1
|
Sharma S, Choudhary M, Sharma O, Injeti E, Mittal A. Mechanistic insights into antidiabetic potential of Ficus viren against multi organ specific diabetic targets: molecular docking, MDS, MM-GBSA analysis. Comput Biol Chem 2024; 113:108185. [PMID: 39217892 DOI: 10.1016/j.compbiolchem.2024.108185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/19/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024]
Abstract
Ficus viren has been traditionally used to treat diabetes, and its extract inhibits carbohydrate/lipid metabolism and possesses anti-hyperglycemic potential. However, there is conflicting investigation related to F. viren extract effect on carbohydrate metabolism. Thus, bioactive and mechanism behind its antidiabetic potential is still scanty. This study explored F. viren's anti-diabetic property by identifying potential phytoconstituents and mechanism. A sequential in-silico approach was used i.e., druglikeness, molecular docking, post-docking MM-GBSA, ADMET studies, molecular dynamic simulation (MDS), and post-MDS MM-GBSA. We screened ∼32 phytoconstituents and twelve potential organ-specific diabetic targets (O.S.D.Ts i.e., IR, DPP-4, ppar-γ, ppar-α, ppar-δ, GLP-1R, SIRT-1, AMPK, GSK-3β, RAGE, and AR). Drug likeness study identified 18 druggable candidates among 32 phytoconstituents. K3A, quercetin, scutellarein, sorbifolin, and vogeline J identified as potential ligands from druggable ligands, using IR as the standard target. Subsequently, potential ligands docked with remaining O.S.D.Ts. and data showed that K3A binds strongly with AMPK, ppar-δ, DPP-4, and GSK-3β, while scutellarein binds with AR and ppar-α. Sorbifolin, quercetin, and vogeline J binds with ppar-α, ppar-γ, and RAGE, respectively. Post-docking MM-GBSA data (∆GBind) also depicted potential ligand's strong binding affinities with their corresponding targets. Thereafter, simulation data revealed that only scutellarein and sorbifolin showed dynamic stability with their respective targets, i.e., AR/ppar-α and ppar-α, respectively. Interestingly, post-MDS MM-GBSA revealed that only scutellarein exhibited strong ∆GBind of -55.08 kcal/mol and -75.48 kcal/mol with AR and ppar-α, respectively. Though, collective computational analysis supports antidiabetic potential of F. viren through AR and ppar-α modulation by scutellarein.
Collapse
Affiliation(s)
- Sachin Sharma
- Institute of Pharmaceutical Sciences, Kurukshetra University, Kurukshetra 136119, India
| | - Manjusha Choudhary
- Institute of Pharmaceutical Sciences, Kurukshetra University, Kurukshetra 136119, India
| | - Onkar Sharma
- Skeletal Muscle Lab, IIHS, Kurukshetra University, Kurukshetra, Haryana 136119, India
| | - Elisha Injeti
- Department of Pharmaceutical Sciences, Cedarville University, Cedarville, OH 45314, USA
| | - Ashwani Mittal
- Skeletal Muscle Lab, IIHS, Kurukshetra University, Kurukshetra, Haryana 136119, India.
| |
Collapse
|
2
|
Shafiq N, Jannat A, Munir H, Rashid M, Parveen S. Exploring the potential of FDA approved anti-diabetic drugs for repurposing against COVID-19: a core combination of multiple computational strategies and integrated artificial intelligence. J Biomol Struct Dyn 2024; 42:6556-6576. [PMID: 37455488 DOI: 10.1080/07391102.2023.2234993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 07/05/2023] [Indexed: 07/18/2023]
Abstract
The latest variant of coronavirus is omicron. The World Health Organization (WHO) designated variation 'B.1.1.529' named omicron as a variant of concern (VOC) on 26 November 2021. By September 2020, it will have infected over 16 million patients and killed over 600,000 people over the world. This very infectious viral illness still poses a danger to world health; it has also become the greatest problem the world is facing and become the main area of research. The development of vaccines is insufficient to stop their spread and serious effects. Despite several reputable pharmaceutical firms claiming to have developed a cure for COVID-19. For that purpose, the field-based 3D-QSAR model has been used to analyze a series of anti-diabetic drugs to repurpose them against COVID-19. The LOO verified partial least square (PLS) model generates satisfactory q2 (0.4) and r2 (0.5) values. By using this model 10 compounds were screened out of 55 FDA approved anti-diabetic drugs (built-up library). Additionally, these substances were examined using molecular docking screening and ADMET. Finally, the drugs L8, and L23 were discovered to be the lead drugs. Density functional theory at the B3LYP/6-311G* technique was used to examine structural geometries, electronic characteristics, and molecular electrostatic potential (MEP). This work will greatly assist in the detection and development of leads for early drug development to control COVID-19.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Nusrat Shafiq
- Synthetic and Natural Product Drug Discovery Laboratory, Department of Chemistry, Government College Women University, Faisalabad, Pakistan
| | - Aqsa Jannat
- Synthetic and Natural Product Drug Discovery Laboratory, Department of Chemistry, Government College Women University, Faisalabad, Pakistan
| | - Huma Munir
- Green Chemistry Lab., Department of Chemistry, Government College Women University, Faisalabad, Pakistan
| | - Maryam Rashid
- Synthetic and Natural Product Drug Discovery Laboratory, Department of Chemistry, Government College Women University, Faisalabad, Pakistan
| | - Shagufta Parveen
- Synthetic and Natural Product Drug Discovery Laboratory, Department of Chemistry, Government College Women University, Faisalabad, Pakistan
- Department of Applied Chemistry, Beijing Institute of Technology, Beijing, China
| |
Collapse
|
3
|
Poleboyina PK, Naik U, Pasha A, Ravinder D, Bhanothu S, Poleboyina SM, Amineni U, Pawar SC. Virtual Screening, Molecular Docking, and Dynamic Simulations Revealed TGF-β1 Potential Inhibitors to Curtail Cervical Cancer Progression. Appl Biochem Biotechnol 2024; 196:1316-1349. [PMID: 37392324 DOI: 10.1007/s12010-023-04608-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/19/2023] [Indexed: 07/03/2023]
