1
|
Zhang Z, Guo S, Su W, Pan G, Cao K, Jiang H, Zhang L, Cheng C, Jin G, Zuo C. Preoperative assessment of pancreatic cancer with [ 68Ga]Ga-DOTA-FAPI-04 PET/MR versus [ 18F]-FDG PET/CT plus contrast-enhanced CT: a prospective preliminary study. Eur J Nucl Med Mol Imaging 2025; 52:1017-1027. [PMID: 39508900 DOI: 10.1007/s00259-024-06943-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 10/05/2024] [Indexed: 11/15/2024]
Abstract
PURPOSE To assess the diagnostic performance of [68Ga]Ga-DOTA-FAPI-04 PET/MR imaging in the preoperative evaluation of pancreatic cancer and compare it with that of [18F]-FDG PET/CT plus contrast-enhanced CT (CECT). METHODS Thirty-one patients with pancreatic cancer underwent preoperative [68Ga]Ga-DOTA-FAPI-04 PET/MR, [18F]-FDG PET/CT, and CECT imaging. Two nuclear medicine physicians independently reviewed two sets of images (set 1, [68Ga]Ga-DOTA-FAPI-04 PET/MR; set 2, [18F]-FDG PET/CT plus CECT) and reached a consensus on tumour resectability, N staging (N0 or N positive) and M staging (M0 or M1). Based on the above indices, the resectability of the tumour was determined according to a five-point scale. Clinical, operative, and pathological findings were used as a reference standard to compare the diagnostic performance of the two imaging sets via the McNemar test. RESULTS The diagnostic performance of [68Ga]Ga-DOTA-FAPI-04 PET/MR imaging was not significantly different from that of [18F]-FDG PET/CT plus CECT imaging in the assessment of tumour resectability (area under the receiver operating characteristic curve: 0.854 vs. 0.775, p = 0.192), N staging [accuracy: 82.4% (14 of 17 patients) vs. 58.8% (10 of 17 patients), p = 0.125] and M staging [accuracy: 100% (31 of 31 patients) vs. 90.3% (28 of 31 patients), p = 0.250]. However, compared with [18F]-FDG PET/CT plus CECT imaging, [68Ga]Ga-DOTA-FAPI-04 PET/MR imaging changed the M stage in three patients by upstaging from M0 to M1 in 2 patients and downstaging from M1 to M0 in 2 patients. In 13 patients with liver metastases, the number of liver metastases detected via [68Ga]Ga-DOTA-FAPI-04 PET/MR imaging was greater than that detected via [18F]-FDG PET/CT plus CECT imaging (324 vs. 240). In 3 patients with peritoneal metastases, [68Ga]Ga-DOTA-FAPI-04 PET/MR imaging detected more peritoneal metastases than did [18F]-FDG PET/CT plus CECT imaging. CONCLUSIONS [68Ga]Ga-DOTA-FAPI-04 PET/MR imaging has diagnostic accuracy comparable to [18F]-FDG PET/CT plus CECT in terms of preoperative staging and assessment of resectability in pancreatic cancer; additionally, it exhibits superior capability in detecting liver and peritoneal metastases. Consequently, [68Ga]Ga-DOTA-FAPI-04 PET/MR has the potential to become a one-stop imaging tool for the preoperative evaluation of pancreatic cancer.
Collapse
Affiliation(s)
- Zeyu Zhang
- Department of Nuclear Medicine, Changhai Hospital, Naval Medical University, 168 Changhai Road, Yang Pu District, Shanghai, 200433, China
| | - Shiwei Guo
- Department of Hepatobiliary Pancreatic Surgery, Changhai Hospital, Naval Medical University, 168 Changhai Road, Yang Pu District, Shanghai, 200433, China
| | - Weiwei Su
- Department of Nuclear Medicine, Changhai Hospital, Naval Medical University, 168 Changhai Road, Yang Pu District, Shanghai, 200433, China
- Department of Radiology, Naval Medical Centre of People's Liberation Army, Naval Medical University, Shanghai, 200050, China
| | - Guixia Pan
- Department of Nuclear Medicine, Changhai Hospital, Naval Medical University, 168 Changhai Road, Yang Pu District, Shanghai, 200433, China
| | - Kai Cao
- Department of Radiology, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Hui Jiang
- Department of Pathology, Changhai Hospital, Navy Medical University, Shanghai, 200433, China
| | - Lu Zhang
- Department of Nuclear Medicine, Changhai Hospital, Naval Medical University, 168 Changhai Road, Yang Pu District, Shanghai, 200433, China
| | - Chao Cheng
- Department of Nuclear Medicine, Changhai Hospital, Naval Medical University, 168 Changhai Road, Yang Pu District, Shanghai, 200433, China.
| | - Gang Jin
- Department of Hepatobiliary Pancreatic Surgery, Changhai Hospital, Naval Medical University, 168 Changhai Road, Yang Pu District, Shanghai, 200433, China.
| | - Changjing Zuo
- Department of Nuclear Medicine, Changhai Hospital, Naval Medical University, 168 Changhai Road, Yang Pu District, Shanghai, 200433, China.
| |
Collapse
|
2
|
Kotb A, Hafeji Z, Jesry F, Lintern N, Pathak S, Smith AM, Lutchman KRD, de Bruin DM, Hurks R, Heger M, Khaled YS. Intra-Operative Tumour Detection and Staging in Pancreatic Cancer Surgery: An Integrative Review of Current Standards and Future Directions. Cancers (Basel) 2024; 16:3803. [PMID: 39594758 PMCID: PMC11592681 DOI: 10.3390/cancers16223803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 10/15/2024] [Accepted: 11/06/2024] [Indexed: 11/28/2024] Open
Abstract
BACKGROUND Surgical resection for pancreatic ductal adenocarcinoma (PDAC) entails the excision of the primary tumour and regional lymphadenectomy. This traditional strategy is challenged by the high rate of early recurrence, suggesting inadequate disease staging. Novel methods of intra-operative staging are needed to allow surgical resection to be tailored to the disease's biology. METHODS A search of published articles on the PubMed and Embase databases was performed using the terms 'pancreas' OR 'pancreatic' AND 'intra-operative staging/detection' OR 'guided surgery'. Articles published between January 2000 and June 2023 were included. Technologies that offered intra-operative staging and tailored treatment were curated and summarised in the following integrative review. RESULTS lymph node (LN) mapping and radioimmunoguided surgery have shown promising results but lacked practicality to facilitate real-time intra-operative staging for PDAC. Fluorescence-guided surgery (FGS) offers high contrast and sensitivity, enabling the identification of cancerous tissue and positive LNs with improved precision following intravenous administration of a fluorescent agent. The unique properties of optical coherence tomography and ultrasound elastography lend themselves to be platforms for virtual biopsy intra-operatively. CONCLUSIONS Accurate intra-operative staging of PDAC, localisation of metastatic LNs, and identification of extra-pancreatic disease remain clinically unmet needs under current detection methods and staging standards. Tumour-specific FGS combined with other diagnostic and therapeutic modalities could improve tumour detection and staging in patients with PDAC.
