1
|
Gnondjui AA, Toure OA, Ako BA, Koui TS, Assohoun SE, Gbessi EA, N'Guessan LT, Tuo K, Beourou S, Assi SB, Yapo FA, Sanogo I, Jambou R. In vitro delayed response to dihydroartemisinin of malaria parasites infecting sickle cell erythocytes. Malar J 2024; 23:9. [PMID: 38178227 PMCID: PMC10768257 DOI: 10.1186/s12936-023-04819-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 12/09/2023] [Indexed: 01/06/2024] Open
Abstract
BACKGROUND Decreased efficacy of artemisinin-based combination therapy (ACT) for Plasmodium falciparum malaria has been previously reported in patients with sickle cell disease (SCD). The main purpose of this study was to investigate the in vitro susceptibility of isolates to dihydro-artemisinin (DHA) to provide a hypothesis to explain this treatment failure. METHODS Isolates were collected from patients attending health centres in Abidjan with uncomplicated P. falciparum malaria. The haemoglobin type has been identified and in vitro drug sensitivity tests were conducted with the ring stage assay and maturation inhibition assay. RESULTS 134 isolates were obtained. Parasitaemia and haemoglobin levels at inclusion were lower in patients with haemoglobin HbSS and HbSC than in patients with normal HbAA. After ex vivo RSA and drug inhibition assays, the lowest rate of parasitic growth was found with isolates from HbAS red cells. Conversely, a significantly higher survival rate of parasites ranging from 15 to 34% were observed in isolates from HbSS. Isolates with in vitro reduced DHA sensitivity correlate with lower RBC count and haematocrit and higher parasitaemia at inclusion compared to those with isolates with normal DHA sensitivity. However, this decrease of in vitro sensitivity to DHA was not associated with Kelch 13-Propeller gene polymorphism. CONCLUSION This study highlights an in vitro decreased sensitivity to DHA, for isolates collected from HbSS patients, not related to the Pfkelch13 gene mutations. These results are in line with recent studies pointing out the role of the redox context in the efficacy of the drug. Indeed, SCD red cells harbour a highly different ionic and redox context in comparison with normal red cells. This study offers new insights into the understanding of artemisinin selective pressure on the malaria parasite in the context of haemoglobinopathies in Africa.
Collapse
Affiliation(s)
- Albert A Gnondjui
- Unité de Paludologie, Institut Pasteur Côte d'Ivoire, 01 BP 490, Abidjan 01, Côte d'Ivoire
- Laboratoire Biologie et Santé, Université Felix Houphouët Boigny, Abidjan, Côte d'Ivoire
| | - Offianan A Toure
- Unité de Paludologie, Institut Pasteur Côte d'Ivoire, 01 BP 490, Abidjan 01, Côte d'Ivoire
| | - Berenger A Ako
- Unité de Paludologie, Institut Pasteur Côte d'Ivoire, 01 BP 490, Abidjan 01, Côte d'Ivoire
| | - Tossea S Koui
- Unité de Paludologie, Institut Pasteur Côte d'Ivoire, 01 BP 490, Abidjan 01, Côte d'Ivoire
- Laboratoire Biologie et Santé, Université Felix Houphouët Boigny, Abidjan, Côte d'Ivoire
| | - Stanislas E Assohoun
- Laboratoire de Mécanique et Informatique, Université Felix Houphouët BoignyCôte d'Ivoire, Abidjan, Côte d'Ivoire
| | - Eric A Gbessi
- Unité de Paludologie, Institut Pasteur Côte d'Ivoire, 01 BP 490, Abidjan 01, Côte d'Ivoire
- Laboratoire Biologie et Santé, Université Felix Houphouët Boigny, Abidjan, Côte d'Ivoire
| | - Landry T N'Guessan
- Unité de Paludologie, Institut Pasteur Côte d'Ivoire, 01 BP 490, Abidjan 01, Côte d'Ivoire
| | - Karim Tuo
- Unité de Paludologie, Institut Pasteur Côte d'Ivoire, 01 BP 490, Abidjan 01, Côte d'Ivoire
| | - Sylvain Beourou
- Unité de Paludologie, Institut Pasteur Côte d'Ivoire, 01 BP 490, Abidjan 01, Côte d'Ivoire
| | - Serge-Brice Assi
- Institut Pierre Richet/Programme National de Lutte contre le Paludisme, Bouaké, Côte d'Ivoire
| | - Francis A Yapo
- Laboratoire Biologie et Santé, Université Felix Houphouët Boigny, Abidjan, Côte d'Ivoire
| | | | - Ronan Jambou
- Unité de Paludologie, Institut Pasteur Côte d'Ivoire, 01 BP 490, Abidjan 01, Côte d'Ivoire.
