1
|
Bocheva G, Bakalov D, Iliev P, Tafradjiiska-Hadjiolova R. The Vital Role of Melatonin and Its Metabolites in the Neuroprotection and Retardation of Brain Aging. Int J Mol Sci 2024; 25:5122. [PMID: 38791160 PMCID: PMC11121732 DOI: 10.3390/ijms25105122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/30/2024] [Accepted: 05/03/2024] [Indexed: 05/26/2024] Open
Abstract
While primarily produced in the pineal gland, melatonin's influence goes beyond its well-known role in regulating sleep, nighttime metabolism, and circadian rhythms, in the field of chronobiology. A plethora of new data demonstrates melatonin to be a very powerful molecule, being a potent ROS/RNS scavenger with anti-inflammatory, immunoregulatory, and oncostatic properties. Melatonin and its metabolites exert multiple beneficial effects in cutaneous and systemic aging. This review is focused on the neuroprotective role of melatonin during aging. Melatonin has an anti-aging capacity, retarding the rate of healthy brain aging and the development of age-related neurodegenerative diseases, such as Alzheimer's disease, Parkinson's disease, Huntington's disease, multiple sclerosis, amyotrophic lateral sclerosis, etc. Melatonin, as well as its metabolites, N1-acetyl-N2-formyl-5-methoxykynuramine (AFMK) and N1-acetyl-5-methoxykynuramine (AMK), can reduce oxidative brain damage by shielding mitochondria from dysfunction during the aging process. Melatonin could also be implicated in the treatment of neurodegenerative conditions, by modifying their characteristic low-grade neuroinflammation. It can either prevent the initiation of inflammatory responses or attenuate the ongoing inflammation. Drawing on the current knowledge, this review discusses the potential benefits of melatonin supplementation in preventing and managing cognitive impairment and neurodegenerative diseases.
Collapse
Affiliation(s)
- Georgeta Bocheva
- Department of Pharmacology and Toxicology, Medical University of Sofia, 1431 Sofia, Bulgaria
| | - Dimitar Bakalov
- Department of Physiology and Pathophysiology, Medical University of Sofia, 1431 Sofia, Bulgaria
| | - Petar Iliev
- Department of Physiology and Pathophysiology, Medical University of Sofia, 1431 Sofia, Bulgaria
| | | |
Collapse
|
2
|
Lee MY, Kim M. Effects of Red ginseng on neuroinflammation in neurodegenerative diseases. J Ginseng Res 2024; 48:20-30. [PMID: 38223824 PMCID: PMC10785270 DOI: 10.1016/j.jgr.2023.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 07/17/2023] [Accepted: 08/25/2023] [Indexed: 01/16/2024] Open
Abstract
Red ginseng (RG) is widely used as a herbal medicine. As the human lifespan has increased, numerous diseases have developed, and RG has also been used to treat various diseases. Neurodegenerative diseases are major problems that modern people face through their lives. Neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, Huntington's disease, and amyotrophic lateral sclerosis are featured by progressive nerve system damage. Recently, neuroinflammation has emerged as a degenerative factor and is an immune response in which cytokines with nerve cells that constitute the nervous system. RG, a natural herbal medicine with fewer side effects than chemically synthesized drugs, is currently in the spotlight. Therefore, we reviewed studies reporting the roles of RG in treating neuroinflammation and neurodegenerative diseases and found that RG might help alleviate neurodegenerative diseases by regulating neuroinflammation.
Collapse
Affiliation(s)
- Min Yeong Lee
- Department of Chemistry & Life Science, Sahmyook University, Hwarangro 815, Nowongu, Seoul, Republic of Korea
| | - Mikyung Kim
- Department of Chemistry & Life Science, Sahmyook University, Hwarangro 815, Nowongu, Seoul, Republic of Korea
- Uimyung Research Institute for Neuroscience, Department of Pharmacy, Sahmyook University, Hwarangro 815, Nowongu, Seoul, Republic of Korea
| |
Collapse
|
3
|
Nagahama T, Nakajima H, Wakuta M, Kasahara Y, Narita K, Nagahama S. Administration of amyloid-β oligomer to the buccal ganglia may reduce food intake and cholinergic synaptic responses within the feeding neural circuit in Aplysia kurodai. Neurosci Res 2023; 196:32-39. [PMID: 37328111 DOI: 10.1016/j.neures.2023.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/23/2023] [Accepted: 06/11/2023] [Indexed: 06/18/2023]
Abstract
Anorexia is a behavioral change caused by functional brain disorders in patients with Alzheimer's disease (AD). Amyloid-β (1-42) oligomers (o-Aβ) are possible causative agents of AD that impair signaling via synaptic dysfunction. In this study, we used Aplysia kurodai to study functional disorders of the brain through o-Aβ. Administration of o-Aβ to the buccal ganglia (feeding brain for oral movements) by surgical treatment significantly reduced food intake for at least five days. Furthermore, we explored the effects of o-Aβ on the synaptic function in the feeding neural circuit, focusing on a specific inhibitory synaptic response in jaw-closing motor neurons produced by cholinergic buccal multi-action neurons because we recently found that this cholinergic response decreases with aging, which is consistent with the cholinergic hypothesis for aging. Administration of o-Aβ to the buccal ganglia significantly reduced the synaptic response within minutes, whereas administration of amyloid-β (1-42) monomers did not. These results suggest that o-Aβ may impair the cholinergic synapses, even in Aplysia, which is consistent with the cholinergic hypothesis for AD.