Abstract
Cervical cancer is one of the main causes of cancer death in women globally, and its epidemiology is similar to that of a low-infectious venereal illness. Many sexual partners and early age at first intercourse have been demonstrated to have a significant influence on risk. TGF-β1 is a multifunctional cytokine that is required for cervical carcinoma metastasis, tumor development, progression, and invasion. The TGF-β1 signaling system plays a paradoxical function in cancer formation, suppressing early-stage tumor growth while increasing tumor progression and metastasis. Importantly, TGF-β1 and TGF-β receptor 1 (TGF-βR1), two components of the TGF-β signaling system, are substantially expressed in a range of cancers, including breast cancer, colon cancer, gastric cancer, and hepatocellular carcinoma. The current study aims to investigate possible inhibitors targeting TGF-β1 using molecular docking and dynamic simulations. To target TGF-β1, we used anti-cancer drugs and small molecules. MVD was utilized for virtual screening, and the highest scoring compound was then subjected to MD simulations using Schrodinger software package v2017-1 (Maestro v11.1) to identify the most favorable lead interactions against TGF-β1. The Nilotinib compound has shown the least XP Gscore of -2.581 kcal/mol, 30ns MD simulations revealing that the Nilotinib- TGF-β1 complex possesses the lowest energy of -77784.917 kcal/mol. Multiple parameters, including Root Mean Square Deviation, Root Mean Square Fluctuation, and Intermolecular Interactions, were used to analyze the simulation trajectory. Based on the results; we conclude that the ligand nilotinib appears to be a promising prospective TGF-β1inhibitor for reducing TGF-β1 expression ad halting cervical cancer progression.
Collapse
Affiliation(s)
- Pavan Kumar Poleboyina
- Department of Genetics & Biotechnology, University College of Science, Osmania University, Hyderabad, Telangana, 500007, India
| | - Umakanth Naik
- Department of Bioinformatics, SVIMS University, Tirupati, Andhra Pradesh, 517 507, India
| | - Akbar Pasha
- Department of Genetics & Biotechnology, University College of Science, Osmania University, Hyderabad, Telangana, 500007, India
| | - Doneti Ravinder
- Department of Genetics & Biotechnology, University College of Science, Osmania University, Hyderabad, Telangana, 500007, India
| | - Shivaji Bhanothu
- Department of Genetics & Biotechnology, University College of Science, Osmania University, Hyderabad, Telangana, 500007, India
| | - Sneha Malleswari Poleboyina
- Department of Genetics & Biotechnology, University College of Science, Osmania University, Hyderabad, Telangana, 500007, India
| | - Umamaheshwari Amineni
- Department of Bioinformatics, SVIMS University, Tirupati, Andhra Pradesh, 517 507, India
| | - Smita C Pawar
- Department of Genetics & Biotechnology, University College of Science, Osmania University, Hyderabad, Telangana, 500007, India.
| |
Collapse
|
4
|
L S D, M K K, Thamilselvan G. Design, synthesis and anti-Tb evaluation of chalcone derivatives as novel inhibitors of InhA. J Biomol Struct Dyn 2023; 41:15165-15176. [PMID: 37349907 DOI: 10.1080/07391102.2023.2227711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 02/24/2023] [Indexed: 06/24/2023]
Abstract
A series of halogenated chalcone derivatives were designed and developed for anti-tubercular activity. Novel molecules were designed and in-silico screening were performed using admetSAR, SwissADME, and Osiris Property Explorer. From the initial filter the top 10 compounds were docked using the Autodock tool 1.5.6. and the binding energies of the docked compounds were higher than the standard drugs Isoniazid.and Ethionamide. Based on the in-silico and docking results, the top halogenated chalcones were synthesized and characterized using FT-IR, mass spectrometry, 1H, and 13C NMR spectroscopy. The chalcones were further evaluated for anti-tubercular activity using MABA against the H37Rv strain. Among the series of compounds, DK12 and DK14 showed potent in-vitro activity, with MICs of 0.8 µg/ml, in comparison with 1.6 µg/ml of the first-line drug Isoniazid. Further molecular dynamics simulations studies for 100 ns revealed that the key interaction with TYR 158 were observed in both DK12 and DK14 in the InhA active site. The compound DK12 further showed significant interactions with PHE 149 and ARG 153 residues and is a hit molecule among the series. Further DK12 and DK14 does not show any significance toxicity. The compounds DK12 needs to be optimized and further investigation to be carried out against InhA.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Dhivya L S
- Dr. APJ Kalam Research Lab, Department of Pharmaceutical Chemistry, SRM College of Pharmacy, SRM Institute of Science and Technology, Chengalpattu, Tamil Nadu, India
| | - Kathiravan M K
- Dr. APJ Kalam Research Lab, Department of Pharmaceutical Chemistry, SRM College of Pharmacy, SRM Institute of Science and Technology, Chengalpattu, Tamil Nadu, India
| | | |
Collapse
|
5
|
Fenanir F, Semmeq A, Benguerba Y, Badawi M, Dziurla MA, Amira S, Laouer H. In silico investigations of some Cyperus rotundus compounds as potential anti-inflammatory inhibitors of 5-LO and LTA4H enzymes. J Biomol Struct Dyn 2022; 40:11571-11586. [PMID: 34355673 DOI: 10.1080/07391102.2021.1960197] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The present study aimed to experimentally identify the essential oil of Algerian Cyperus rotundus L. and to model the interaction of some known anti-inflammatory molecules with two key enzymes involved in inflammation, 5-Lypoxygenase (5-LO) and leukotriene A4 hydrolase (LTA4H). Gas chromatography/gas chromatography-mass spectrometry (GC/GC-MS) revealed that 92.7% of the essential oil contains 35 compounds, including oxygenated sesquiterpenes (44.2%), oxygenated monoterpenes (30.2%), monoterpene hydrocarbons (11.8%) and sesquiterpene hydrocarbons (6.5%). The major identified oxygenated terpenes are humulene oxide II, caryophyllene oxide, khusinol, agarospirol, spathulinol and trans-pinocarveol Myrtenol and α-terpineol are known to exhibit anti-inflammatory activities. Several complexes obtained after docking the natural terpenes with 5-LO and LTA4H have shown strong hydrogen bonding interactions. The best docking energies were found with α-terpineol, Myrtenol and khusinol. The interaction between the natural products and amino-acid residues HIS367, ILE673 and GLN363 appears to be critical for 5-LO inhibition, while the interaction with residues GLU271, HIS295, TYR383, TYR378, GLU318, GLU296 and ASP375 is critical for LTA4H inhibition. Molecular dynamics (MD) trajectories of the selected docked complexes showed stable backbone root mean square deviation (RMSD), supporting the stability of the natural product-enzyme interaction.