1
|
Li P, Liu P, Zang D, Li C, Wang C, Zhu Y, Liu M, Lu L, Wu X, Nie H. Genome-Wide Identification and Expression Analysis of the BTB Gene Superfamily Provides Insight into Sex Determination and Early Gonadal Development of Alligator sinensis. Int J Mol Sci 2024; 25:10771. [PMID: 39409099 PMCID: PMC11477308 DOI: 10.3390/ijms251910771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/29/2024] [Accepted: 10/05/2024] [Indexed: 10/20/2024] Open
Abstract
The BTB gene superfamily is widely distributed among higher eukaryotes and plays a significant role in numerous biological processes. However, there is limited knowledge about the structure and function of BTB genes in the critically endangered species Alligator sinensis, which is endemic to China. A total of 170 BTB genes were identified from the A. sinensis genome, classified into 13 families, and unevenly distributed across 16 chromosomes. Analysis of gene duplication events yielded eight pairs of tandem duplication genes and six pairs of segmental duplication genes. Phylogenetics shows that the AsBTB genes are evolutionarily conserved. The cis-regulatory elements in the AsBTB family promoter region reveal their involvement in multiple biological processes. Protein interaction network analysis indicates that the protein interactions of the AsBTB genes are centered around CLU-3, mainly participating in the regulation of biological processes through the ubiquitination pathway. The expression profile and protein interaction network analysis of AsBTB genes during sex differentiation and early gonadal development indicate that AsBTB genes are widely expressed in this process and involves numerous genes and pathways for regulation. This study provides a basis for further investigation of the role of the BTB gene in sex differentiation and gonadal development in A. sinensis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Xiaobing Wu
- The Anhui Provincial Key Laboratory of Biodiversity Conservation and Ecological Security in the Yangtze River Basin, College of Life Science, Anhui Normal University, Wuhu 241000, China; (P.L.); (P.L.); (D.Z.); (C.L.); (C.W.); (Y.Z.); (M.L.); (L.L.)
| | - Haitao Nie
- The Anhui Provincial Key Laboratory of Biodiversity Conservation and Ecological Security in the Yangtze River Basin, College of Life Science, Anhui Normal University, Wuhu 241000, China; (P.L.); (P.L.); (D.Z.); (C.L.); (C.W.); (Y.Z.); (M.L.); (L.L.)
| |
Collapse
|
2
|
Feng B, Hu Y, Wang FH. Effects of ttk on development and courtship of male Nilaparvata lugens. PEST MANAGEMENT SCIENCE 2024. [PMID: 39172052 DOI: 10.1002/ps.8381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 07/05/2024] [Accepted: 08/07/2024] [Indexed: 08/23/2024]
Abstract
BACKGROUND The transcription product of tramtrack (ttk) is an important transcription factor which plays many roles in the regulation of the development, differentiation and chromosome recombination of organisms. Few studies have been reported on the specific functions of ttk in other insects except Drosophila melanogaster. Our aims are to reveal the ttk effects on development and courtship of male rice pest brown planthopper (BPH), Nilaparvata lugens. RESULTS In this study, we first assayed spatiotemporal expression of ttk in BPH, then treated the fourth nymphs of BPH with dsttk. We found most individuals died before emerging to adults, the adult eclosion rate was only 18.89%. No courtship behavior was found in individuals injected with dsttk. Further research showed that the main frequency of courtship vibration signal (CVS) 431.3 Hz in the individuals injected with dsttk was significantly higher than 223 Hz in the individuals injected with dsGFP, and female adults nearly had no response to the 431.3 Hz CVS. CONCLUSION We found that about 81% of the 4-instar nymphs of BPH treated with dsttk died before they emerged as adults, the successfully emerged adults emitted the 431.3 Hz CVS to which female adults did not respond and lost the ability of courtship. This was first finding about the functions of ttk in rice planthopper and illustrated the potential of ttk as target for RNAi to control rice planthopper. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Bo Feng
- State Key Laboratory for Biocontrol and Institute of Entomology, Sun Yat-sen University, Guangzhou, China
| | - Yang Hu
- State Key Laboratory for Biocontrol and Institute of Entomology, Sun Yat-sen University, Guangzhou, China
| | - Fang-Hai Wang
- State Key Laboratory for Biocontrol and Institute of Entomology, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
3
|