- Global Health Department, Institut Pasteur Paris, 25 rue du Dr Roux, 75015, Paris, France.
| |
Collapse
|
2
|
Gupta Y, Sharma N, Singh S, Romero JG, Rajendran V, Mogire RM, Kashif M, Beach J, Jeske W, Poonam, Ogutu BR, Kanzok SM, Akala HM, Legac J, Rosenthal PJ, Rademacher DJ, Durvasula R, Singh AP, Rathi B, Kempaiah P. The Multistage Antimalarial Compound Calxinin Perturbates P. falciparum Ca 2+ Homeostasis by Targeting a Unique Ion Channel. Pharmaceutics 2022; 14:1371. [PMID: 35890267 PMCID: PMC9319510 DOI: 10.3390/pharmaceutics14071371] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/30/2022] [Accepted: 06/07/2022] [Indexed: 12/22/2022] Open
Abstract
Malaria elimination urgently needs novel antimalarial therapies that transcend resistance, toxicity, and high costs. Our multicentric international collaborative team focuses on developing multistage antimalarials that exhibit novel mechanisms of action. Here, we describe the design, synthesis, and evaluation of a novel multistage antimalarial compound, 'Calxinin'. A compound that consists of hydroxyethylamine (HEA) and trifluoromethyl-benzyl-piperazine. Calxinin exhibits potent inhibitory activity in the nanomolar range against the asexual blood stages of drug-sensitive (3D7), multidrug-resistant (Dd2), artemisinin-resistant (IPC4912), and fresh Kenyan field isolated Plasmodium falciparum strains. Calxinin treatment resulted in diminished maturation of parasite sexual precursor cells (gametocytes) accompanied by distorted parasite morphology. Further, in vitro liver-stage testing with a mouse model showed reduced parasite load at an IC50 of 79 nM. A single dose (10 mg/kg) of Calxinin resulted in a 30% reduction in parasitemia in mice infected with a chloroquine-resistant strain of the rodent parasite P. berghei. The ex vivo ookinete inhibitory concentration within mosquito gut IC50 was 150 nM. Cellular in vitro toxicity assays in the primary and immortalized human cell lines did not show cytotoxicity. A computational protein target identification pipeline identified a putative P. falciparum membrane protein (Pf3D7_1313500) involved in parasite calcium (Ca2+) homeostasis as a potential Calxinin target. This highly conserved protein is related to the family of transient receptor potential cation channels (TRP-ML). Target validation experiments showed that exposure of parasitized RBCs (pRBCs) to Calxinin induces a rapid release of intracellular Ca2+ from pRBCs; leaving de-calcinated parasites trapped in RBCs. Overall, we demonstrated that Calxinin is a promising antimalarial lead compound with a novel mechanism of action and with potential therapeutic, prophylactic, and transmission-blocking properties against parasites resistant to current antimalarials.
Collapse
Affiliation(s)
- Yash Gupta
- Infectious Diseases, Mayo Clinic, Jacksonville, FL 32224, USA; (Y.G.); (R.D.)
| | - Neha Sharma
- Laboratory for Translational Chemistry and Drug Discovery, Department of Chemistry, Hansraj College, University of Delhi, New Delhi 110021, India; (N.S.); (S.S.)
| | - Snigdha Singh
- Laboratory for Translational Chemistry and Drug Discovery, Department of Chemistry, Hansraj College, University of Delhi, New Delhi 110021, India; (N.S.); (S.S.)
| | - Jesus G. Romero
- Stritch School of Medicine, Loyola University Chicago, Chicago, IL 60660, USA; (J.G.R.); (J.B.); (W.J.); (D.J.R.)