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Fares Fenanir
- Laboratory of Valorization of Natural and biological Resources, University Ferhat Abbas, Sétif, Algeria
| | - Abderrahmane Semmeq
- Laboratoire de Physique et Chimie Théoriques (UMR 7019), CNRS-Université de Lorraine, Saint-Avold, France
| | - Yacine Benguerba
- Laboratoire des Matériaux Polymères Multiphasiques, LMPMP, Université Ferhat ABBAS, Sétif, Algeria
| | - Michael Badawi
- Laboratoire de Physique et Chimie Théoriques (UMR 7019), CNRS-Université de Lorraine, Saint-Avold, France.,IUT de Moselle-Est, Université de Lorraine, Saint-Avold, France
| | | | - Smain Amira
- Laboratory of Phytotherapy Applied to Chroniques Diseases, University Ferhat Abbas, Sétif, Algeria
| | - Hocine Laouer
- Laboratory of Valorization of Natural and biological Resources, University Ferhat Abbas, Sétif, Algeria
| |
Collapse
|
6
|
Kannayiram K, Umapathy VR, Chamundeswari Y, Fathima JH, Govindan R, Palanisamy CP, Veeraraghavan VP, Jayaraman S, Rajagopal P. Molecular docking analysis of flavonoids with aldose reductase. Bioinformation 2022; 18:80-83. [PMID: 36518142 PMCID: PMC9722430 DOI: 10.6026/97320630018180] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 03/21/2022] [Accepted: 03/31/2022] [Indexed: 09/14/2023] Open
Abstract
Diabetes mellitus is a group of metabolic disorders that has risen to become the third most common cause in humans in recent years. The development of new bioactive substances from natural sources is a relatively new area. Flavonoids are believed to have a variety of beneficial properties in nature, including anti-inflammatory, antimicrobial, anticancer, antioxidant, neuroprotective, and anti-HIV properties. 15 naturally occurring flavonoids docked with the selected target aldose reductase. We report the optimal binding of Acumitin, Agathisflavone, Agehoustin B, and alpha-Toxicarol with aldose reductase for further consideration in drug discovery for T2DM.
Collapse
Affiliation(s)
- Kasthuri Kannayiram
- Department of Biochemistry, Tagore Medical College and Hospital, Melakottaiyur, Chennai, India
| | - Vidhya Rekha Umapathy
- Department of Public HealthDentistry, Sree Balaji Dental College and Hospital, Pallikaranai, Chennai-600 100, India
| | - Y Chamundeswari
- Department of Biochemistry, Allied Health science, Dr. M.G.R Educational and Research Institute, Chennai India
| | - JH Fathima
- Department of Oral and Maxillofacial Pathology, Ragas Dental College and Hospitals, Chennai, India
| | - Ramajayam Govindan
- Multi Disciplinary Research Unit, Madurai Medical College, TamilNadu, India
| | - Chella Perumal Palanisamy
- State Key Laboratory of Bio-based Materials and Green Papermaking, College of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Science, Jinan 250353, China
| | - Vishnu Priya Veeraraghavan
- Department of Biochemistry, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Selvaraj Jayaraman
- Department of Biochemistry, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Ponnulakshmi Rajagopal
- Department of Biochemistry, Allied Health science, Dr. M.G.R Educational and Research Institute, Chennai India
| |
Collapse
|
7
|
Shanak S, Bassalat N, Barghash A, Kadan S, Ardah M, Zaid H. Drug Discovery of Plausible Lead Natural Compounds That Target the Insulin Signaling Pathway: Bioinformatics Approaches. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:2832889. [PMID: 35356248 PMCID: PMC8958086 DOI: 10.1155/2022/2832889] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 01/16/2022] [Accepted: 02/09/2022] [Indexed: 12/11/2022]
Abstract
The growing smooth talk in the field of natural compounds is due to the ancient and current interest in herbal medicine and their potentially positive effects on health. Dozens of antidiabetic natural compounds were reported and tested in vivo, in silico, and in vitro. The role of these natural compounds, their actions on the insulin signaling pathway, and the stimulation of the glucose transporter-4 (GLUT4) insulin-responsive translocation to the plasma membrane (PM) are all crucial in the treatment of diabetes and insulin resistance. In this review, we collected and summarized a group of available in vivo and in vitro studies which targeted isolated phytochemicals with possible antidiabetic activity. Moreover, the in silico docking of natural compounds with some of the insulin signaling cascade key proteins is also summarized based on the current literature. In this review, hundreds of recent studies on pure natural compounds that alleviate type II diabetes mellitus (type II DM) were revised. We focused on natural compounds that could potentially regulate blood glucose and stimulate GLUT4 translocation through the phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt) pathway. On attempt to point out potential new natural antidiabetic compounds, this review also focuses on natural ingredients that were shown to interact with proteins in the insulin signaling pathway in silico, regardless of their in vitro/in vivo antidiabetic activity. We invite interested researchers to test these compounds as potential novel type II DM drugs and explore their therapeutic mechanisms.