Mandal SN, Sanchez J, Bhowmick R, Bello OR, Van-Beek CR, de Los Reyes BG. Novel genes and alleles of the BTB/POZ protein family in Oryza rufipogon. Sci Rep 2023; 13:15466. [PMID: 37726366 PMCID: PMC10509276 DOI: 10.1038/s41598-023-41269-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 08/24/2023] [Indexed: 09/21/2023] Open
Abstract
The BTB/POZ family of proteins is widespread in plants and animals, playing important roles in development, growth, metabolism, and environmental responses. Although members of the expanded BTB/POZ gene family (OsBTB) have been identified in cultivated rice (Oryza sativa), their conservation, novelty, and potential applications for allele mining in O. rufipogon, the direct progenitor of O. sativa ssp. japonica and potential wide-introgression donor, are yet to be explored. This study describes an analysis of 110 BTB/POZ encoding gene loci (OrBTB) across the genome of O. rufipogon as outcomes of tandem duplication events. Phylogenetic grouping of duplicated OrBTB genes was supported by the analysis of gene sequences and protein domain architecture, shedding some light on their evolution and functional divergence. The O. rufipogon genome encodes nine novel BTB/POZ genes with orthologs in its distant cousins in the family Poaceae (Sorghum bicolor, Brachypodium distachyon), but such orthologs appeared to have been lost in its domesticated descendant, O. sativa ssp. japonica. Comparative sequence analysis and structure comparisons of novel OrBTB genes revealed that diverged upstream regulatory sequences and regulon restructuring are the key features of the evolution of this large gene family. Novel genes from the wild progenitor serve as a reservoir of potential new alleles that can bring novel functions to cultivars when introgressed by wide hybridization. This study establishes a foundation for hypothesis-driven functional genomic studies and their applications for widening the genetic base of rice cultivars through the introgression of novel genes or alleles from the exotic gene pool.
Collapse
Affiliation(s)
- Swarupa Nanda Mandal
- Department of Plant and Soil Science, Texas Tech University, Lubbock, TX, 79409, USA
| | - Jacobo Sanchez
- Department of Plant and Soil Science, Texas Tech University, Lubbock, TX, 79409, USA
| | - Rakesh Bhowmick
- ICAR-Vivekananda Parvatiya Krishi Anusandhan Sansthan, Almora, Uttarakhand, 263601, India
| | - Oluwatobi R Bello
- Department of Plant and Soil Science, Texas Tech University, Lubbock, TX, 79409, USA
| | - Coenraad R Van-Beek
- Department of Plant and Soil Science, Texas Tech University, Lubbock, TX, 79409, USA
| | | |
Collapse
|
4
|
Extracellular Vesicles Carrying miR-887-3p Promote Breast Cancer Cell Drug Resistance by Targeting BTBD7 and Activating the Notch1/Hes1 Signaling Pathway. DISEASE MARKERS 2022; 2022:5762686. [PMID: 35655918 PMCID: PMC9152417 DOI: 10.1155/2022/5762686] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 02/22/2022] [Accepted: 03/05/2022] [Indexed: 12/11/2022]
Abstract
Objective Chemoresistance remains the primary reason threatening the prognosis of breast cancer (BC) patients. Extracellular vesicles (EVs) contribute to chemoresistance by carrying microRNAs (miRNAs). This study investigated the mechanism of miR-887-3p mediated by EVs in BC cell drug resistance. Methods MDA-MB-231-derived EVs were extracted and identified. BC cells were treated with different concentrations of doxorubicin, cisplatin, and fulvestrant, and the cell survival was evaluated. PKH26-labeled EVs were cocultured with BC cells, and the uptake of EVs was observed. miR-887-3p expression in BC cells and EVs was detected. After silencing miR-887-3p in MDA-MB-231 cells, BC cells were treated with EV-inhi to observe drug resistance. The target gene of miR-887-3p was predicted and verified. The levels of downstream Notch1/Hes1 pathway were detected. Xenograft experiment was conducted to evaluate the effect of EVs on the growth and drug resistance in vivo. Results MDA-MB-231-derived EVs enhanced the drug resistance of BC cells. EVs carried miR-887-3p into BC cells. miR-887-3p expression was elevated in BC cells and EVs. miR-887-3p inhibition reduced the drug resistance of BC cells. miR-887-3p targeted BTBD7. Overexpression of BTBD7 partially reversed the drug resistance of BC cells caused by EV treatment. EV treatment increased the level of Notch1/Hes1, and overexpression of BTBD7 decreased the level of Notch1/Hes1. In vivo experiments further validated the results of in vitro experiments. Conclusion EVs carrying miR-887-3p could target BTBD7 and activate the Notch1/Hes1 signaling pathway, thereby promoting BC cell drug resistance. This study may offer novel insights into BC treatment.