Collapse
Affiliation(s)
- Ahmed Kotb
- Leeds Institute of Medical Research, University of Leeds, Leeds LS2 9JT, UK
| | - Zaynab Hafeji
- Leeds Institute of Medical Research, University of Leeds, Leeds LS2 9JT, UK
| | - Fadel Jesry
- Leeds Institute of Medical Research, University of Leeds, Leeds LS2 9JT, UK
| | - Nicole Lintern
- Leeds Institute of Medical Research, University of Leeds, Leeds LS2 9JT, UK
| | - Samir Pathak
- The Pancreato-Biliary Unit, St James’s University Teaching Hospital, Leeds LS9 7TF, UK
| | - Andrew M. Smith
- The Pancreato-Biliary Unit, St James’s University Teaching Hospital, Leeds LS9 7TF, UK
| | - Kishan R. D. Lutchman
- Department of Surgery, Amsterdam UMC, Location AMC, 1105 AZ Amsterdam, The Netherlands
- Department of Biomedical Engineering and Physics, Amsterdam UMC, Location AMC, 1105 AZ Amsterdam, The Netherlands
| | - Daniel M. de Bruin
- Department of Biomedical Engineering and Physics, Amsterdam UMC, Location AMC, 1105 AZ Amsterdam, The Netherlands
| | - Rob Hurks
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Center, 1105 AZ Amsterdam, The Netherlands
| | - Michal Heger
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing 314001, China
| | - Yazan S. Khaled
- Leeds Institute of Medical Research, University of Leeds, Leeds LS2 9JT, UK
- The Pancreato-Biliary Unit, St James’s University Teaching Hospital, Leeds LS9 7TF, UK
| |
Collapse
|
3
|
Huynh AS, Cohen AS, Doligalski M, Casagni TJ, Moberg VE, Huang X, Morse J, Abrahams D, Lloyd MC, Centeno BA, Baldwin MK, McLaughlin ML, Vagner J, Morse DL. Intraoperative Guidance of Pancreatic Cancer Resection Using a Toll-like Receptor 2-Targeted Fluorescence Molecular Imaging Agent. CANCER RESEARCH COMMUNICATIONS 2024; 4:2877-2887. [PMID: 39320054 PMCID: PMC11536076 DOI: 10.1158/2767-9764.crc-24-0244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/01/2024] [Accepted: 09/23/2024] [Indexed: 09/26/2024]
Abstract
To increase the achievement of negative R0 surgical margins and increase the low survival rates of pancreatic cancer, improvements in assessing tumor margins during surgical resections are needed. This can be accomplished by using pancreatic cancer-targeted fluorescence molecular imaging agents to intraoperatively detect tumor margins in real time. Because Toll-like receptor 2 (TLR2) is broadly expressed among many cancer types including pancreatic adenocarcinomas, a high-affinity TLR2-targeted fluorescence molecular imaging agent (TLR2L-800) was developed. We investigate the potential for increased survival by employing real-time intraoperative tumor detection in a preclinical orthotopic human pancreatic xenograft tumor model using TLR2L-800. Three cohorts of nude mice bearing orthotopic human pancreatic xenograft tumors were intravenously injected with TLR2L-800. At 24 hours postinjection, one cohort underwent in vivo fluorescence-guided surgical removal of tumors using a real-time fluorescence imaging platform, a second cohort underwent visible light surgery (VLS), and a third cohort did not undergo surgery. A fourth, nontumor-bearing cohort was administered TLR2L-800 with no surgery. At 41 days postsurgery, the survival rates were 53% for the fluorescence-guided surgery (FGS) group and 0% for both the VLS and the tumor-bearing no-surgery group. The overall 200-day survival rate of 35% for the FGS group was significant compared with 0% for the VLS group (P value = 0.0018). This study demonstrates the potential of increasing disease-free survival for patients with pancreatic cancer by increasing the attainment of R0 margins using a novel tumor-targeted lipopeptide ligand-based fluorescence molecular imaging agent, TLR2L-800, during real-time FGS. SIGNIFICANCE Human TLR2 is broadly expressed among pancreatic adenocarcinomas, and the highly specific TLR2L-800 fluorescence molecular imaging agent has potential for use in fluorescence-guided surgery to increase R0 margins and improve patient survival.
Collapse
Affiliation(s)
- Amanda S. Huynh
- Department of Metabolism and Physiology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida
| | - Allison S. Cohen
- Department of Metabolism and Physiology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida
| | - Michael Doligalski
- Department of Metabolism and Physiology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida
| | - Todd J. Casagni
- Department of Comparative Medicine, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida
| | - Valerie E. Moberg
- Department of Metabolism and Physiology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida
| | - Xuan Huang
- Department of Metabolism and Physiology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida
| | - Jennifer Morse
- Department of Comparative Medicine, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida
| | - Dominique Abrahams
- Department of Metabolism and Physiology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida
| | - Mark C. Lloyd
- Analytic Microscopy Core, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida
| | - Barbara A. Centeno
- Department of Anatomic Pathology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida
| | - Margaret K. Baldwin
- Department of Comparative Medicine, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida
| | - Mark L. McLaughlin
- Department of Pharmaceutical Sciences, West Virginia University, Morgantown, West Virginia
| | - Josef Vagner
- BIO5 Institute, University of Arizona, Tucson, Arizona
| | - David L. Morse
- Department of Metabolism and Physiology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida
- Small Animal Imaging Laboratory, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida
- Department of Oncologic Sciences, University of South Florida, Tampa, Florida
- Department of Physics, University of South Florida, Tampa, Florida
- Department of Medical Engineering, University of South Florida, Tampa, Florida
| |
Collapse
|
4
|
Chalfant H, Bonds M, Scott K, Condacse A, Dennahy IS, Martin WT, Little C, Edil BH, McNally LR, Jain A. Innovative Imaging Techniques Used to Evaluate Borderline-Resectable Pancreatic Adenocarcinoma. J Surg Res 2023; 284:42-53. [PMID: 36535118 PMCID: PMC10131671 DOI: 10.1016/j.jss.2022.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 09/15/2022] [Accepted: 10/11/2022] [Indexed: 12/23/2022]
Abstract
A diagnosis of pancreatic cancer carries a 5-y survival rate of less than 10%. Furthermore, the detection of pancreatic cancer occurs most often in later stages of the disease due to its location in the retroperitoneum and lack of symptoms (in most cases) until tumors become more advanced. Once diagnosed, cross-sectional imaging techniques are heavily utilized to determine the tumor stage and the potential for surgical resection. However, a major determinant of resectability is the extent of local vascular involvement of the mesenteric vessels and critical tributaries; current imaging techniques have limited capacity to accurately determine vascular involvement. Surrounding inflammation and fibrosis can be difficult to discriminate from viable tumor, making determination of the degree of vascular involvement unreliable. New innovations in fluorescence and optoacoustic imaging techniques may overcome these limitations and make determination of resectability more accurate. These imaging modalities are able to more clearly discern between viable tumor tissue and non-neoplastic inflammation or desmoplasia, allowing clinicians to more reliably characterize vascular involvement and develop individualized treatment plans for patients. This review will discuss the current imaging techniques used to diagnose pancreatic cancer, the barriers that current techniques raise to accurate staging, and novel fluorescence and optoacoustic imaging techniques that may provide more accurate clinical staging of pancreatic cancer.
Collapse
Affiliation(s)
- Hunter Chalfant
- Department of Surgery, University of Oklahoma Health Science Center, Oklahoma City, Oklahoma
| | - Morgan Bonds
- Department of Surgery, University of Oklahoma Health Science Center, Oklahoma City, Oklahoma
| | - Kristina Scott
- Department of Surgery, University of Oklahoma Health Science Center, Oklahoma City, Oklahoma
| | - Anna Condacse
- Department of Surgery, University of Oklahoma Health Science Center, Oklahoma City, Oklahoma
| | - Isabel S Dennahy
- Department of Surgery, University of Oklahoma Health Science Center, Oklahoma City, Oklahoma
| | - W Taylor Martin
- Department of Surgery, University of Oklahoma Health Science Center, Oklahoma City, Oklahoma
| | - Cooper Little
- Department of Surgery, University of Oklahoma Health Science Center, Oklahoma City, Oklahoma
| | - Barish H Edil
- Department of Surgery, University of Oklahoma Health Science Center, Oklahoma City, Oklahoma
| | - Lacey R McNally
- Department of Surgery, University of Oklahoma Health Science Center, Oklahoma City, Oklahoma.
| | - Ajay Jain
- Department of Surgery, University of Oklahoma Health Science Center, Oklahoma City, Oklahoma.
| |
Collapse
|
5
|
Lauwerends LJ, Abbasi H, Bakker Schut TC, Van Driel PBAA, Hardillo JAU, Santos IP, Barroso EM, Koljenović S, Vahrmeijer AL, Baatenburg de Jong RJ, Puppels GJ, Keereweer S. The complementary value of intraoperative fluorescence imaging and Raman spectroscopy for cancer surgery: combining the incompatibles. Eur J Nucl Med Mol Imaging 2022; 49:2364-2376. [PMID: 35102436 PMCID: PMC9165240 DOI: 10.1007/s00259-022-05705-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 01/23/2022] [Indexed: 01/09/2023]
Abstract
A clear margin is an important prognostic factor for most solid tumours treated by surgery. Intraoperative fluorescence imaging using exogenous tumour-specific fluorescent agents has shown particular benefit in improving complete resection of tumour tissue. However, signal processing for fluorescence imaging is complex, and fluorescence signal intensity does not always perfectly correlate with tumour location. Raman spectroscopy has the capacity to accurately differentiate between malignant and healthy tissue based on their molecular composition. In Raman spectroscopy, specificity is uniquely high, but signal intensity is weak and Raman measurements are mainly performed in a point-wise manner on microscopic tissue volumes, making whole-field assessment temporally unfeasible. In this review, we describe the state-of-the-art of both optical techniques, paying special attention to the combined intraoperative application of fluorescence imaging and Raman spectroscopy in current clinical research. We demonstrate how these techniques are complementary and address the technical challenges that have traditionally led them to be considered mutually exclusive for clinical implementation. Finally, we present a novel strategy that exploits the optimal characteristics of both modalities to facilitate resection with clear surgical margins.
