copper inside the nucleus compared to normal cells. This behavior can be conveniently exploited both for diagnosis and for delivering therapeutic payloads (theranostic) of the radionuclide copper-64 into the nucleus of cancerous cells by intravenous administration of its simplest chemical form as dichloride salt [64Cu]CuCl2. To evaluate the potential theranostic role of [64Cu]CuCl2 in GBM, the present work reports results from a preclinical study carried out in a xenografted GBM tumor mouse model. Biodistribution data of this new agent were collected using a small-animal PET tomograph. Subsequently, groups of tumor implanted nude mice were treated with [64Cu]CuCl2 to simulate single- and multiple-dose therapy protocols, and results were analyzed to estimate therapeutic efficacy.
Collapse
|
39
|
Zhu H, Zhao C, Liu F, Wang L, Feng J, Zhou Z, Qu L, Shou C, Yang Z. Radiolabeling and evaluation of (64)Cu-DOTA-F56 peptide targeting vascular endothelial growth factor receptor 1 in the molecular imaging of gastric cancer. Am J Cancer Res 2015; 5:3301-3310. [PMID: 26807312 PMCID: PMC4697678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2015] [Accepted: 10/06/2015] [Indexed: 06/05/2023] Open
Abstract
Noninvasive imaging of vascular endothelial growth factor receptor 1 (VEGFR1) remains a great challenge in early diagnosis of gastric cancer. Here we reported the synthesis, radiolabeling, and evaluation of a novel (64)Cu-radiolabeled peptide for noninvasive positron emission tomography (PET) imaging of VEGFR1 positive gastric cancer. The binding of modified peptide WHSDMEWWYLLG (termed as F56) to VEGER-1 expressed in gastric cancer cell BCG823 has been confirmed by immune-fluorescence overlap. DOTA-F56 was designed and prepared by solid-phase synthesis and folded in vitro. (64)Cu-DOTA-F56 was synthesized in high radiochemical yield and high specific activity (S.A. up to 255.6 GBq/mmol). It has excellent in vitro stability. Micro-PET imaging of (64)Cu-DOTA-F56 identifies tumor in BCG823 tumor-bearing mice, while that of (18)F-FDG does not. Immunohistochemical analysis of excised BCG823 xenograft showed colocalization between the PET images and the staining of VEGFR1. These results demonstrated that (64)Cu-DOTA-F56 peptide has potential as a noninvasive imaging agent in VEGFR1 positive tumors.
Collapse
Affiliation(s)
- Hua Zhu
- Department of Nuclear Medicine, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & InstituteBeijing 100142, China
| | - Chuanke Zhao
- Department of Biochemistry and Molecular Biology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & InstituteBeijing 100142, China
| | - Fei Liu
- Department of Nuclear Medicine, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & InstituteBeijing 100142, China
| | - Lixin Wang
- Department of Biochemistry and Molecular Biology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & InstituteBeijing 100142, China
| | - Junnan Feng
- Department of Biochemistry and Molecular Biology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & InstituteBeijing 100142, China
| | - Zheng Zhou
- Department of Biochemistry and Molecular Biology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & InstituteBeijing 100142, China
| | - Like Qu
- Department of Biochemistry and Molecular Biology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & InstituteBeijing 100142, China
| | - Chengchao Shou
- Department of Biochemistry and Molecular Biology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & InstituteBeijing 100142, China
| | - Zhi Yang
- Department of Nuclear Medicine, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & InstituteBeijing 100142, China
| |
Collapse
|
40
|
Future Perspectives of Radionanomedicine Using the Novel Micelle-Encapsulation Method for Surface Modification. Nucl Med Mol Imaging 2015; 49:170-3. [PMID: 26279689 DOI: 10.1007/s13139-015-0358-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Revised: 07/19/2015] [Accepted: 07/21/2015] [Indexed: 12/26/2022] Open
Abstract
The emerging radionanomedicine has multifunctional and theranostic purposes. For these purposes, radionanomedicine should achieve the efficient and specific delivery of therapeutic agents by multifunctional characteristics, using low amounts of nanomaterials in vivo. Recent research on radiolabeled micelle-encapsulated nanomaterials has been made on the their efficacy and safety using a one-step surface modification method (Jeong's method). This one-step multifunctional approach to the nanoparticle can be the important challenge in producing effective nanoplatforms for cancer imaging and therapy.
Collapse
|
41
|
Duatti A. Molecular imaging with endogenous and exogenous ligands: The instance of antibodies, peptides, iodide and cupric ions. Nucl Med Biol 2015; 42:215-8. [DOI: 10.1016/j.nucmedbio.2014.11.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Revised: 11/14/2014] [Accepted: 11/15/2014] [Indexed: 02/05/2023]
|