Collapse
Affiliation(s)
- Siba Shanak
- Faculty of Sciences, Arab American University, P.O Box 240, Jenin, State of Palestine
| | - Najlaa Bassalat
- Faculty of Sciences, Arab American University, P.O Box 240, Jenin, State of Palestine
- Faculty of Medicine, Arab American University, P.O Box 240, Jenin, State of Palestine
| | - Ahmad Barghash
- Computer Science Department, German Jordanian University, Madaba Street. P.O. Box 35247, Amman 11180, Jordan
| | - Sleman Kadan
- Qasemi Research Center, Al-Qasemi Academic College, P.O Box 124, Baqa El-Gharbia 30100, Israel
| | - Mahmoud Ardah
- Faculty of Sciences, Arab American University, P.O Box 240, Jenin, State of Palestine
| | - Hilal Zaid
- Faculty of Medicine, Arab American University, P.O Box 240, Jenin, State of Palestine
- Qasemi Research Center, Al-Qasemi Academic College, P.O Box 124, Baqa El-Gharbia 30100, Israel
| |
Collapse
|
8
|
Varma DA, Singh M, Wakode S, Dinesh NE, Vinaik S, Asthana S, Tiwari M. Structure-based pharmacophore mapping and virtual screening of natural products to identify polypharmacological inhibitor against c-MET/EGFR/VEGFR-2. J Biomol Struct Dyn 2022; 41:2956-2970. [PMID: 35196966 DOI: 10.1080/07391102.2022.2042388] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Three receptor tyrosine kinases (RTKs), c-MET, EGFR, and VEGFR-2 have been identified as potential oncogenic targets involved in tumor development, metastasis, and invasion. Designing inhibitors that can simultaneously interact with multiple targets is a promising approach, therefore, inhibiting these three RTKs with a single chemical component might give an effective chemotherapeutic strategy for addressing the disease while limiting adverse effects. The in-silico methods have been developed to identify the polypharmacological inhibitors particularly for drug repurposing and multitarget drug design. Here, to find a viable inhibitor from natural source against these three RTKs, structure-based pharmacophore mapping and virtual screening of SN-II database were carried out. The filtered compound SN00020821, identified as Cedeodarin, from different computational approaches, demonstrated good interactions with all the three targets, c-MET/EGFR/VEGFR-2, with interaction energies of -42.35 kcal/mol, -49.32 kcal/mol and -44.83 kcal/mol, respectively. SN00020821displayed stable key interactions with critical amino acids of all the three receptors' kinase catalytic domains including "DFG motif" explored through the MD simulations. Furthermore, it also met the ADMET requirements and was determined to be drug-like as predicted from the Lipinski's rule of five and Veber's rule. Finally, SN00020821 provides a novel molecular scaffold that could be investigated further as a polypharmacological anticancer therapeutic candidate that targets the three RTKs.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Diksha A Varma
- Dr. B. R Ambedkar Centre for Biomedical Research, University of Delhi, New Delhi, India
| | - Mrityunjay Singh
- Non-communicable diseases, Translational Health Science and Technology Institute, Faridabad, India.,Pharmaceutical Chemistry, Delhi Institute of Pharmaceutical Sciences and Research, DPSRU, New Delhi, India
| | - Sharad Wakode
- Pharmaceutical Chemistry, Delhi Institute of Pharmaceutical Sciences and Research, DPSRU, New Delhi, India
| | - N E Dinesh
- Dr. B. R Ambedkar Centre for Biomedical Research, University of Delhi, New Delhi, India
| | - Simran Vinaik
- Dr. B. R Ambedkar Centre for Biomedical Research, University of Delhi, New Delhi, India
| | - Shailendra Asthana
- Non-communicable diseases, Translational Health Science and Technology Institute, Faridabad, India
| | - Manisha Tiwari
- Dr. B. R Ambedkar Centre for Biomedical Research, University of Delhi, New Delhi, India
| |
Collapse
|
9
|
Mustafa G, Mahrosh HS, Zafar M, Attique SA, Arif R. Exploring the antihyperglycemic potential of tetrapeptides devised from AdMc1 via different receptor proteins inhibition using in silico approaches. Int J Immunopathol Pharmacol 2022; 36:3946320221103120. [PMID: 35574607 PMCID: PMC9112693 DOI: 10.1177/03946320221103120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Introduction: Diabetes mellitus is a heterogenous group of chronic metabolic disorders that results due to deficiency in insulin secretion and signalling. Multiple factors held responsible for onset of diabetes due to defects in glucose metabolism and cellular signalling mechanism. Over the past few years, many plant derived bioactive compounds have been recorded with increased efficacy and fewer side-effects against variety of diseases. Methods: In the current study, molecular docking and molecular dynamics simulation approaches were employed to evaluate the tetrapeptides devised from AdMc1 protein of Momordica charantia. Due to unavailability of appropriate template for modelling of 3D structure of AdMc1 protein, I-TASSER server was employed for prediction of good quality tertiary structure. Predicted model was refined by GalaxyRefine Web and evaluated by Verify 3D, ERRAT and Ramachandran plot analysis. Next, a ready-to-dock library of fifty tetrapeptides as potent inhibitors was prepared and docked against aldose reductase (AR), protein tyrosine phosphatase 1B (PTP1B), α-glucosidase, α-amylase and glycogen synthase kinase 3-beta as receptor proteins. Molecular dynamics (MD) simulation was performed on Schrodinger’s Desmond Module to check stability of the best docking complex. Results: Top five ligands were selected against each receptor protein based on their binding pattern and docking scores. Among selected ligands (i.e. VEID, TVEV, AYAY, EEIA, ITTV, TTIT, LPSM, RGIE, TTVE and EIAR) followed all parameters in drug scanning and ADMET screening tests. The MD simulations confirmed that the best selected peptide (i.e. VEID) docked with AR and PTP1B was structurally stable. Conclusion: In the light of overall results of all analyses employed in this study, the selected ligands could be further processed as potential hypoglycaemic drug candidates.