Collapse
Affiliation(s)
- L J Lauwerends
- Department of Otorhinolaryngology, Head and Neck Surgery, Erasmus MC Cancer Institute, Rotterdam, Netherlands
| | - H Abbasi
- Department of Otorhinolaryngology, Head and Neck Surgery, Erasmus MC Cancer Institute, Rotterdam, Netherlands
- Center for Optical Diagnostics and Therapy, Department of Dermatology, Erasmus MC Cancer Institute, Rotterdam, Netherlands
| | - T C Bakker Schut
- Center for Optical Diagnostics and Therapy, Department of Dermatology, Erasmus MC Cancer Institute, Rotterdam, Netherlands
| | - P B A A Van Driel
- Department of Orthopedic Surgery, Isala Hospital, Zwolle, Netherlands
| | - J A U Hardillo
- Department of Otorhinolaryngology, Head and Neck Surgery, Erasmus MC Cancer Institute, Rotterdam, Netherlands
| | - I P Santos
- Molecular Physical-Chemistry R&D Unit, Department of Chemistry, University of Coimbra, Coimbra, Portugal
| | | | - S Koljenović
- Department of Pathology, Antwerp University Hospital/Antwerp University, Antwerp, Belgium
| | - A L Vahrmeijer
- Department of Surgery, Leiden University Medical Center, Leiden, Netherlands
| | - R J Baatenburg de Jong
- Department of Otorhinolaryngology, Head and Neck Surgery, Erasmus MC Cancer Institute, Rotterdam, Netherlands
| | - G J Puppels
- Center for Optical Diagnostics and Therapy, Department of Dermatology, Erasmus MC Cancer Institute, Rotterdam, Netherlands
| | - S Keereweer
- Department of Otorhinolaryngology, Head and Neck Surgery, Erasmus MC Cancer Institute, Rotterdam, Netherlands.
| |
Collapse
|
6
|
Li Z, Li Z, Chen Q, Ramos A, Zhang J, Boudreaux JP, Thiagarajan R, Bren-Mattison Y, Dunham ME, McWhorter AJ, Li X, Feng JM, Li Y, Yao S, Xu J. Detection of pancreatic cancer by convolutional-neural-network-assisted spontaneous Raman spectroscopy with critical feature visualization. Neural Netw 2021; 144:455-464. [PMID: 34583101 DOI: 10.1016/j.neunet.2021.09.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 08/23/2021] [Accepted: 09/03/2021] [Indexed: 02/02/2023]
Abstract
Pancreatic cancer is the deadliest cancer type with a five-year survival rate of less than 9%. Detection of tumor margins plays an essential role in the success of surgical resection. However, histopathological assessment is time-consuming, expensive, and labor-intensive. We constructed a lab-designed, hand-held Raman spectroscopic system that could enable intraoperative tissue diagnosis using convolutional neural network (CNN) models to efficiently distinguish between cancerous and normal pancreatic tissue. To our best knowledge, this is the first reported effort to diagnose pancreatic cancer by CNN-aided spontaneous Raman scattering with a lab-developed system designed for intraoperative applications. Classification based on the original one-dimensional (1D) Raman, two-dimensional (2D) Raman images, and the first principal component (PC1) from the principal component analysis on the 2D image, could all achieve high performance: the testing sensitivity, specificity, and accuracy were over 95%, and the area under the curve approached 0.99. Although CNN models often show great success in classification, it has always been challenging to visualize the CNN features in these models, which has never been achieved in the Raman spectroscopy application in cancer diagnosis. By studying individual Raman regions and by extracting and visualizing CNN features from max-pooling layers, we identified critical Raman peaks that could aid in the classification of cancerous and noncancerous tissues. 2D Raman PC1 yielded more critical peaks for pancreatic cancer identification than that of 1D Raman, as the Raman intensity was amplified by 2D Raman PC1. To our best knowledge, the feature visualization was achieved for the first time in the field of CNN-aided spontaneous Raman spectroscopy for cancer diagnosis. Based on these CNN feature peaks and their frequency at specific wavenumbers, pancreatic cancerous tissue was found to contain more biochemical components related to the protein contents (particularly collagen), whereas normal pancreatic tissue was found to contain more lipids and nucleic acid (particularly deoxyribonucleic acid/ribonucleic acid). Overall, the CNN model in combination with Raman spectroscopy could serve as a useful tool for the extraction of key features that can help differentiate pancreatic cancer from a normal pancreas.
Collapse
Affiliation(s)
- Zhongqiang Li
- Division of Electrical and Computer Engineering, College of Engineering, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Zheng Li
- Division of Electrical and Computer Engineering, College of Engineering, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Qing Chen
- Division of Computer Science & Engineering, College of Engineering, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Alexandra Ramos
- Department of Comparative Biomedical Science, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Jian Zhang
- Division of Computer Science & Engineering, College of Engineering, Louisiana State University, Baton Rouge, LA 70803, USA
| | - J Philip Boudreaux
- Department of Surgery, School of Medicine, Louisiana State University Health Science Center, New Orleans, LA 70112, USA
| | - Ramcharan Thiagarajan
- Department of Surgery, School of Medicine, Louisiana State University Health Science Center, New Orleans, LA 70112, USA
| | - Yvette Bren-Mattison
- Department of Surgery, School of Medicine, Louisiana State University Health Science Center, New Orleans, LA 70112, USA
| | - Michael E Dunham
- Department of Otolaryngology, School of Medicine, Louisiana State University Health Science Center, New Orleans, LA 70112, USA
| | - Andrew J McWhorter
- Department of Otolaryngology, School of Medicine, Louisiana State University Health Science Center, New Orleans, LA 70112, USA
| | - Xin Li
- Division of Electrical and Computer Engineering, College of Engineering, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Ji-Ming Feng
- Department of Comparative Biomedical Science, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Yanping Li
- School of Environment and Sustainability, University of Saskatchewan, Saskatoon, SK S7N 5C9, Canada
| | - Shaomian Yao
- Department of Comparative Biomedical Science, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Jian Xu
- Division of Electrical and Computer Engineering, College of Engineering, Louisiana State University, Baton Rouge, LA 70803, USA.
| |
Collapse
|
7
|
Delle Cave D, Rizzo R, Sainz B, Gigli G, del Mercato LL, Lonardo E. The Revolutionary Roads to Study Cell-Cell Interactions in 3D In Vitro Pancreatic Cancer Models. Cancers (Basel) 2021; 13:930. [PMID: 33672435 PMCID: PMC7926501 DOI: 10.3390/cancers13040930] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 02/07/2021] [Accepted: 02/18/2021] [Indexed: 12/19/2022] Open
Abstract
Pancreatic cancer, the fourth most common cancer worldwide, shows a highly unsuccessful therapeutic response. In the last 10 years, neither important advancements nor new therapeutic strategies have significantly impacted patient survival, highlighting the need to pursue new avenues for drug development discovery and design. Advanced cellular models, resembling as much as possible the original in vivo tumor environment, may be more successful in predicting the efficacy of future anti-cancer candidates in clinical trials. In this review, we discuss novel bioengineered platforms for anticancer drug discovery in pancreatic cancer, from traditional two-dimensional models to innovative three-dimensional ones.