Collapse
|
5
|
Kattupalli D, Barbadikar KM, Balija V, Ballichatla S, R A, Padmakumari AP, Saxena S, Gaikwad K, Yerram S, Kokku P, Madhav MS. The Draft Genome of Yellow Stem Borer, an Agriculturally Important Pest, Provides Molecular Insights into Its Biology, Development and Specificity Towards Rice for Infestation. INSECTS 2021; 12:insects12060563. [PMID: 34205299 PMCID: PMC8234988 DOI: 10.3390/insects12060563] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 05/20/2021] [Accepted: 05/23/2021] [Indexed: 11/16/2022]
Abstract
Simple Summary Yellow stem borer (YSB), is the most destructive and widely occurring pest that attacks rice throughout the growing season. Rice (Oryza sativa L.) is a major staple cereal worldwide, providing essential caloric requirements for more than half of the world’s population. Annual losses to rice borers are approximately 5–10%, but losses in individual fields may reach up to 50–60%. The use of traditional pest management strategies in controlling YSB is somewhat challenging due to its unique internal feeding habit. Genome sequence information of economically important crop pests is important for designing or developing pest-resistant rice varieties. In an approach to achieve this, we present our first-ever study on the draft genome sequence of YSB. The information provided from our current study might be useful in developing genome-based approaches for the management of pest species. Abstract Yellow stem borer (YSB), Scirpophaga incertulas (Walker) (Lepidoptera: Crambidae), a major monophagous insect pest of rice, causes significant yield losses. The rice–YSB interaction is very dynamic, making it difficult for management. The development of resistant lines has been unsuccessful as there are no effective resistant sources in the germplasm. Genome information is necessary for a better understanding of interaction with rice in terms of its recognition, response, and infestation mechanism. The draft genome of YSB is predicted to have 46,057 genes with an estimated size of 308 Mb, being correlated with the flow cytometry analysis. The existence of complex metabolic mechanisms and genes related to specific behavior was identified, being conditioned by a higher level of regulation. We deciphered the possible visual, olfactory, and gustatory mechanisms responsible for its evolution as a monophagous pest. Comparative genomic analysis revealed that YSB is unique in the way it has evolved. The obvious presence of high-immunity-related genes, well-developed RNAi machinery, and diverse effectors provides a means for developing genomic tools for its management. The identified 21,696 SSR markers can be utilized for diversity analysis of populations across the rice-growing regions. We present the first draft genome of YSB. The information emanated paves a way for biologists to design novel pest management strategies as well as for the industry to design new classes of safer and specific insecticide molecules.