Collapse
Affiliation(s)
- Ghulam Mustafa
- Department of Biochemistry, 72594Government College University, Faisalabad, Pakistan
| | - Hafiza S Mahrosh
- Department of Biochemistry, 66724University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Muddassar Zafar
- Department of Biochemistry and Biotechnology, 128417University of Gujrat, Hafiz Hayat Campus, Gujrat, Pakistan
| | - Syed A Attique
- School of Interdisciplinary Engineering & Science (SINES), National University of Sciences & Technology (NUST), Islamabad, Pakistan
| | - Rawaba Arif
- Department of Biochemistry, University of Jhang, Jhang, Pakistan
| |
Collapse
|
10
|
Riyaphan J, Pham DC, Leong MK, Weng CF. In Silico Approaches to Identify Polyphenol Compounds as α-Glucosidase and α-Amylase Inhibitors against Type-II Diabetes. Biomolecules 2021; 11:1877. [PMID: 34944521 PMCID: PMC8699780 DOI: 10.3390/biom11121877] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 12/08/2021] [Accepted: 12/09/2021] [Indexed: 01/01/2023] Open
Abstract
Type-II diabetes mellitus (T2DM) results from a combination of genetic and lifestyle factors, and the prevalence of T2DM is increasing worldwide. Clinically, both α-glucosidase and α-amylase enzymes inhibitors can suppress peaks of postprandial glucose with surplus adverse effects, leading to efforts devoted to urgently seeking new anti-diabetes drugs from natural sources for delayed starch digestion. This review attempts to explore 10 families e.g., Bignoniaceae, Ericaceae, Dryopteridaceae, Campanulaceae, Geraniaceae, Euphorbiaceae, Rubiaceae, Acanthaceae, Rutaceae, and Moraceae as medicinal plants, and folk and herb medicines for lowering blood glucose level, or alternative anti-diabetic natural products. Many natural products have been studied in silico, in vitro, and in vivo assays to restrain hyperglycemia. In addition, natural products, and particularly polyphenols, possess diverse structures for exploring them as inhibitors of α-glucosidase and α-amylase. Interestingly, an in silico discovery approach using natural compounds via virtual screening could directly target α-glucosidase and α-amylase enzymes through Monte Carto molecular modeling. Autodock, MOE-Dock, Biovia Discovery Studio, PyMOL, and Accelrys have been used to discover new candidates as inhibitors or activators. While docking score, binding energy (Kcal/mol), the number of hydrogen bonds, or interactions with critical amino acid residues have been taken into concerning the reliability of software for validation of enzymatic analysis, in vitro cell assay and in vivo animal tests are required to obtain leads, hits, and candidates in drug discovery and development.
Collapse
Affiliation(s)
| | - Dinh-Chuong Pham
- Biomaterials and Nanotechnology Research Group, Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City 700000, Vietnam;
| | - Max K. Leong
- Department of Chemistry, National Dong Hwa University, Hualien 97401, Taiwan
| | - Ching-Feng Weng
- Functional Physiology Section, Department of Basic Medical Science, Xiamen Medical College, Xiamen 361023, China
| |
Collapse
|
11
|
Poleboyina PK, Rampogu S, Doneti R, Pasha A, Poleboyina SM, Bhanothu S, Pasumarthi D, S D A, Kumbhakar D, Lee KW, Pawar SC. Screening and Identification of Potential iNOS Inhibitors to Curtail Cervical Cancer Progression: an In Silico Drug Repurposing Approach. Appl Biochem Biotechnol 2021; 194:570-586. [PMID: 34705247 DOI: 10.1007/s12010-021-03718-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 10/08/2021] [Indexed: 11/25/2022]
Abstract
Cervical cancer is the second most common cause of cancer deaths in women worldwide and remains the main reason of mortality among women of reproductive age in developing countries. Nitric oxide is involved in several physiological functions inclusive of inflammatory and immune responses. However, the function of NO in tumor biology is debatable. The inducible NOS (iNOS/NOS2) isoform is the one responsible to maintain the levels of NO, and it exhibits pleotropic effects in various cancers with concentration-dependent pro- and anti-tumor effects. iNOS triggers angiogenesis and endothelial cell migration in tumors by regulating the levels of vascular endothelial growth factor (VEGF). In drug discovery, drug repurposing involves investigations of approved drug candidates to treat various other diseases. In this study, we used anti-cancer drugs and small molecules to target iNOS and identify a potential selective iNOS inhibitor. The structures of ligands were geometrically optimized and energy minimized using Hyperchem software. Molecular docking was performed using Molegro virtual docker, and ligands were selected based on MolDock score, Rerank score, and H-bonding energy. In the study shown, venetoclax compound demonstrated excellent binding affinity to iNOS protein. This compound exhibited the lowest MolDock score and Rerank score with better H-bonding energy to iNOS. The binding efficacy of venetoclax was analyzed by performing molecular docking and molecular dynamic simulations. Multiple parameters were used to analyze the simulation trajectory, like root mean square deviation (RMSD), radius of gyration (Rg), and hydrogen bond interactions. Based on the results, venetoclax emerges to be a promising potential iNOS inhibitor to curtail cervical cancer progression.