Collapse
Affiliation(s)
- Donatella Delle Cave
- Institute of Genetics and Biophysics “A. Buzzati-Traverso”, National Research Council (CNR-IGB), Via Pietro Castellino 111, 80131 Naples, Italy;
| | - Riccardo Rizzo
- Institute of Nanotechnology, National Research Council (CNR-NANOTEC), c/o Campus Ecotekne, via Monteroni, 73100 Lecce, Italy; (R.R.); (G.G.); (L.L.d.M.)
| | - Bruno Sainz
- Department of Cancer Biology, Instituto de Investigaciones Biomedicas “Alberto Sols” (IIBM), CSIC-UAM, 28029 Madrid, Spain;
- Spain and Chronic Diseases and Cancer, Area 3-Instituto Ramon y Cajal de Investigacion Sanitaria (IRYCIS), 28029 Madrid, Spain
| | - Giuseppe Gigli
- Institute of Nanotechnology, National Research Council (CNR-NANOTEC), c/o Campus Ecotekne, via Monteroni, 73100 Lecce, Italy; (R.R.); (G.G.); (L.L.d.M.)
- Department of Mathematics and Physics “Ennio De Giorgi”, University of Salento, via Arnesano, 73100 Lecce, Italy
| | - Loretta L. del Mercato
- Institute of Nanotechnology, National Research Council (CNR-NANOTEC), c/o Campus Ecotekne, via Monteroni, 73100 Lecce, Italy; (R.R.); (G.G.); (L.L.d.M.)
| | - Enza Lonardo
- Institute of Genetics and Biophysics “A. Buzzati-Traverso”, National Research Council (CNR-IGB), Via Pietro Castellino 111, 80131 Naples, Italy;
| |
Collapse
|
8
|
Hernandez Vargas S, Lin C, Voss J, Ghosh SC, Halperin DM, AghaAmiri S, Cao HST, Ikoma N, Uselmann AJ, Azhdarinia A. Development of a drug-device combination for fluorescence-guided surgery in neuroendocrine tumors. JOURNAL OF BIOMEDICAL OPTICS 2020; 25:JBO-200129R. [PMID: 33300316 PMCID: PMC7725236 DOI: 10.1117/1.jbo.25.12.126002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 11/06/2020] [Indexed: 05/13/2023]
Abstract
SIGNIFICANCE The use of cancer-targeted contrast agents in fluorescence-guided surgery (FGS) has the potential to improve intraoperative visualization of tumors and surgical margins. However, evaluation of their translational potential is challenging. AIM We examined the utility of a somatostatin receptor subtype-2 (SSTR2)-targeted fluorescent agent in combination with a benchtop near-infrared fluorescence (NIRF) imaging system to visualize mouse xenografts under conditions that simulate the clinical FGS workflow for open surgical procedures. APPROACH The dual-labeled somatostatin analog, Ga67-MMC(IR800)-TOC, was injected into mice (n = 24) implanted with SSTR2-expressing tumors and imaged with the customized OnLume NIRF imaging system (Madison, Wisconsin). In vivo and ex vivo imaging were performed under ambient light. The optimal dose (0.2, 0.5, and 2 nmol) and imaging time point (3, 24, 48, and 72 h) were determined using contrast-to-noise ratio (CNR) as the image quality parameter. Video captures of tumor resections were obtained to provide an FGS readout that is representative of clinical utility. Finally, a log-transformed linear regression model was fitted to assess congruence between fluorescence readouts and the underlying drug distribution. RESULTS The drug-device combination provided high in vivo and ex vivo contrast (CNRs > 3, except lung at 3 h) at all time points with the optimal dose of 2 nmol. The optimal imaging time point was 24-h post-injection, where CNRs > 6.5 were achieved in tissues of interest (i.e., pancreas, small intestine, stomach, and lung). Intraoperative FGS showed excellent utility for examination of the tumor cavity pre- and post-resection. The relationship between fluorescence readouts and gamma counts was linear and strongly correlated (n = 334, R2 = 0.71; r = 0.84; P < 0.0001). CONCLUSION The innovative OnLume NIRF imaging system enhanced the evaluation of Ga67-MMC(IR800)-TOC in tumor models. These components comprise a promising drug-device combination for FGS in patients with SSTR2-expressing tumors.
Collapse
Affiliation(s)
- Servando Hernandez Vargas
- The University of Texas Health Science Center at Houston, The Brown Foundation Institute of Molecular Medicine, McGovern Medical School, Houston, Texas, United States
| | | | - Julie Voss
- The University of Texas Health Science Center at Houston, The Brown Foundation Institute of Molecular Medicine, McGovern Medical School, Houston, Texas, United States
| | - Sukhen C. Ghosh
- The University of Texas Health Science Center at Houston, The Brown Foundation Institute of Molecular Medicine, McGovern Medical School, Houston, Texas, United States
| | - Daniel M. Halperin
- The University of Texas MD Anderson Cancer Center, Department of Gastrointestinal Medical Oncology, Division of Cancer Medicine, Houston, Texas, United States
| | - Solmaz AghaAmiri
- The University of Texas Health Science Center at Houston, The Brown Foundation Institute of Molecular Medicine, McGovern Medical School, Houston, Texas, United States
| | - Hop S. Tran Cao
- The University of Texas MD Anderson Cancer Center, Department of Surgical Oncology, Division of Surgery, Houston, Texas, United States
| | - Naruhiko Ikoma
- The University of Texas MD Anderson Cancer Center, Department of Surgical Oncology, Division of Surgery, Houston, Texas, United States
| | | | - Ali Azhdarinia
- The University of Texas Health Science Center at Houston, The Brown Foundation Institute of Molecular Medicine, McGovern Medical School, Houston, Texas, United States
| |
Collapse
|
9
|
The Diagnostic Accuracy of Mutant KRAS Detection from Pancreatic Secretions for the Diagnosis of Pancreatic Cancer: A Meta-Analysis. Cancers (Basel) 2020; 12:cancers12092353. [PMID: 32825312 PMCID: PMC7564395 DOI: 10.3390/cancers12092353] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/14/2020] [Accepted: 08/18/2020] [Indexed: 12/18/2022] Open
Abstract
This meta-analysis aims to identify the diagnostic accuracy of mutations in the Kirsten Rat Sarcoma (KRAS) oncogene in the diagnosis of pancreatic ductal adenocarcinoma (PDAC). The survival of PDAC remains poor often due to the fact that disease is advanced at diagnosis. We analysed 22 studies, with a total of 2156 patients, to identify if the detection of KRAS mutations from pancreatic exocrine secretions yields sufficient specificity and sensitivity to detect patients with PDAC amongst healthy individuals. The majority of the studies were retrospective, samples were obtained endoscopically or surgically, and included comparator populations of patients with chronic pancreatitis and pre-malignant pancreatic lesions (PanIN) as well as healthy controls. We performed several analyses to identify the diagnostic accuracy for PDAC among these patient populations. Our results highlighted that the diagnostic accuracy of KRAS mutation for PDAC was of variable sensitivity and specificity when compared with PanINs and chronic pancreatitis, but had a higher specificity among healthy individuals. The sensitivity of this test must be improved to prevent missing early PDAC or PanINs. This could be achieved with rigorous prospective cohort studies, in which high-risk patients with normal cross-sectional imaging undergo surveillance following KRAS mutation testing.
Collapse
|
10
|
Yu Q, Yao Y, Zhu X, Gao Y, Chen Y, Wang R, Xu P, Wei X, Jiang L. In Vivo Flow Cytometric Evaluation of Circulating Metastatic Pancreatic Tumor Cells after High-Intensity Focused Ultrasound Therapy. Cytometry A 2020; 97:900-908. [PMID: 32307867 PMCID: PMC7540359 DOI: 10.1002/cyto.a.24014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 02/14/2020] [Accepted: 03/09/2020] [Indexed: 12/15/2022]
Abstract
We examined our hypothesis that high-intensity focused ultrasound (HIFU) treatment of pancreatic ductal adenocarcinoma (PDAC) in nude mice models may lead to an increased occurrence of hematogenous metastasis. The human PDAC cell line BxPC-3 transfected with mCherry was implanted into nude mice to establish orthotopic and subcutaneous xenograft (OX and SX) tumor models. Mice were exposed to HIFU when tumor sizes reached approximately 200-300 mm3 . The OX and SX tumor models were monitored continuously for tumor growth characteristics and hematogenous metastasis using in vivo flow cytometric (IVFC) detection of circulating tumor cells (CTCs) from the pancreas. We chose an appropriate mouse model to further examine whether or not HIFU increases the potential risk of hematogenous metastasis, using IVFC detection. Our results showed that the CTC number was greater in the OX model than in the SX model. The CTC number in the OX model increased gradually over time, whereas the CTC number in the SX model remained low. Therefore, the OX model was better for studying tumor metastasis by IVFC detection. We found significantly decreased CTC numbers and tumor volume after HIFU ablation. Our results showed the applicability of the PDAC OX tumor model for studying the occurrence of tumor metastasis due to the generation of CTCs. HIFU ablation substantially restricted PDAC hematogenous metastasis and provided effective tumor control locally. © 2020 The Authors. Cytometry Part A published by Wiley Periodicals Inc., on behalf of International Society for Advancement of Cytometry.