Collapse
Affiliation(s)
- Divya Kattupalli
- Biotechnology Section, Division of Crop Improvement, ICAR-Indian Institute of Rice Research, Hyderabad 500030, India; (D.K.); (K.M.B.); (V.B.); (S.B.)
| | - Kalyani M. Barbadikar
- Biotechnology Section, Division of Crop Improvement, ICAR-Indian Institute of Rice Research, Hyderabad 500030, India; (D.K.); (K.M.B.); (V.B.); (S.B.)
| | - Vishalakshi Balija
- Biotechnology Section, Division of Crop Improvement, ICAR-Indian Institute of Rice Research, Hyderabad 500030, India; (D.K.); (K.M.B.); (V.B.); (S.B.)
| | - Suneel Ballichatla
- Biotechnology Section, Division of Crop Improvement, ICAR-Indian Institute of Rice Research, Hyderabad 500030, India; (D.K.); (K.M.B.); (V.B.); (S.B.)
| | - Athulya R
- Entomology Section, Division of Crop Protection, ICAR-Indian Institute of Rice Research, Hyderabad 500030, India; (A.R.); (A.P.P.); (S.Y.)
| | - Ayyagari Phani Padmakumari
- Entomology Section, Division of Crop Protection, ICAR-Indian Institute of Rice Research, Hyderabad 500030, India; (A.R.); (A.P.P.); (S.Y.)
| | - Swati Saxena
- Genomics Lab, ICAR-National Institute of Plant Biotechnology, New Delhi 110012, India; (S.S.); (K.G.)
| | - Kishor Gaikwad
- Genomics Lab, ICAR-National Institute of Plant Biotechnology, New Delhi 110012, India; (S.S.); (K.G.)
| | - Sridhar Yerram
- Entomology Section, Division of Crop Protection, ICAR-Indian Institute of Rice Research, Hyderabad 500030, India; (A.R.); (A.P.P.); (S.Y.)
| | - Premalatha Kokku
- Department of Chemistry, Osmania University, Hyderabad 500007, India;
| | - Maganti Sheshu Madhav
- Biotechnology Section, Division of Crop Improvement, ICAR-Indian Institute of Rice Research, Hyderabad 500030, India; (D.K.); (K.M.B.); (V.B.); (S.B.)
- Correspondence:
| |
Collapse
|
6
|
Zhao X, Zhang J, Yang Y, Liu W, Zhang J. BTB domain-containing protein 6 is involved in the development of locust wings during the nymph to adult transition. Int J Biol Macromol 2020; 150:965-973. [DOI: 10.1016/j.ijbiomac.2019.10.267] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 07/16/2019] [Accepted: 10/28/2019] [Indexed: 02/03/2023]
|
7
|
BTBD7 Downregulates E-Cadherin and Promotes Epithelial-Mesenchymal Transition in Lung Cancer. BIOMED RESEARCH INTERNATIONAL 2019; 2019:5937635. [PMID: 31886230 PMCID: PMC6900955 DOI: 10.1155/2019/5937635] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 10/22/2019] [Indexed: 12/22/2022]
Abstract
Metastasis is the leading cause of lung cancer-associated death. Downregulated expression of E-cadherin followed by epithelial-mesenchymal transition (EMT) is critical for metastasis initiation in lung cancer. BTBD7 plays essential roles in lung cancer metastasis, but the mechanisms remain unknown. This study aimed to investigate the relationship between BTBD7 and E-cadherin in lung cancer and explore the role of BTBD7 in EMT. Fresh lung cancer and paracancer tissue specimens were collected from 30 patients, and the expression of BTBD7, E-cadherin, N-cadherin, fibronectin, and vimentin was analyzed by qRT-PCR, western blotting, and immunohistochemistry. A549 and HBE cells were cultured and treated with TGF-β1 for 72 h to induce EMT. Western blotting and qRT-PCR were performed to evaluate the expression of BTBD7, E-cadherin, N-cadherin, fibronectin, and vimentin. Then, A549 cells were treated separately with the BTBD7-ENTER plasmid, BTBD7-siRNA, and paclitaxel. After TGF-β1-induced EMT, the abovementioned markers were analyzed by western blotting and qRT-PCR. Wound healing assays were applied to assess the migration ability of cells in different groups. For animal experiments, A549 cells transfected with the BTBD7-ENTER plasmid were transplanted into BALB/c nude mice. After 4 weeks, all nude mice were sacrificed, and tumor tissues were harvested for qRT-PCR, western blot, and immunohistochemical analyses of the abovementioned markers. All experimental results showed that the levels of BTBD7, N-cadherin, fibronectin, and vimentin were increased in lung cancer tissues and cells, while the E-cadherin level was decreased. Transfection experiments showed that BTBD7 inhibited E-cadherin expression and enhanced EMT. Moreover, the migration capacity of lung cancer cells was increased by the high level of BTBD7. We concluded that BTBD7 is highly expressed during lung cancer development and metastasis and can inhibit the expression of E-cadherin and promote EMT in lung cancer. BTBD7 may thus be a therapeutic target for lung cancer.