- School of Biology, Institute of Experimental Biology, Central University of Venezuela, Caracas 1040, Venezuela
| | - Vinoth Rajendran
- Department of Microbiology, School of Life Sciences, Pondicherry University, Puducherry 605014, India;
| | - Reagan M. Mogire
- Centre Clinical Research, Kenya Medical Research Institute, Nairobi P.O. Box 54840-00200, Kenya; (R.M.M.); (B.R.O.); (H.M.A.)
| | - Mohammad Kashif
- Infectious Diseases Laboratory, National Institute of Immunology, New Delhi 110067, India; (M.K.); (A.P.S.)
| | - Jordan Beach
- Stritch School of Medicine, Loyola University Chicago, Chicago, IL 60660, USA; (J.G.R.); (J.B.); (W.J.); (D.J.R.)
| | - Walter Jeske
- Stritch School of Medicine, Loyola University Chicago, Chicago, IL 60660, USA; (J.G.R.); (J.B.); (W.J.); (D.J.R.)
| | - Poonam
- Department of Chemistry, Miranda House, University of Delhi, New Delhi 110021, India;
- Delhi School of Public Health, Institute of Eminence, University of Delhi, New Delhi 110007, India
| | - Bernhards R. Ogutu
- Centre Clinical Research, Kenya Medical Research Institute, Nairobi P.O. Box 54840-00200, Kenya; (R.M.M.); (B.R.O.); (H.M.A.)
| | - Stefan M. Kanzok
- Department of Biology, Loyola University Chicago, Chicago, IL 60660, USA;
| | - Hoseah M. Akala
- Centre Clinical Research, Kenya Medical Research Institute, Nairobi P.O. Box 54840-00200, Kenya; (R.M.M.); (B.R.O.); (H.M.A.)
| | - Jennifer Legac
- Department of Medicine, University of California San Francisco, San Francisco, CA 94158, USA; (J.L.); (P.J.R.)
| | - Philip J. Rosenthal
- Department of Medicine, University of California San Francisco, San Francisco, CA 94158, USA; (J.L.); (P.J.R.)
| | - David J. Rademacher
- Stritch School of Medicine, Loyola University Chicago, Chicago, IL 60660, USA; (J.G.R.); (J.B.); (W.J.); (D.J.R.)
- Core Imaging Facility and Department of Microbiology and Immunology, Loyola University Chicago, Maywood, IL 60153, USA
| | - Ravi Durvasula
- Infectious Diseases, Mayo Clinic, Jacksonville, FL 32224, USA; (Y.G.); (R.D.)
| | - Agam P. Singh
- Infectious Diseases Laboratory, National Institute of Immunology, New Delhi 110067, India; (M.K.); (A.P.S.)
| | - Brijesh Rathi
- Laboratory for Translational Chemistry and Drug Discovery, Department of Chemistry, Hansraj College, University of Delhi, New Delhi 110021, India; (N.S.); (S.S.)
- Delhi School of Public Health, Institute of Eminence, University of Delhi, New Delhi 110007, India
| | - Prakasha Kempaiah
- Infectious Diseases, Mayo Clinic, Jacksonville, FL 32224, USA; (Y.G.); (R.D.)
| |
Collapse
|
3
|
van Heerden A, van Wyk R, Birkholtz LM. Machine Learning Uses Chemo-Transcriptomic Profiles to Stratify Antimalarial Compounds With Similar Mode of Action. Front Cell Infect Microbiol 2021; 11:688256. [PMID: 34268139 PMCID: PMC8277430 DOI: 10.3389/fcimb.2021.688256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 06/04/2021] [Indexed: 11/26/2022] Open
Abstract
The rapid development of antimalarial resistance motivates the continued search for novel compounds with a mode of action (MoA) different to current antimalarials. Phenotypic screening has delivered thousands of promising hit compounds without prior knowledge of the compounds’ exact target or MoA. Whilst the latter is not initially required to progress a compound in a medicinal chemistry program, identifying the MoA early can accelerate hit prioritization, hit-to-lead optimization and preclinical combination studies in malaria research. The effects of drug treatment on a cell can be observed on systems level in changes in the transcriptome, proteome and metabolome. Machine learning (ML) algorithms are powerful tools able to deconvolute such complex chemically-induced transcriptional signatures to identify pathways on which a compound act and in this manner provide an indication of the MoA of a compound. In this study, we assessed different ML approaches for their ability to stratify antimalarial compounds based on varied chemically-induced transcriptional responses. We developed a rational gene selection approach that could identify predictive features for MoA to train and generate ML models. The best performing model could stratify compounds with similar MoA with a classification accuracy of 76.6 ± 6.4%. Moreover, only a limited set of 50 biomarkers was required to stratify compounds with similar MoA and define chemo-transcriptomic fingerprints for each compound. These fingerprints were unique for each compound and compounds with similar targets/MoA clustered together. The ML model was specific and sensitive enough to group new compounds into MoAs associated with their predicted target and was robust enough to be extended to also generate chemo-transcriptomic fingerprints for additional life cycle stages like immature gametocytes. This work therefore contributes a new strategy to rapidly, specifically and sensitively indicate the MoA of compounds based on chemo-transcriptomic fingerprints and holds promise to accelerate antimalarial drug discovery programs.