Collapse
Affiliation(s)
- Qian Yu
- Department of Ultrasonography, Shanghai Jiao Tong University Affiliated No. 6 Hospital, Shanghai, 200233, People's Republic of China.,Shanghai Institute of Ultrasound in Medicine, Shanghai, 200233, People's Republic of China
| | - Yijing Yao
- Department of Ultrasonography, Shanghai Jiao Tong University Affiliated No. 6 Hospital, Shanghai, 200233, People's Republic of China.,Shanghai Institute of Ultrasound in Medicine, Shanghai, 200233, People's Republic of China
| | - Xi Zhu
- Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, People's Republic of China
| | - Yihui Gao
- Department of Ultrasonography, Shanghai Jiao Tong University Affiliated No. 6 Hospital, Shanghai, 200233, People's Republic of China.,Shanghai Institute of Ultrasound in Medicine, Shanghai, 200233, People's Republic of China
| | - Yini Chen
- Department of Ultrasonography, Shanghai Jiao Tong University Affiliated No. 6 Hospital, Shanghai, 200233, People's Republic of China.,Shanghai Institute of Ultrasound in Medicine, Shanghai, 200233, People's Republic of China
| | - Rui Wang
- Department of Ultrasonography, Shanghai Jiao Tong University Affiliated No. 6 Hospital, Shanghai, 200233, People's Republic of China.,Shanghai Institute of Ultrasound in Medicine, Shanghai, 200233, People's Republic of China
| | - Pingping Xu
- Department of Ultrasonography, Shanghai Jiao Tong University Affiliated No. 6 Hospital, Shanghai, 200233, People's Republic of China.,Shanghai Institute of Ultrasound in Medicine, Shanghai, 200233, People's Republic of China
| | - Xunbin Wei
- Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, People's Republic of China.,Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, 100083, People's Republic of China
| | - Lixin Jiang
- Department of Ultrasonography, Shanghai Jiao Tong University Affiliated No. 6 Hospital, Shanghai, 200233, People's Republic of China.,Shanghai Institute of Ultrasound in Medicine, Shanghai, 200233, People's Republic of China
| |
Collapse
|
11
|
Zhao Y, Zhang H, Wu P, Tan D, Zhao Y, Zhang C, Wang J, Bai B, An J, Shi C. Mediated Imaging and Improved Targeting of Farnesylthiosalicylic Acid Delivery for Pancreatic Cancer via Conjugation with Near-Infrared Fluorescence Heptamethine Carbocyanine Dye. ACS APPLIED BIO MATERIALS 2020; 3:1129-1138. [DOI: 10.1021/acsabm.9b01068] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Ya Zhao
- Division of Cancer Biology, Laboratory Animal Center, The Fourth Military Medical University, Xi’an 710032, China
| | - He Zhang
- Division of Cancer Biology, Laboratory Animal Center, The Fourth Military Medical University, Xi’an 710032, China
| | - Pengpeng Wu
- Division of Cancer Biology, Laboratory Animal Center, The Fourth Military Medical University, Xi’an 710032, China
| | - Dengxu Tan
- Division of Cancer Biology, Laboratory Animal Center, The Fourth Military Medical University, Xi’an 710032, China
| | - Yong Zhao
- Division of Cancer Biology, Laboratory Animal Center, The Fourth Military Medical University, Xi’an 710032, China
| | - Caiqin Zhang
- Division of Cancer Biology, Laboratory Animal Center, The Fourth Military Medical University, Xi’an 710032, China
| | - Jie Wang
- Division of Cancer Biology, Laboratory Animal Center, The Fourth Military Medical University, Xi’an 710032, China
| | - Bing Bai
- Division of Cancer Biology, Laboratory Animal Center, The Fourth Military Medical University, Xi’an 710032, China
| | - Jiaze An
- Department of Hepatobiliary and Pancreaticosplenic Surgery, Xijing Hospital, The Fourth Military Medical University, Xi’an 710069, China
| | - Changhong Shi
- Division of Cancer Biology, Laboratory Animal Center, The Fourth Military Medical University, Xi’an 710032, China
| |
Collapse
|
12
|
Brachi G, Bussolino F, Ciardelli G, Mattu C. Nanomedicine for Imaging and Therapy of Pancreatic Adenocarcinoma. Front Bioeng Biotechnol 2019; 7:307. [PMID: 31824928 PMCID: PMC6880757 DOI: 10.3389/fbioe.2019.00307] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 10/17/2019] [Indexed: 12/20/2022] Open
Abstract
Pancreatic adenocarcinoma has the worst outcome among all cancer types, with a 5-year survival rate as low as 10%. The lethal nature of this cancer is a result of its silent onset, resistance to therapies, and rapid spreading. As a result, most patients remain asymptomatic and present at diagnosis with an already infiltrating and incurable disease. The tumor microenvironment, composed of a dense stroma and of disorganized blood vessels, coupled with the dysfunctional signal pathways in tumor cells, creates a set of physical and biological barriers that make this tumor extremely hard-to-treat with traditional chemotherapy. Nanomedicine has great potential in pancreatic adenocarcinoma, because of the ability of nano-formulated drugs to overcome biological barriers and to enhance drug accumulation at the target site. Moreover, monitoring of disease progression can be achieved by combining drug delivery with imaging probes, resulting in early detection of metastatic patterns. This review describes the latest development of theranostic formulations designed to concomitantly treat and image pancreatic cancer, with a specific focus on their interaction with physical and biological barriers.
Collapse
Affiliation(s)
| | - Federico Bussolino
- Department of Oncology, University of Torino, Turin, Italy
- Candiolo Cancer Institute -IRCCS-FPO, Candiolo, Italy
| | | | | |
Collapse
|
13
|
Tummers WS, Groen JV, Sibinga Mulder BG, Farina-Sarasqueta A, Morreau J, Putter H, van de Velde CJ, Vahrmeijer AL, Bonsing BA, Mieog JS, Swijnenburg RJ. Impact of resection margin status on recurrence and survival in pancreatic cancer surgery. Br J Surg 2019; 106:1055-1065. [PMID: 30883699 PMCID: PMC6617755 DOI: 10.1002/bjs.11115] [Citation(s) in RCA: 141] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 10/29/2018] [Accepted: 12/12/2018] [Indexed: 12/19/2022]
Abstract
BACKGROUND The prognosis of patients with pancreatic ductal adenocarcinoma (PDAC) is poor and selection of patients for surgery is challenging. This study examined the impact of a positive resection margin (R1) on locoregional recurrence (LRR) and overall survival (OS); and also aimed to identified tumour characteristics and/or technical factors associated with a positive resection margin in patients with PDAC. METHODS Patients scheduled for pancreatic resection for PDAC between 2006 and 2016 were identified from an institutional database. The effect of resection margin status, patient characteristics and tumour characteristics on LRR, distant metastasis and OS was assessed. RESULTS A total of 322 patients underwent pancreatectomy for PDAC. A positive resection (R1) margin was found in 129 patients (40·1 per cent); this was associated with decreased OS compared with that in patients with an R0 margin (median 15 (95 per cent c.i. 13 to 17) versus 22 months; P < 0·001). R1 status was associated with reduced time to LRR (median 16 versus 36 (not estimated, n.e.) months; P = 0·002). Disease recurrence patterns were similar in the R1 and R0 groups. Risk factors for early recurrence were tumour stage, positive lymph nodes (N1) and perineural invasion. Among 100 patients with N0 disease, R1 status was associated with shorter OS compared with R0 resection (median 17 (10 to 24) versus 45 (n.e.) months; P = 0·002), whereas R status was not related to OS in 222 patients with N1 disease (median 14 (12 to 16) versus 17 (15 to 19) months after R1 and R0 resection respectively; P = 0·068). CONCLUSION Although pancreatic resection with a positive margin was associated with poor survival and early recurrence, particularly in patients with N1 disease, disease recurrence patterns were similar between R1 and R0 groups.