Collapse
Affiliation(s)
- Pavan Kumar Poleboyina
- Department of Genetics & Biotechnology, University College of Science, Osmania University, Hyderabad, Telangana, 500007, India
| | - Shailima Rampogu
- Division of Life Sciences, Division of Applied Life Science (BK21 Plus), Research Institute of Natural Science (RINS), Gyeongsang National University (GNU), 501 Jinju-daero, Jinju, 52828, South Korea
| | - Ravinder Doneti
- Department of Genetics & Biotechnology, University College of Science, Osmania University, Hyderabad, Telangana, 500007, India
| | - Akbar Pasha
- Department of Genetics & Biotechnology, University College of Science, Osmania University, Hyderabad, Telangana, 500007, India
| | - Sneha Malleswari Poleboyina
- Department of Pharmaceutical Biotechnology, AU College of Pharmaceutical Sciences, Andhra University, Visakhapatnam, Andhra Pradesh, 530003, India
| | - Shivaji Bhanothu
- Department of Genetics & Biotechnology, University College of Science, Osmania University, Hyderabad, Telangana, 500007, India
| | - Deepthi Pasumarthi
- Department of Genetics & Biotechnology, University College of Science, Osmania University, Hyderabad, Telangana, 500007, India
| | - Annapurna S D
- Department of Genetics & Biotechnology, University College of Science, Osmania University, Hyderabad, Telangana, 500007, India
| | - DivyaVishambhar Kumbhakar
- Department of Genetics & Biotechnology, University College of Science, Osmania University, Hyderabad, Telangana, 500007, India
| | - Keun Woo Lee
- Division of Life Sciences, Division of Applied Life Science (BK21 Plus), Research Institute of Natural Science (RINS), Gyeongsang National University (GNU), 501 Jinju-daero, Jinju, 52828, South Korea
| | - Smita C Pawar
- Department of Genetics & Biotechnology, University College of Science, Osmania University, Hyderabad, Telangana, 500007, India.
| |
Collapse
|
12
|
Saeed M, Shoaib A, Tasleem M, Alabdallah NM, Alam MJ, Asmar ZE, Jamal QMS, Bardakci F, Alqahtani SS, Ansari IA, Badraoui R. Assessment of Antidiabetic Activity of the Shikonin by Allosteric Inhibition of Protein-Tyrosine Phosphatase 1B (PTP1B) Using State of Art: An In Silico and In Vitro Tactics. Molecules 2021; 26:3996. [PMID: 34208908 PMCID: PMC8271486 DOI: 10.3390/molecules26133996] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 06/24/2021] [Accepted: 06/26/2021] [Indexed: 12/15/2022] Open
Abstract
Diabetes mellitus is a multifactorial disease that affects both developing and developed countries and is a major public health concern. Many synthetic drugs are available in the market, which counteracts the associated pathologies. However, due to the propensity of side effects, there is an unmet need for the investigation of safe and effective drugs. This research aims to find a novel phytoconstituent having diminished action on blood glucose levels with the least side effects. Shikonin is a naturally occurring naphthoquinone dying pigment obtained by the roots of the Boraginaceae family. Besides its use as pigments, it can be used as an antimicrobial, anti-inflammatory, and anti-tumor agent. This research aimed to hypothesize the physicochemical and phytochemical properties of Shikonin's in silico interaction with protein tyrosine phosphate 1B, as well as it's in vitro studies, in order to determine its potential anti-diabetic impact. To do so, molecular docking experiments with target proteins were conducted to assess their anti-diabetic ability. Analyzing associations with corresponding amino acids revealed the significant molecular interactions between Shikonin and diabetes-related target proteins. In silico pharmacokinetics and toxicity profile of Shikonin using ADMET Descriptor, Toxicity Prediction, and Calculate Molecular Properties tools from Biovia Discovery Studio v4.5. Filter by Lipinski and Veber Rule's module from Biovia Discovery Studio v4.5 was applied to assess the drug-likeness of Shikonin. The in vitro studies exposed that Shikonin shows an inhibitory potential against the PTP1B with an IC50 value of 15.51 µM. The kinetics studies revealed that it has a competitive inhibitory effect (Ki = 7.5 M) on the enzyme system, which could be useful in the production of preventive and therapeutic agents. The findings of this research suggested that the Shikonin could be used as an anti-diabetic agent and can be used as a novel source for drug delivery.
Collapse
Affiliation(s)
- Mohd Saeed
- Department of Biology, College of Sciences, University of Hail, Hail 81451, Saudi Arabia; (M.J.A.); (Z.E.A.); (F.B.); (R.B.)
| | - Ambreen Shoaib
- Department of Clinical Pharmacy, College of Pharmacy, Jazan University, P.O. Box No. 114, Jazan 45142, Saudi Arabia;
| | - Munazzah Tasleem
- School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, China;
| | - Nadiyah M. Alabdallah
- Department of Biology, College of Science, Imam Abdulrahman Bin Faisal University, 383, Dammam 31113, Saudi Arabia;
| | - Md Jahoor Alam
- Department of Biology, College of Sciences, University of Hail, Hail 81451, Saudi Arabia; (M.J.A.); (Z.E.A.); (F.B.); (R.B.)