Collapse
Affiliation(s)
- Ashleigh van Heerden
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Hatfield, South Africa.,University of Pretoria Institute for Sustainable Malaria Control, University of Pretoria, Hatfield, South Africa
| | - Roelof van Wyk
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Hatfield, South Africa.,University of Pretoria Institute for Sustainable Malaria Control, University of Pretoria, Hatfield, South Africa
| | - Lyn-Marie Birkholtz
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Hatfield, South Africa.,University of Pretoria Institute for Sustainable Malaria Control, University of Pretoria, Hatfield, South Africa
| |
Collapse
|
4
|
Gupta Y, Goicoechea S, Pearce CM, Mathur R, Romero JG, Kwofie SK, Weyenberg MC, Daravath B, Sharma N, Poonam, Akala HM, Kanzok SM, Durvasula R, Rathi B, Kempaiah P. The emerging paradigm of calcium homeostasis as a new therapeutic target for protozoan parasites. Med Res Rev 2021; 42:56-82. [PMID: 33851452 DOI: 10.1002/med.21804] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 10/10/2020] [Accepted: 03/31/2021] [Indexed: 12/13/2022]
Abstract
Calcium channels (CCs), a group of ubiquitously expressed membrane proteins, are involved in many pathophysiological processes of protozoan parasites. Our understanding of CCs in cell signaling, organelle function, cellular homeostasis, and cell cycle control has led to improved insights into their structure and functions. In this article, we discuss CCs characteristics of five major protozoan parasites Plasmodium, Leishmania, Toxoplasma, Trypanosoma, and Cryptosporidium. We provide a comprehensive review of current antiparasitic drugs and the potential of using CCs as new therapeutic targets. Interestingly, previous studies have demonstrated that human CC modulators can kill or sensitize parasites to antiparasitic drugs. Still, none of the parasite CCs, pumps, or transporters has been validated as drug targets. Information for this review draws from extensive data mining of genome sequences, chemical library screenings, and drug design studies. Parasitic resistance to currently approved therapeutics is a serious and emerging threat to both disease control and management efforts. In this article, we suggest that the disruption of calcium homeostasis may be an effective approach to develop new anti-parasite drug candidates and reduce parasite resistance.
Collapse
Affiliation(s)
- Yash Gupta
- Infectious Diseases, Mayo Clinic, Jacksonville, Florida, 32224, USA
| | - Steven Goicoechea
- Stritch School of Medicine, Loyola University Chicago, Chicago, Illinois, USA
| | - Catherine M Pearce
- Stritch School of Medicine, Loyola University Chicago, Chicago, Illinois, USA
| | - Raman Mathur
- Stritch School of Medicine, Loyola University Chicago, Chicago, Illinois, USA
| | - Jesus G Romero
- Stritch School of Medicine, Loyola University Chicago, Chicago, Illinois, USA
| | - Samuel K Kwofie
- Department of Biomedical Engineering, School of Engineering Sciences, College of Basic & Applied Sciences, West African Center for Cell Biology of Infectious Pathogens, Department of Biochemistry, Cell and Molecular Biology, College of Basic & Applied Sciences, University of Ghana, Accra, Ghana
| | - Matthew C Weyenberg
- Stritch School of Medicine, Loyola University Chicago, Chicago, Illinois, USA
| | - Bharathi Daravath
- Stritch School of Medicine, Loyola University Chicago, Chicago, Illinois, USA
| | - Neha Sharma
- Department of Chemistry, Hansraj College University Enclave, University of Delhi, Delhi, India
| | - Poonam
- Department of Chemistry, Miranda House University Enclave, University of Delhi, Delhi, India
| | | | - Stefan M Kanzok
- Department of Biology, Loyola University Chicago, Chicago, Illinois, USA
| | - Ravi Durvasula
- Infectious Diseases, Mayo Clinic, Jacksonville, Florida, 32224, USA
| | - Brijesh Rathi
- Department of Chemistry, Hansraj College University Enclave, University of Delhi, Delhi, India
| | | |
Collapse
|
5
|