Collapse
Affiliation(s)
- W S Tummers
- Department of Surgery, Leiden University Medical Centre, Leiden, the Netherlands
| | - J V Groen
- Department of Surgery, Leiden University Medical Centre, Leiden, the Netherlands
| | - B G Sibinga Mulder
- Department of Surgery, Leiden University Medical Centre, Leiden, the Netherlands
| | - A Farina-Sarasqueta
- Department of Pathology, Leiden University Medical Centre, Leiden, the Netherlands
| | - J Morreau
- Department of Pathology, Leiden University Medical Centre, Leiden, the Netherlands
| | - H Putter
- Department of Medical Statistics, Leiden University Medical Centre, Leiden, the Netherlands
| | - C J van de Velde
- Department of Surgery, Leiden University Medical Centre, Leiden, the Netherlands
| | - A L Vahrmeijer
- Department of Surgery, Leiden University Medical Centre, Leiden, the Netherlands
| | - B A Bonsing
- Department of Surgery, Leiden University Medical Centre, Leiden, the Netherlands
| | - J S Mieog
- Department of Surgery, Leiden University Medical Centre, Leiden, the Netherlands
| | - R J Swijnenburg
- Department of Surgery, Leiden University Medical Centre, Leiden, the Netherlands.,Department of Surgery, Cancer Centre Amsterdam, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
14
|
Staging laparoscopy with ultrasound and near-infrared fluorescence imaging to detect occult metastases of pancreatic and periampullary cancer. PLoS One 2018; 13:e0205960. [PMID: 30383818 PMCID: PMC6211678 DOI: 10.1371/journal.pone.0205960] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 10/04/2018] [Indexed: 02/08/2023] Open
Abstract
Introduction Up to 38% of pancreatic and periampullary cancer patients undergoing curative intended surgery turn out to have incurable disease. Therefore, staging laparoscopy (SL) prior to laparotomy is advised to spare patients the morbidity, inconvenience and expense of futile major surgery. The aim of this study was to assess the added value of SL with laparoscopic ultrasonography (LUS) and laparoscopic near-infrared fluorescence imaging (LFI). Methods All patients undergoing curative intended surgery of pancreatic or periampullary cancer were included prospectively in this single arm study. Patients received an intravenous infusion of 10 mg indocyanine green (ICG) one or two days prior to surgery to allow LFI. Suspect lesions were analyzed via biopsy or resection. Follow-up visits after surgery occurred every three months. Results A total of 25 patients were included. Suspect lesions were identified in 7 patients: liver metastases (n = 2; identified by inspection, LUS, and LFI), peritoneal metastases (n = 1; identified by inspection only), and benign lesions (n = 4; identified by inspection or LUS). Quality of LFI was good in 67% (10/15) of patients dosed one day and 89% (8/9) dosed two days prior to surgery. A futile laparotomy was averted in 3 patients (12%). Following SL the primary tumor was resected in 20 patients. Two patients (10%) developed metastases within 3 months after resection. Conclusions Despite current preoperative imaging modalities metastases are still identified during surgery. This study shows limited added value of LUS during SL in patients with pancreatic or periampullary cancer. LFI was of added value due to its high negative predictive value in case of suspect hepatic lesions identified by inspection.
Collapse
|
15
|
Vuijk FA, Hilling DE, Mieog JSD, Vahrmeijer AL. Fluorescent-guided surgery for sentinel lymph node detection in gastric cancer and carcinoembryonic antigen targeted fluorescent-guided surgery in colorectal and pancreatic cancer. J Surg Oncol 2018; 118:315-323. [PMID: 30216455 PMCID: PMC6175076 DOI: 10.1002/jso.25139] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 05/29/2018] [Indexed: 12/24/2022]
Abstract
Sentinel lymph node procedures for gastric cancer resections using indocyanine green (ICG) linked to Nanocoll outperformed normal ICG but did not provide information on possible lymph node metastasis. Carcinoembryonic antigen targeted fluorescent imaging using SGM‐101 was successful in both pancreatic and colorectal cancer. A large phase III multicentre trial will soon be initiated in colorectal cancer patients.
Collapse
Affiliation(s)
- Floris A Vuijk
- Department of Surgery, Leiden University Medical Centre, Leiden, The Netherlands
| | - Denise E Hilling
- Department of Surgery, Leiden University Medical Centre, Leiden, The Netherlands
| | - J Sven D Mieog
- Department of Surgery, Leiden University Medical Centre, Leiden, The Netherlands
| | | |
Collapse
|
16
|
Tummers WS, Willmann JK, Bonsing BA, Vahrmeijer AL, Gambhir SS, Swijnenburg RJ. Advances in Diagnostic and Intraoperative Molecular Imaging of Pancreatic Cancer. Pancreas 2018; 47:675-689. [PMID: 29894417 PMCID: PMC6003672 DOI: 10.1097/mpa.0000000000001075] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) has a dismal prognosis. To improve outcomes, there is a critical need for improved tools for detection, accurate staging, and resectability assessment. This could improve patient stratification for the most optimal primary treatment modality. Molecular imaging, used in combination with tumor-specific imaging agents, can improve established imaging methods for PDAC. These novel, tumor-specific imaging agents developed to target specific biomarkers have the potential to specifically differentiate between malignant and benign diseases, such as pancreatitis. When these agents are coupled to various types of labels, this type of molecular imaging can provide integrated diagnostic, noninvasive imaging of PDAC as well as image-guided pancreatic surgery. This review provides a detailed overview of the current clinical imaging applications, upcoming molecular imaging strategies for PDAC, and potential targets for imaging, with an emphasis on intraoperative imaging applications.
Collapse
Affiliation(s)
- Willemieke S. Tummers
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University, Stanford, CA. Department of Surgery, Leiden University Medical Center, Leiden, The Netherlands
| | - Juergen K. Willmann
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University, Stanford, CA. Juergen K. Willmann died January 8, 2018
| | - Bert A. Bonsing
- Department of Surgery, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Sanjiv S. Gambhir
- Address correspondence to: R.J. Swijnenburg, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands (). Tel: +31 71 526 4005, Fax: +31 71 526 6750
| | - Rutger-Jan Swijnenburg
- Department of Surgery, Leiden University Medical Center, Albinusdreef 2, 2300 RC, Leiden, The Netherlands
| |
Collapse
|
17
|
Qi B, Crawford AJ, Wojtynek NE, Holmes MB, Souchek JJ, Almeida-Porada G, Ly QP, Cohen SM, Hollingsworth MA, Mohs AM. Indocyanine green loaded hyaluronan-derived nanoparticles for fluorescence-enhanced surgical imaging of pancreatic cancer. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2018; 14:769-780. [PMID: 29325740 PMCID: PMC5899013 DOI: 10.1016/j.nano.2017.12.015] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 11/20/2017] [Accepted: 12/19/2017] [Indexed: 01/14/2023]
Abstract
Pancreatic ductal adenocarcinoma is highly lethal and surgical resection is the only potential curative treatment for the disease. In this study, hyaluronic acid derived nanoparticles with physico-chemically entrapped indocyanine green, termed NanoICG, were utilized for intraoperative near infrared fluorescence detection of pancreatic cancer. NanoICG was not cytotoxic to healthy pancreatic epithelial cells and did not induce chemotaxis or phagocytosis, it accumulated significantly within the pancreas in an orthotopic pancreatic ductal adenocarcinoma model, and demonstrated contrast-enhancement for pancreatic lesions relative to non-diseased portions of the pancreas. Fluorescence microscopy showed higher fluorescence intensity in pancreatic lesions and splenic metastases due to NanoICG compared to ICG alone. The in vivo safety profile of NanoICG, including, biochemical, hematological, and pathological analysis of NanoICG-treated healthy mice, indicates negligible toxicity. These results suggest that NanoICG is a promising contrast agent for intraoperative detection of pancreatic tumors.