| | - Zeina El Asmar
- Department of Biology, College of Sciences, University of Hail, Hail 81451, Saudi Arabia; (M.J.A.); (Z.E.A.); (F.B.); (R.B.)
| | - Qazi Mohammad Sajid Jamal
- Department of Health Informatics, College of Public Health and Health Informatics, Qassim University, Al Bukayriyah 52571, Saudi Arabia;
| | - Fevzi Bardakci
- Department of Biology, College of Sciences, University of Hail, Hail 81451, Saudi Arabia; (M.J.A.); (Z.E.A.); (F.B.); (R.B.)
| | - Saad S. Alqahtani
- Department of Clinical Pharmacy, College of Pharmacy, Jazan University, P.O. Box No. 114, Jazan 45142, Saudi Arabia;
| | | | - Riadh Badraoui
- Department of Biology, College of Sciences, University of Hail, Hail 81451, Saudi Arabia; (M.J.A.); (Z.E.A.); (F.B.); (R.B.)
- Section of Histology-Cytology, Medicine Faculty of Tunis, University of Tunis El Manar, La Rabta-Tunis 1007, Tunisia
| |
Collapse
|
13
|
Mahrosh HS, Mehmood R, Bukhari SA, Afzal G, Arif R. Investigation of Hypoglycemic Peptides Derived from Conserved Regions of adMc1 to Reveal Their Antidiabetic Activities. BIOMED RESEARCH INTERNATIONAL 2021; 2021:5550180. [PMID: 33763471 PMCID: PMC7963905 DOI: 10.1155/2021/5550180] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 02/12/2021] [Accepted: 03/01/2021] [Indexed: 12/14/2022]
Abstract
Diabetes mellitus is the most common chronic disorder and leading cause of renal, neurological, and gastrointestinal manifestations in developed and developing countries. Despite of many drugs and combinational therapies, the complications of diabetes are still listed due to severe consequences of those drugs. In past few years, plant-derived drugs draw special attention due to their higher efficacy and fewer side-effects. Momordica charantia also known as bitter melon is referred as an antidiabetic and hypoglycemic plant in native populations of Asia and East Africa. In current study, an in silico approach was used to evaluate the interactions and binding patterns of plant-derived peptides devised from a hypoglycemic protein adMc1 of M. charantia as potential inhibitor of DPP-IV, SGLT1, and GLUT2 receptor proteins. The study has described a novel approach to investigate hypoglycemic peptides to cure diabetes. A total of eighty tetra-, penta-, and hexapeptides were devised from conserved regions of adMc1 homologs. The molecular docking approach using MOE software was employed to reveal inhibiting potentials of devised peptides against three selected proteins. Out of 30 shortlisted ligands six peptides (i.e. SMCG, DECC, TTIT, RTTI, ARNL and TVEV) accomplished the criteria of being good drug candidates against selected receptor proteins following the drugability assessment test. The overall results are acceptable on the basis of ADMET profiling for being good drug candidates against selected proteins.
Collapse
Affiliation(s)
| | - Rizwan Mehmood
- Department of Biochemistry, Government College University Faisalabad, Pakistan
| | | | - Gulnaz Afzal
- Department of Zoology, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Rawaba Arif
- Department of Biochemistry, Government College University Faisalabad, Pakistan
| |
Collapse
|
14
|
Mohd Salim MAS, Gan CY. Dual-function peptides derived from egg white ovalbumin: Bioinformatics identification with validation using in vitro assay. J Funct Foods 2020. [DOI: 10.1016/j.jff.2019.103618] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
|
15
|
Singh P, Omer A. An integrated approach of network based system pharmacology approach and molecular docking to explore multiscale role of Pinus roxburghii and investigation into its mechanism. Pharmacogn Mag 2020. [DOI: 10.4103/0973-1296.301874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
16
|
A systematic review of the potential uses of pine bark in food industry and health care. Trends Food Sci Technol 2019. [DOI: 10.1016/j.tifs.2018.07.007] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
17
|
Singh P, Singh VK, Singh AK. Molecular docking analysis of candidate compoundsderived from medicinal plants with type 2 diabetes mellitus targets. Bioinformation 2019; 15:179-188. [PMID: 31354193 PMCID: PMC6637395 DOI: 10.6026/97320630015179] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 01/13/2019] [Accepted: 02/15/2019] [Indexed: 01/26/2023] Open
Abstract
Herbal drugs are used for the treatment of diseases and disorders with its less side effects, easy availability and low cost. Several bioactive
compounds have been isolated from medicinal plants such as Ficus benghelensis, Ficus racemosa, Ficus religiosa, Thespesia populena and Ficus
lacur bouch were taken for screening. This study aimed to evaluate molecular interactions of selected diabetes mellitus (DM) targets with
bioactive compounds isolated from Ficus benghelensis, Ficus racemosa, Ficus religiosa, Thespesia populena and Ficus lacur bouch. In this article,
screening of the best substances as bioactive compounds is achieved by molecular docking analysis with 3 best selected DM target proteins
i.e., aldose reductase (AR), Insulin Receptor (IR) and Mono-ADP ribosyltransferase-sirtuin-6 (SIRT6). In this analysis six potential bioactive
compounds (gossypetin, herbacetin, kaempferol, leucoperalgonidin, leucodelphinidin and sorbifolin) were successfully identified on the
basis of binding energy (>8.0 kcal/mol) and dissociation constant using YASARA. Out of six compounds, herbacetin and sorbifolin were
observed as most suitable ligands for management of diabetes mellitus.