Borges-Pereira L, Thomas SJ, Dos Anjos E Silva AL, Bartlett PJ, Thomas AP, Garcia CRS. The genetic Ca 2+ sensor GCaMP3 reveals multiple Ca 2+ stores differentially coupled to Ca 2+ entry in the human malaria parasite Plasmodium falciparum. J Biol Chem 2020; 295:14998-15012. [PMID: 32848018 DOI: 10.1074/jbc.ra120.014906] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 08/12/2020] [Indexed: 12/31/2022] Open
Abstract
Cytosolic Ca2+ regulates multiple steps in the host-cell invasion, growth, proliferation, and egress of blood-stage Plasmodium falciparum, yet our understanding of Ca2+ signaling in this endemic malaria parasite is incomplete. By using a newly generated transgenic line of P. falciparum (PfGCaMP3) that expresses constitutively the genetically encoded Ca2+ indicator GCaMP3, we have investigated the dynamics of Ca2+ release and influx elicited by inhibitors of the sarcoplasmic/endoplasmic reticulum Ca2+-ATPase pumps, cyclopiazonic acid (CPA), and thapsigargin (Thg). Here we show that in isolated trophozoite phase parasites: (i) both CPA and Thg release Ca2+ from intracellular stores in P. falciparum parasites; (ii) Thg is able to induce Ca2+ release from an intracellular compartment insensitive to CPA; (iii) only Thg is able to activate Ca2+ influx from extracellular media, through a mechanism resembling store-operated Ca2+ entry, typical of mammalian cells; and (iv) the Thg-sensitive Ca2+ pool is unaffected by collapsing the mitochondria membrane potential with the uncoupler carbonyl cyanide m-chlorophenyl hydrazone or the release of acidic Ca2+ stores with nigericin. These data suggest the presence of two Ca2+ pools in P. falciparum with differential sensitivity to the sarcoplasmic/endoplasmic reticulum Ca2+-ATPase pump inhibitors, and only the release of the Thg-sensitive Ca2+ store induces Ca2+ influx. Activation of the store-operated Ca2+ entry-like Ca2+ influx may be relevant for controlling processes such as parasite invasion, egress, and development mediated by kinases, phosphatases, and proteases that rely on Ca2+ levels for their activation.
Collapse
Affiliation(s)
- Lucas Borges-Pereira
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, Brasil; Department of Pharmacology, Physiology and Neuroscience, Rutgers University, New Jersey Medical School, Newark, New Jersey, USA
| | - Samantha J Thomas
- Department of Pharmacology, Physiology and Neuroscience, Rutgers University, New Jersey Medical School, Newark, New Jersey, USA
| | | | - Paula J Bartlett
- Department of Pharmacology, Physiology and Neuroscience, Rutgers University, New Jersey Medical School, Newark, New Jersey, USA
| | - Andrew P Thomas
- Department of Pharmacology, Physiology and Neuroscience, Rutgers University, New Jersey Medical School, Newark, New Jersey, USA.
| | - Célia R S Garcia
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, Brasil.
| |
Collapse
|
6
|
Chakraborty S, Roy S, Mistry HU, Murthy S, George N, Bhandari V, Sharma P. Potential Sabotage of Host Cell Physiology by Apicomplexan Parasites for Their Survival Benefits. Front Immunol 2017; 8:1261. [PMID: 29081773 PMCID: PMC5645534 DOI: 10.3389/fimmu.2017.01261] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 09/21/2017] [Indexed: 12/26/2022] Open
Abstract
Plasmodium, Toxoplasma, Cryptosporidium, Babesia, and Theileria are the major apicomplexan parasites affecting humans or animals worldwide. These pathogens represent an excellent example of host manipulators who can overturn host signaling pathways for their survival. They infect different types of host cells and take charge of the host machinery to gain nutrients and prevent itself from host attack. The mechanisms by which these pathogens modulate the host signaling pathways are well studied for Plasmodium, Toxoplasma, Cryptosporidium, and Theileria, except for limited studies on Babesia. Theileria is a unique pathogen taking into account the way it modulates host cell transformation, resulting in its clonal expansion. These parasites majorly modulate similar host signaling pathways, however, the disease outcome and effect is different among them. In this review, we discuss the approaches of these apicomplexan to manipulate the host–parasite clearance pathways during infection, invasion, survival, and egress.