Collapse
Affiliation(s)
- Bowen Qi
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE
| | - Ayrianne J Crawford
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE
| | - Nicholas E Wojtynek
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE
| | - Megan B Holmes
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE
| | - Joshua J Souchek
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE
| | - Graca Almeida-Porada
- Wake Forest Institute for Regenerative Medicine, Wake Forest University Health Sciences, Winston-Salem, NC
| | - Quan P Ly
- Department of Surgery, University of Nebraska Medical Center, Omaha, NE; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE
| | - Samuel M Cohen
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE; Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE; Havlik-Wall Professor of Oncology, University of Nebraska Medical Center, Omaha, NE
| | - Michael A Hollingsworth
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE
| | - Aaron M Mohs
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE; Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE.
| |
Collapse
|
18
|
Napp J, Stammes MA, Claussen J, Prevoo HA, Sier CF, Hoeben FJ, Robillard MS, Vahrmeijer AL, Devling T, Chan AB, de Geus-Oei LF, Alves F. Fluorescence- and multispectral optoacoustic imaging for an optimized detection of deeply located tumors in an orthotopic mouse model of pancreatic carcinoma. Int J Cancer 2018; 142:2118-2129. [DOI: 10.1002/ijc.31236] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 12/04/2017] [Accepted: 12/14/2017] [Indexed: 01/30/2023]
Affiliation(s)
- Joanna Napp
- Institute of Interventional and Diagnostic Radiology, University Medical Center Göttingen; Göttingen Lower Saxony Germany
- Clinic of Haematology and Medical Oncology; University Medical Center Göttingen; Göttingen Lower Saxony Germany
- Translational Molecular Imaging, Max-Planck-Institute of Experimental Medicine; Göttingen Lower Saxony Germany
| | - Marieke A. Stammes
- Percuros B.V., AE Enschede; The Netherlands
- Department of Radiology; Leiden University Medical Center; RC Leiden The Netherlands
| | - Jing Claussen
- iThera Medical GmbH, Zielstattstrasse; Munich Germany
| | | | | | | | - Marc S. Robillard
- Tagworks Pharmaceuticals, Geert Grooteplein Zuid 10; GA Nijmegen The Netherlands
| | | | - Tim Devling
- iThera Medical GmbH, Zielstattstrasse; Munich Germany
| | | | - Lioe-Fee de Geus-Oei
- Department of Radiology; Leiden University Medical Center; RC Leiden The Netherlands
- Biomedical Photonic Imaging Group, MIRA Institute, University of Twente; AE Enschede The Netherlands
| | - Frauke Alves
- Institute of Interventional and Diagnostic Radiology, University Medical Center Göttingen; Göttingen Lower Saxony Germany
- Clinic of Haematology and Medical Oncology; University Medical Center Göttingen; Göttingen Lower Saxony Germany
- Translational Molecular Imaging, Max-Planck-Institute of Experimental Medicine; Göttingen Lower Saxony Germany
| |
Collapse
|
19
|
Validation of full-field optical coherence tomography in distinguishing malignant and benign tissue in resected pancreatic cancer specimens. PLoS One 2017; 12:e0175862. [PMID: 28414765 PMCID: PMC5393621 DOI: 10.1371/journal.pone.0175862] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 03/31/2017] [Indexed: 12/22/2022] Open
Abstract
Background Pancreatic cancer is the fourth leading cause of cancer-related mortality in the United States. The minority of patients can undergo curative-intended surgical therapy due to progressive disease stage at time of diagnosis. Nonetheless, tumor involvement of surgical margins is seen in up to 70% of resections, being a strong negative prognostic factor. Real-time intraoperative imaging modalities may aid surgeons to obtain tumor-free resection margins. Full-field optical coherence tomography (FF-OCT) is a promising diagnostic tool using high-resolution white-light interference microscopy without tissue processing. Therefore, we composed an atlas of FF-OCT images of malignant and benign pancreatic tissue, and investigated the accuracy with which the pathologists could distinguish these. Materials and methods One hundred FF-OCT images were collected from specimens of 29 patients who underwent pancreatic resection for various indications between 2014 and 2016. One experienced gastrointestinal pathologist and one pathologist in training scored independently the FF-OCT images as malignant or benign blinded to the final pathology conclusion. Results were compared to those obtained with standard hematoxylin and eosin (H&E) slides. Results Overall, combined test characteristics of both pathologists showed a sensitivity of 72%, specificity of 74%, positive predictive value of 69%, negative predictive value of 79% and an overall accuracy of 73%. In the subset of pancreatic ductal adenocarcinoma patients, 97% of the FF-OCT images (n = 35) were interpreted as tumor by at least one pathologist. Moreover, normal pancreatic tissue was recognised in all cases by at least one pathologist. However, atrophy and fibrosis, serous cystadenoma and neuroendocrine tumors were more often wrongly scored, in 63%, 100% and 25% respectively. Conclusion FF-OCT could distinguish normal pancreatic tissue from pathologic pancreatic tissue in both processed as non-processed specimens using architectural features. The accuracy in pancreatic ductal adenocarcinoma is promising and warrants further evaluation using improved assessment criteria.
Collapse
|
20
|
Laparoscopic surgery for pancreatic neoplasms: the European association for endoscopic surgery clinical consensus conference. Surg Endosc 2017; 31:2023-2041. [PMID: 28205034 DOI: 10.1007/s00464-017-5414-3] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 01/07/2017] [Indexed: 12/26/2022]
Abstract
BACKGROUND Introduced more than 20 years ago, laparoscopic pancreatic surgery (LAPS) has not reached a uniform acceptance among HPB surgeons. As a result, there is no consensus regarding its use in patients with pancreatic neoplasms. This study, organized by the European Association for Endoscopic Surgery (EAES), aimed to develop consensus statements and clinical recommendations on the application of LAPS in these patients. METHODS An international panel of experts was selected based on their clinical and scientific expertise in laparoscopic and open pancreatic surgery. Each panelist performed a critical appraisal of the literature and prepared evidence-based statements assessed by other panelists during Delphi process. The statements were further discussed during a one-day face-to-face meeting followed by the second round of Delphi. Modified statements were presented at the plenary session of the 24th International Congress of the EAES in Amsterdam and in a web-based survey. RESULTS LAPS included laparoscopic distal pancreatectomy (LDP), pancreatoduodenectomy (LPD), enucleation, central pancreatectomy, and ultrasound. In general, LAPS was found to be safe, especially in experienced hands, and also advantageous over an open approach in terms of intraoperative blood loss, postoperative recovery, and quality of life. Eighty-five percent or higher proportion of responders agreed with the majority (69.5%) of statements. However, the evidence is predominantly based on retrospective case-control studies and systematic reviews of these studies, clearly affected by selection bias. Furthermore, no randomized controlled trials (RCTs) have been published to date, although four RCTs are currently underway in Europe. CONCLUSIONS LAPS is currently in its development and exploration stages, as defined by the international IDEAL framework for surgical innovation. LDP is feasible and safe, performed in many centers, while LPD is limited to few centers. RCTs and registry studies are essential to proceed with the assessment of LAPS.
Collapse
|
21
|
Stegehuis PL, Boogerd LSF, Inderson A, Veenendaal RA, van Gerven P, Bonsing BA, Sven Mieog J, Amelink A, Veselic M, Morreau H, van de Velde CJH, Lelieveldt BPF, Dijkstra J, Robinson DJ, Vahrmeijer AL. Toward optical guidance during endoscopic ultrasound-guided fine needle aspirations of pancreatic masses using single fiber reflectance spectroscopy: a feasibility study. JOURNAL OF BIOMEDICAL OPTICS 2017; 22:24001. [PMID: 28170030 DOI: 10.1117/1.jbo.22.2.024001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 01/12/2017] [Indexed: 05/04/2023]
Abstract
Endoscopic ultrasound-guided fine needle aspirations (EUS-FNA) of pancreatic masses suffer from sample errors and low-negative predictive values. Fiber-optic spectroscopy in the visible to near-infrared wavelength spectrum can noninvasively extract physiological parameters from tissue and has the potential to guide the sampling process and reduce sample errors. We assessed the feasibility of single fiber (SF) reflectance spectroscopy measurements during EUS-FNA of pancreatic masses and its ability to distinguish benign from malignant pancreatic tissue. A single optical fiber was placed inside a 19-gauge biopsy needle during EUS-FNA and at least three reflectance measurements were taken prior to FNA. Spectroscopy measurements did not cause any related adverse events and prolonged procedure time with ? 5 ?? min . An accurate correlation between spectroscopy measurements and cytology could be made in nine patients (three benign and six malignant). The oxygen saturation and bilirubin concentration were significantly higher in benign tissue compared with malignant tissue (55% versus 21%, p = 0.038 ; 166 ?? ? mol / L versus 17 ?? ? mol / L , p = 0.039 , respectively). To conclude, incorporation of SF spectroscopy during EUS-FNA was feasible, safe, and relatively quick to perform. The optical properties of benign and malignant pancreatic tissue are different, implying that SF spectroscopy can potentially guide the FNA sampling.