Collapse
|
8
|
Genome-wide identification and transcriptome profiling reveal that E3 ubiquitin ligase genes relevant to ethylene, auxin and abscisic acid are differentially expressed in the fruits of melting flesh and stony hard peach varieties. BMC Genomics 2019; 20:892. [PMID: 31752682 PMCID: PMC6873611 DOI: 10.1186/s12864-019-6258-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 10/31/2019] [Indexed: 01/04/2023] Open
Abstract
Background Ubiquitin ligases (E3) are the enzymes in the ubiquitin/26S proteasome pathway responsible for targeting proteins to the degradation pathway and play major roles in multiple biological activities. However, the E3 family and their functions are yet to be identified in the fruit of peach. Results In this study, genome-wide identification, classification and characterization of the E3 ligase genes within the genome of peach (Prunus persica) was carried out. In total, 765 E3 (PpE3) ligase genes were identified in the peach genome. The PpE3 ligase genes were divided into eight subfamilies according to the presence of known functional domains. The RBX subfamily was not detected in peach. The PpE3 ligase genes were not randomly distributed among the 8 chromosomes, with a greater concentration on the longer chromosomes. The primary mode of gene duplication of the PpE3 ligase genes was dispersed gene duplication (DSD). Four subgroups of the BTB subfamily never characterized before were newly identified in peach, namely BTBAND, BTBBL, BTBP and BTBAN. The expression patterns of the identified E3 ligase genes in two peach varieties that display different types of fruit softening (melting flesh, MF, and stony hard, SH) were analyzed at 4 different stages of ripening using Illumina technology. Among the 765 PpE3 ligase genes, 515 (67.3%) were expressed (FPKM > 1) in the fruit of either MF or SH during fruit ripening. In same-stage comparisons, 231 differentially expressed genes (DEGs) were identified between the two peach cultivars. The number of DEGs in each subfamily varied. Most DEGs were members of the BTB, F-box, U-box and RING subfamilies. PpE3 ligase genes predicted to be involved in ethylene, auxin, or ABA synthesis or signaling and DNA methylation were differentially regulated. Eight PpE3 ligase genes with possible roles in peach flesh texture and fruit ripening were discussed. Conclusions The results of this study provide useful information for further understanding the functional roles of the ubiquitin ligase genes in peach. The findings also provide the first clues that E3 ligase genes may function in the regulation of peach ripening.
Collapse
|
9
|
Han PL, Wang CK, Liu XJ, Dong YH, Jiang H, Hu DG, Hao YJ. BTB-BACK Domain E3 Ligase MdPOB1 Suppresses Plant Pathogen Defense against Botryosphaeria dothidea by Ubiquitinating and Degrading MdPUB29 Protein in Apple. PLANT & CELL PHYSIOLOGY 2019; 60:2129-2140. [PMID: 31165159 DOI: 10.1093/pcp/pcz106] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 05/15/2019] [Indexed: 05/20/2023]
Abstract
Apple ring rot is a severe disease that affects the yield and quality of apple fruits worldwide. However, the underlying molecular mechanism that involved in this process still remains largely unexplored. Here, we report that apple POZ/BTB CONTAINING-PROTEIN 1 (MdPOB1), a BTB-BACK domain E3 ligase protein, functions to suppress apple pathogen defense against Botryosphaeria dothidea (B. dothidea). Both in vitro and in vivo assays indicated that MdPOB1 interacted directly with and degraded apple U-box E3 ligase MdPUB29, a well-established positive regulator of plant innate immunity, through the ubiquitin/26S proteasome pathway. A series of transgenic analyses in apple fruits demonstrated that MdPOB1 affected apple pathogen defense against B. dothidea at least partially, if not completely, via regulating MdPUB29. Additionally, it was found that the apple pathogen defense against B. dothidea was correlated with the H2O2 contents and the relative expression of salicylic acid (SA) synthesis- and SA signaling-related genes, which might be regulated via degradation of MdPUB29 by MdPOB1. Overall, our findings provide new insights into the mechanism of the MdPOB1 modulation of apple ring rot resistance, which occur by directly regulating potential downstream target protein MdPUB29 for proteasomal degradation in apple.