Collapse
Affiliation(s)
| | - Sonti Roy
- National Institute of Animal Biotechnology (NIAB-DBT), Hyderabad, India
| | - Hiral Uday Mistry
- National Institute of Animal Biotechnology (NIAB-DBT), Hyderabad, India
| | - Shweta Murthy
- National Institute of Animal Biotechnology (NIAB-DBT), Hyderabad, India
| | - Neena George
- National Institute of Animal Biotechnology (NIAB-DBT), Hyderabad, India
| | | | - Paresh Sharma
- National Institute of Animal Biotechnology (NIAB-DBT), Hyderabad, India
| |
Collapse
|
7
|
Rai P, Sharma D, Soni R, Khatoon N, Sharma B, Bhatt TK. Plasmodium falciparum apicoplast and its transcriptional regulation through calcium signaling. J Microbiol 2017; 55:231-236. [DOI: 10.1007/s12275-017-6525-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 12/23/2016] [Accepted: 12/23/2016] [Indexed: 12/12/2022]
|
8
|
Okubo-Kurihara E, Ohtani M, Kurihara Y, Kakegawa K, Kobayashi M, Nagata N, Komatsu T, Kikuchi J, Cutler S, Demura T, Matsui M. Modification of plant cell wall structure accompanied by enhancement of saccharification efficiency using a chemical, lasalocid sodium. Sci Rep 2016; 6:34602. [PMID: 27694977 PMCID: PMC5046155 DOI: 10.1038/srep34602] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 09/15/2016] [Indexed: 11/25/2022] Open
Abstract
The cell wall is one major determinant of plant cell morphology, and is an attractive bioresource. Here, we report a novel strategy to modify plant cell wall property by small molecules. Lasalocid sodium (LS) was isolated by chemical screening to identify molecules that affect the cell morphology of tobacco BY-2 cells. LS treatment led to an increase in cell wall thickness, whilst the quantity and sugar composition of the cell wall remained unchanged in BY-2 cells. The chemical also disordered the cellular arrangement of hypocotyls of Arabidopsis plants, resulting in a decrease in hypocotyl length. LS treatment enhanced enzymatic saccharification efficiency in both BY-2 cells and Arabidopsis plants. Microarray analysis on Arabidopsis showed that exposure to LS upregulated type III peroxidase genes, of which some are involved in lignin biogenesis, and jasmonic acid response genes, and phloroglucinol staining supported the activation of lignification by the LS treatment. As jasmonic acid-mediated lignification is a typical reaction to cell wall damage, it is possible that LS induces cell wall loosening, which can trigger cell wall damage response. Thus, LS is a unique chemical for modification of cell wall and morphology through changes in cell wall architecture.
Collapse
Affiliation(s)
- Emiko Okubo-Kurihara
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa 230-0045, Japan
| | - Misato Ohtani
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa 230-0045, Japan
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| | - Yukio Kurihara
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa 230-0045, Japan
| | - Koichi Kakegawa
- Forestry and Forest Products Research Institute, Tsukuba, Ibaraki 305–8687, Japan
| | - Megumi Kobayashi
- Faculty of Science, Japan Woman’s University, Bunkyo-ku, Tokyo 112-8681, Japan
| | - Noriko Nagata
- Faculty of Science, Japan Woman’s University, Bunkyo-ku, Tokyo 112-8681, Japan
| | - Takanori Komatsu
- Graduate School of Medical Life Science, Yokohama City University, Yokohama, Kanagawa 230-0045, Japan
| | - Jun Kikuchi
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa 230-0045, Japan
- Graduate School of Medical Life Science, Yokohama City University, Yokohama, Kanagawa 230-0045, Japan
| | - Sean Cutler
- Department of Botany and Plant Sciences, Center for Plant Cell Biology, University of California Riverside, 5451 Boyce Hall, Riverside, CA 92521, USA
| | - Taku Demura
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa 230-0045, Japan
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| | - Minami Matsui
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa 230-0045, Japan
| |
Collapse
|
9
|
Abstract
Some hours after invading the erythrocytes of its human host, the malaria parasite Plasmodium falciparum induces an increase in the permeability of the erythrocyte membrane to monovalent ions. The resulting net influx of Na(+) and net efflux of K(+), down their respective concentration gradients, converts the erythrocyte cytosol from an initially high-K(+), low-Na(+) solution to a high-Na(+), low-K(+) solution. The intraerythrocytic parasite itself exerts tight control over its internal Na(+), K(+), Cl(-), and Ca(2+) concentrations and its intracellular pH through the combined actions of a range of membrane transport proteins. The molecular mechanisms underpinning ion regulation in the parasite are receiving increasing attention, not least because PfATP4, a P-type ATPase postulated to be involved in Na(+) regulation, has emerged as a potential antimalarial drug target, susceptible to inhibition by a wide range of chemically unrelated compounds.
Collapse
Affiliation(s)
- Kiaran Kirk
- Research School of Biology, The Australian National University, Canberra, ACT 2601, Australia;
| |
Collapse
|