Collapse
Affiliation(s)
- Paulien L Stegehuis
- Leiden University Medical Center, Department of Surgery, Leiden, The NetherlandsbLeiden University Medical Center, Department of Radiology, Leiden, The Netherlands
| | - Leonora S F Boogerd
- Leiden University Medical Center, Department of Surgery, Leiden, The Netherlands
| | - Akin Inderson
- Leiden University Medical Center, Department of Gastroenterology and Hepatology, Leiden, The Netherlands
| | - Roeland A Veenendaal
- Leiden University Medical Center, Department of Gastroenterology and Hepatology, Leiden, The Netherlands
| | - P van Gerven
- Leiden University Medical Center, Department of Surgery, Leiden, The Netherlands
| | - Bert A Bonsing
- Leiden University Medical Center, Department of Surgery, Leiden, The Netherlands
| | - J Sven Mieog
- Leiden University Medical Center, Department of Surgery, Leiden, The Netherlands
| | - Arjen Amelink
- Netherlands Organisation for Applied Scientific Research TNO, Department of Optics, Delft, The Netherlands
| | - Maud Veselic
- Leiden University Medical Center, Department of Pathology, Leiden, The Netherlands
| | - Hans Morreau
- Leiden University Medical Center, Department of Pathology, Leiden, The Netherlands
| | | | | | - Jouke Dijkstra
- Leiden University Medical Center, Department of Radiology, Leiden, The Netherlands
| | - Dominic J Robinson
- Center for Optical Diagnostics and Therapy, Department of Otolaryngology and Head and Neck Surgery, Erasmus MC, Rotterdam, The Netherlands
| | | |
Collapse
|
22
|
de Geus SWL, Boogerd LSF, Swijnenburg RJ, Mieog JSD, Tummers WSFJ, Prevoo HAJM, Sier CFM, Morreau H, Bonsing BA, van de Velde CJH, Vahrmeijer AL, Kuppen PJK. Selecting Tumor-Specific Molecular Targets in Pancreatic Adenocarcinoma: Paving the Way for Image-Guided Pancreatic Surgery. Mol Imaging Biol 2016; 18:807-819. [PMID: 27130234 PMCID: PMC5093212 DOI: 10.1007/s11307-016-0959-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
PURPOSE The purpose of this study was to identify suitable molecular targets for tumor-specific imaging of pancreatic adenocarcinoma. PROCEDURES The expression of eight potential imaging targets was assessed by the target selection criteria (TASC)-score and immunohistochemical analysis in normal pancreatic tissue (n = 9), pancreatic (n = 137), and periampullary (n = 28) adenocarcinoma. RESULTS Integrin αvβ6, carcinoembryonic antigen (CEA), epithelial growth factor receptor (EGFR), and urokinase plasminogen activator receptor (uPAR) showed a significantly higher (all p < 0.001) expression in pancreatic adenocarcinoma compared to normal pancreatic tissue and were confirmed by the TASC score as promising imaging targets. Furthermore, these biomarkers were expressed in respectively 88 %, 71 %, 69 %, and 67 % of the pancreatic adenocarcinoma patients. CONCLUSIONS The results of this study show that integrin αvβ6, CEA, EGFR, and uPAR are suitable targets for tumor-specific imaging of pancreatic adenocarcinoma.
Collapse
Affiliation(s)
- Susanna W L de Geus
- Department of Surgery, Leiden University Medical Center, Albinusdreef 2, 2300 RC, Leiden, The Netherlands
| | - Leonora S F Boogerd
- Department of Surgery, Leiden University Medical Center, Albinusdreef 2, 2300 RC, Leiden, The Netherlands
| | - Rutger-Jan Swijnenburg
- Department of Surgery, Leiden University Medical Center, Albinusdreef 2, 2300 RC, Leiden, The Netherlands
| | - J Sven D Mieog
- Department of Surgery, Leiden University Medical Center, Albinusdreef 2, 2300 RC, Leiden, The Netherlands
| | - Willemieke S F J Tummers
- Department of Surgery, Leiden University Medical Center, Albinusdreef 2, 2300 RC, Leiden, The Netherlands
| | - Hendrica A J M Prevoo
- Department of Surgery, Leiden University Medical Center, Albinusdreef 2, 2300 RC, Leiden, The Netherlands
| | - Cornelis F M Sier
- Department of Surgery, Leiden University Medical Center, Albinusdreef 2, 2300 RC, Leiden, The Netherlands
| | - Hans Morreau
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
| | - Bert A Bonsing
- Department of Surgery, Leiden University Medical Center, Albinusdreef 2, 2300 RC, Leiden, The Netherlands
| | - Cornelis J H van de Velde
- Department of Surgery, Leiden University Medical Center, Albinusdreef 2, 2300 RC, Leiden, The Netherlands
| | - Alexander L Vahrmeijer
- Department of Surgery, Leiden University Medical Center, Albinusdreef 2, 2300 RC, Leiden, The Netherlands
| | - Peter J K Kuppen
- Department of Surgery, Leiden University Medical Center, Albinusdreef 2, 2300 RC, Leiden, The Netherlands.
| |
Collapse
|
23
|
Grootendorst MR, Cariati M, Kothari A, Tuch DS, Purushotham A. Cerenkov luminescence imaging (CLI) for image-guided cancer surgery. Clin Transl Imaging 2016; 4:353-366. [PMID: 27738626 PMCID: PMC5037157 DOI: 10.1007/s40336-016-0183-x] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 04/29/2016] [Indexed: 12/30/2022]
Abstract
Cerenkov luminescence imaging (CLI) is a novel molecular optical imaging technique based on the detection of optical Cerenkov photons emitted by positron emission tomography (PET) imaging agents. The ability to use clinically approved tumour-targeted tracers in combination with small-sized imaging equipment makes CLI a particularly interesting technique for image-guided cancer surgery. The past few years have witnessed a rapid increase in proof-of-concept preclinical studies in this field, and several clinical trials are currently underway. This article provides an overview of the basic principles of Cerenkov radiation and outlines the challenges of CLI-guided surgery for clinical use. The preclinical and clinical trial literature is examined including applications focussed on image-guided lymph node detection and Cerenkov luminescence endoscopy, and the ongoing clinical studies and technological developments are highlighted. By intraoperatively guiding the oncosurgeon towards more accurate and complete resections, CLI has the potential to transform current surgical practice, and improve oncological and cosmetic outcomes for patients.
Collapse
Affiliation(s)
- M. R. Grootendorst
- Department of Research Oncology, 3rd Floor Bermondsey Wing, King’s College London, London, SE1 9RT UK
- Department of Breast Surgery, 3rd Floor Tower Wing, Guy’s Hospital, London, SE1 9RT UK
| | - M. Cariati
- Department of Research Oncology, 3rd Floor Bermondsey Wing, King’s College London, London, SE1 9RT UK
- Department of Breast Surgery, 3rd Floor Tower Wing, Guy’s Hospital, London, SE1 9RT UK
| | - A. Kothari
- Department of Breast Surgery, 3rd Floor Tower Wing, Guy’s Hospital, London, SE1 9RT UK
| | - D. S. Tuch
- Lightpoint Medical Ltd, The Island, Moor Road, HP5 1NZ Chesham, UK
| | - A. Purushotham
- Department of Research Oncology, 3rd Floor Bermondsey Wing, King’s College London, London, SE1 9RT UK
- Department of Breast Surgery, 3rd Floor Tower Wing, Guy’s Hospital, London, SE1 9RT UK
| |
Collapse
|