Collapse
Affiliation(s)
- Peng-Liang Han
- National Key Laboratory of Crop Biology, MOA Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, China
| | - Chu-Kun Wang
- National Key Laboratory of Crop Biology, MOA Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, China
| | - Xiao-Juan Liu
- Research Institute of Forestry Chinese Academy of Forestry, Beijing, China
| | - Yuan-Hua Dong
- National Key Laboratory of Crop Biology, MOA Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, China
| | - Han Jiang
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China
| | - Da-Gang Hu
- National Key Laboratory of Crop Biology, MOA Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, China
| | - Yu-Jin Hao
- National Key Laboratory of Crop Biology, MOA Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, China
| |
Collapse
|
10
|
Hyde CJ, Elizur A, Ventura T. The crustacean ecdysone cassette: A gatekeeper for molt and metamorphosis. J Steroid Biochem Mol Biol 2019; 185:172-183. [PMID: 30157455 DOI: 10.1016/j.jsbmb.2018.08.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 08/21/2018] [Accepted: 08/25/2018] [Indexed: 10/28/2022]
Abstract
Arthropods have long been utilized as models to explore molecular function, and the findings derived from them can be applied throughout metazoa, including as a basis for medical research. This has led to the adoption of many representative insect models beyond Drosophila, as each lends its own unique perspective to questions in endocrinology and genetics. However, non-insect arthropods are yet to be realised for the potential insight they may provide in such studies. The Crustacea are among the most ancient arthropods from which insects descended, comprising a huge variety of life histories and ecological roles. Of the events in a typical crustacean development, metamorphosis is perhaps the most ubiquitous, challenging and highly studied. Despite this, our knowledge of the endocrinology which underpins metamorphosis is rudimentary at best; although several key molecules have been identified and studied in depth, the link between them is quite nebulous and leans heavily on well-explored insect models, which diverged from the Pancrustacea over 450 million years ago. As omics technologies become increasingly accessible, they bring the prospect of explorative molecular research which will allow us to uncover components and pathways unique to crustaceans. This review reconciles known components of crustacean metamorphosis and reflects on our findings in insects to outline a future search space, with focus given to the ecdysone cascade. To expand our knowledge of this ubiquitous endocrine system not only aids in our understanding of crustacean metamorphosis, but also provides a deeper insight into the adaptive capacity of arthropods throughout evolution.
Collapse
Affiliation(s)
- Cameron J Hyde
- Genecology Research Centre, Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, 4 Locked Bag, Maroochydore, Queensland, 4558, Australia
| | - Abigail Elizur
- Genecology Research Centre, Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, 4 Locked Bag, Maroochydore, Queensland, 4558, Australia
| | - Tomer Ventura
- Genecology Research Centre, Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, 4 Locked Bag, Maroochydore, Queensland, 4558, Australia.