Collapse
Affiliation(s)
- Pratistha Singh
- Department of Dravyaguna, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Vinay Kumar Singh
- Centre for Bioinformatics, School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Anil Kumar Singh
- Department of Dravyaguna, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| |
Collapse
|
18
|
Sajid A, Manzoor Q, Iqbal M, Tyagi AK, Sarfraz RA, Sajid A. Pinus Roxburghii essential oil anticancer activity and chemical composition evaluation. EXCLI JOURNAL 2018; 17:233-245. [PMID: 29743861 PMCID: PMC5938542 DOI: 10.17179/excli2016-670] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 02/17/2018] [Indexed: 11/10/2022]
Abstract
The present study was conducted to appraise the anticancer activity of Pinus roxburghii essential oil along with chemical composition evaluation. MTT assay revealed cytotoxicity induction in colon, leukemia, multiple myeloma, pancreatic, head and neck and lung cancer cells exposed to essential oil. Cancer cell death was also observed through live/dead cell viability assay and FACS analysis. Apoptosis induced by essential oil was confirmed by cleavage of PARP and caspase-3 that suppressed the colony-forming ability of tumor cells and 50 % inhibition occurred at a dose of 25 μg/mL. Moreover, essential oil inhibited the activation of inflammatory transcription factor NF-κB and inhibited expression of NF-κB regulated gene products linked to cell survival (survivin, c-FLIP, Bcl-2, Bcl-xL, c-Myc, c-IAP2), proliferation (Cyclin D1) and metastasis (MMP-9). P. roxburghii essential oil has considerable anticancer activity and could be used as anticancer agent, which needs further investigation to identify and purify the bioactive compounds followed by in vivo studies.
Collapse
Affiliation(s)
- Arfaa Sajid
- Government College Women University Faisalabad, Faisalabad, Pakistan
| | - Qaisar Manzoor
- Department of Chemistry, The University of Lahore, Lahore, Pakistan
| | - Munawar Iqbal
- Department of Chemistry, The University of Lahore, Lahore, Pakistan
| | - Amit Kumar Tyagi
- Cytokine Research Laboratory, Department of Experimental Therapeutics, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, USA
| | - Raja Adil Sarfraz
- Department of Chemistry, University of Agriculture, Faisalabad, Pakistan
| | - Anam Sajid
- Department of Chemistry, University of Punjab, Lahore, Pakistan
| |
Collapse
|
19
|
Singh AK, Raj V, Keshari AK, Rai A, Kumar P, Rawat A, Maity B, Kumar D, Prakash A, De A, Samanta A, Bhattacharya B, Saha S. Isolated mangiferin and naringenin exert antidiabetic effect via PPAR γ/GLUT4 dual agonistic action with strong metabolic regulation. Chem Biol Interact 2017; 280:33-44. [PMID: 29223569 DOI: 10.1016/j.cbi.2017.12.007] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 11/07/2017] [Accepted: 12/01/2017] [Indexed: 01/12/2023]
Abstract
In this study, we isolated two compounds from the leaves of Salacia oblonga (SA1, mangiferin and SA2, naringenin), and their structures were confirmed by infrared spectroscopy, nuclear magnetic resonance (NMR) spectroscopy, and mass spectrometry. SA1 and SA2 were orally administered to streptozotocin-induced diabetic rats at 50 and 100 mg/kg daily for 15 days. Blood glucose level, serum lipid profile, oxidative stress parameters, histopathology, docking, molecular parameters, and NMR-based metabolic perturbation studies were performed to investigate the pharmacological activities of SA1 and SA2. Results suggested that both compounds reduced blood glucose level, restored body weight, and normalized lipid concentrations in the serum and oxidative stress biomarkers in the liver and pancreas. In addition, the docking study on several diabetes-associated targets revealed that both compounds had a strong binding affinity towards peroxisome proliferator-activated receptor gamma (PPARγ) and glucose transporter type 4 (GLUT4). Further real-time reverse transcription polymerase chain reaction and western blot analyses were performed to confirm the gene and protein expression levels of PPARγ and GLUT4 in the pancreatic tissues. Data obtained from the molecular studies showed that both compounds exhibited antidiabetic effects through dual activation of PPARγ/GLUT4 signaling pathways. Finally, the NMR-based metabolic studies showed that both compounds normalized the diabetogenic metabolites in the serum. Altogether, we concluded that SA1 and SA2 might be potential antidiabetic lead compounds for future drug development.
Collapse
Affiliation(s)
- Ashok K Singh
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow 226025, Uttar Pradesh, India
| | - Vinit Raj
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow 226025, Uttar Pradesh, India
| | - Amit K Keshari
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow 226025, Uttar Pradesh, India
| | - Amit Rai
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow 226025, Uttar Pradesh, India
| | - Pranesh Kumar
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow 226025, Uttar Pradesh, India
| | - Atul Rawat
- Centre of Biomedical Research (CBMR), Sanjay Gandhi Post-Graduate Institute of Medical Sciences Campus, Raebareli Road, Lucknow 226014, Uttar Pradesh, India; Department of Biotechnology, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow 226025, India
| | - Biswanath Maity
- Centre of Biomedical Research (CBMR), Sanjay Gandhi Post-Graduate Institute of Medical Sciences Campus, Raebareli Road, Lucknow 226014, Uttar Pradesh, India
| | - Dinesh Kumar
- Centre of Biomedical Research (CBMR), Sanjay Gandhi Post-Graduate Institute of Medical Sciences Campus, Raebareli Road, Lucknow 226014, Uttar Pradesh, India
| | - Anand Prakash
- Department of Biotechnology, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow 226025, India
| | - Arnab De
- Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, West Bengal, India
| | - Amalesh Samanta
- Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, West Bengal, India
| | - Bolay Bhattacharya
- Geethanjali College of Pharmacy, Cheeryal, Keesara, Hyderabad 501301, India
| | - Sudipta Saha
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow 226025, Uttar Pradesh, India.
| |
Collapse
|