| |
Collapse
|
11
|
Genome-Wide Identification and Characterization of WD40 Protein Genes in the Silkworm, Bombyx mori. Int J Mol Sci 2018; 19:ijms19020527. [PMID: 29425159 PMCID: PMC5855749 DOI: 10.3390/ijms19020527] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 01/27/2018] [Accepted: 02/06/2018] [Indexed: 12/18/2022] Open
Abstract
WD40 proteins are scaffolding molecules in protein-protein interactions and play crucial roles in fundamental biological processes. Genome-wide characterization of WD40 proteins in animals has been conducted solely in humans. We retrieved 172 WD40 protein genes in silkworm (BmWD40s) and identified these genes in 7 other insects, 9 vertebrates and 5 nematodes. Comparative analysis revealed that the WD40 protein gene family underwent lineage-specific expansions during animal evolution, but did not undergo significant expansion during insect evolution. The BmWD40s were categorized into five clusters and 12 classes according to the phylogenetic classification and their domain architectures, respectively. Sequence analyses indicated that tandem and segmental duplication played minor roles in producing the current number of BmWD40s, and domain recombination events of multi-domain BmWD40s might have occurred mainly after gene duplication events. Gene Ontology (GO) analysis revealed that a higher proportion of BmWD40s was involved in processes, such as binding, transcription-regulation and cellular component biogenesis, compared to all silkworm genes annotated in GO. Microarray-based analysis demonstrated that many BmWD40s had tissue-specific expression and exhibited high and/or sex-related expression during metamorphosis. These findings contribute to a better understanding of the evolution of the animal WD40 protein family and assist the study of the functions of BmWD40s.
Collapse
|
12
|
Li J, Su X, Wang Y, Yang W, Pan Y, Su C, Zhang X. Genome-wide identification and expression analysis of the BTB domain-containing protein gene family in tomato. Genes Genomics 2017; 40:1-15. [PMID: 29892895 DOI: 10.1007/s13258-017-0604-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 08/03/2017] [Indexed: 01/01/2023]
Abstract
BTB (broad-complex, tramtrack, and bric-a-brac) family proteins are characterized by the presence of a protein-protein interaction BTB domain. BTB proteins have diverse functions, including transcriptional regulation, protein degradation, chromatin remodeling, and cytoskeletal regulation. However, little is known about this gene family in tomato (Solanum lycopersicum), the most important model plant for crop species. In this study, 38 BTB genes were identified based on tomato whole-genome sequence. Phylogenetic analysis of BTB proteins in tomato revealed that SlBTB proteins could be divided into at least 4 subfamilies. The SlBTB proteins contains 1-3 BTB domains, and several other types of functional domains, including KCTD (Potassium channel tetramerization domain-containing), the MATH (meprin and TRAF homology), ANK (Ankyrin repeats), NPR1 (nonexpressor of pathogenesis-related proteins1), NPH3 (Nonphototropic Hypocotyl 3), TAZ zinc finger, C-terminal Kelch, Skp1 and Arm (Armadillo/beta-catenin-like repeat) domains are also found in some tomato BTB proteins. Moreover, their expression patterns in tissues/stages, in response to different abiotic stress treatments and hormones were also investigated. This study provides the first comprehensive analysis of BTB gene family in the tomato genome. The data will undoubtedly be useful for better understanding the potential functions of BTB genes, and their possible roles in mediating hormone cross-talk and abiotic stress in tomato as well as in some other relative species.
Collapse
Affiliation(s)
- Jinhua Li
- Key Laboratory of Horticulture Science for Southern Mountainous Regions, Ministry of Education; College of Horticulture and Landscape Architechture, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing, 400715, China
| | - Xiaoxing Su
- Key Laboratory of Horticulture Science for Southern Mountainous Regions, Ministry of Education; College of Horticulture and Landscape Architechture, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing, 400715, China
| | - Yinlei Wang
- Institute of Vegetable Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Wei Yang
- Key Laboratory of Horticulture Science for Southern Mountainous Regions, Ministry of Education; College of Horticulture and Landscape Architechture, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing, 400715, China
| | - Yu Pan
- Key Laboratory of Horticulture Science for Southern Mountainous Regions, Ministry of Education; College of Horticulture and Landscape Architechture, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing, 400715, China
| | - Chenggang Su
- Key Laboratory of Horticulture Science for Southern Mountainous Regions, Ministry of Education; College of Horticulture and Landscape Architechture, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing, 400715, China
| | - Xingguo Zhang
- Key Laboratory of Horticulture Science for Southern Mountainous Regions, Ministry of Education; College of Horticulture and Landscape Architechture, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing, 400715, China.
| |
Collapse
|