Collapse
Affiliation(s)
- Tatsumi Nagahama
- Department of Biophysics, Faculty of Pharmaceutical Science, Toho University, Funabashi 274-8510, Japan; Faculty of Health and Medical Science, Teikyo Heisei University, Tokyo 170-8445, Japan.
| | - Hiroshi Nakajima
- Department of Biophysics, Faculty of Pharmaceutical Science, Toho University, Funabashi 274-8510, Japan
| | - Mizuki Wakuta
- Department of Biophysics, Faculty of Pharmaceutical Science, Toho University, Funabashi 274-8510, Japan
| | - Yuse Kasahara
- Department of Biophysics, Faculty of Pharmaceutical Science, Toho University, Funabashi 274-8510, Japan
| | - Kouki Narita
- Department of Biophysics, Faculty of Pharmaceutical Science, Toho University, Funabashi 274-8510, Japan
| | - Setsuko Nagahama
- Faculty of Health and Medical Science, Teikyo Heisei University, Tokyo 170-8445, Japan
| |
Collapse
|
4
|
Khayer N, Motamed N, Marashi SA, Goshadrou F. RT-DOb, a switch gene for the gene pair {Csf1r, Milr1}, can influence the onset of Alzheimer's disease by regulating communication between mast cell and microglia. PLoS One 2023; 18:e0288134. [PMID: 37410787 DOI: 10.1371/journal.pone.0288134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 06/20/2023] [Indexed: 07/08/2023] Open
Abstract
In biology, homeostasis is a central cellular phenomenon that plays a crucial role in survival. The central nervous system (CNS) is controlled by exquisitely sensitive homeostatic mechanisms when facing inflammatory or pathological insults. Mast cells and microglia play a crucial role in CNS homeostasis by eliminating damaged or unnecessary neurons and synapses. Therefore, decoding molecular circuits that regulate CNS homeostasis may lead to more effective therapeutic strategies that specifically target particular subsets for better therapy of Alzheimer's disease (AD). Based on a computational analysis of a microarray dataset related to AD, the H2-Ob gene was previously identified as a potential modulator of the homeostatic balance between mast cells and microglia. Specifically, it plays such a role in the presence of a three-way gene interaction in which the H2-Ob gene acts as a switch in the co-expression relationship of two genes, Csf1r and Milr1. Therefore, the importance of the H2-Ob gene as a potential therapeutic target for AD has led us to experimentally validate this relationship using the quantitative real-time PCR technique. In the experimental investigation, we confirmed that a change in the expression levels of the RT1-DOb gene (the rat ortholog of murine H2-Ob) can switch the co-expression relationship between Csf1r and Milr1. Furthermore, since the RT1-DOb gene is up-regulated in AD, the mentioned triplets might be related to triggering AD.
Collapse
Affiliation(s)
- Nasibeh Khayer
- Skull Base Research Center, The Five Senses Health Institute, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Nasrin Motamed
- Department of Cellular and Molecular Biology, School of Biology, University of Tehran, Tehran, Iran
| | - Sayed-Amir Marashi
- Department of Biotechnology, College of Science, University of Tehran, Tehran, Iran
| | - Fatemeh Goshadrou
- Department of Basic Sciences, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
5
|
Karsuntseva EK, Voronova AD, Chadin AV, Shishkina VV, Fursa GA, Andretsova SS, Reshetov IV, Stepanova OV, Chekhonin VP. Application of Behavioral Tests for Evaluation of an Experimental Model of Alzheimer's Disease in Female Rats. Bull Exp Biol Med 2023:10.1007/s10517-023-05823-0. [PMID: 37336813 DOI: 10.1007/s10517-023-05823-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Indexed: 06/21/2023]
Abstract
Alzheimer's disease was modeled in female Wistar rats aged 4 months by stereotaxic bilateral injection of a synthetic peptide β-amyloid (Aβ1-42) into the hippocampus. Behavioral tests (open field, Y-maze, passive avoidance, and Morris water maze) revealed significant impairment of memory and spatial navigation 8 weeks after β-amyloid administration. At this term, the cognitive impairments typical of Alzheimer's disease are reproduced. The experimental model of Alzheimer's disease proposed by us can be used in preclinical studies of drugs for the treatment of this pathology.
Collapse
Affiliation(s)
- E K Karsuntseva
- V. P. Serbsky National Medical Research Center of Psychiatry and Narcology, Ministry of Health of the Russian Federation, Moscow, Russia.
| | - A D Voronova
- V. P. Serbsky National Medical Research Center of Psychiatry and Narcology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - A V Chadin
- V. P. Serbsky National Medical Research Center of Psychiatry and Narcology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - V V Shishkina
- V. P. Serbsky National Medical Research Center of Psychiatry and Narcology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - G A Fursa
- V. P. Serbsky National Medical Research Center of Psychiatry and Narcology, Ministry of Health of the Russian Federation, Moscow, Russia
- Pirogov Russian National Research Medical University, Ministry of Health of the Russian Federation, Moscow, Russia
| | - S S Andretsova
- V. P. Serbsky National Medical Research Center of Psychiatry and Narcology, Ministry of Health of the Russian Federation, Moscow, Russia
- M. V. Lomonosov Moscow State University, Moscow, Russia
| | - I V Reshetov
- University Clinical Hospital No. 1, I. M. Sechenov First Moscow State Medical University, Ministry of Health of the Russian Federation (Sechenov University), Moscow, Russia
| | - O V Stepanova
- V. P. Serbsky National Medical Research Center of Psychiatry and Narcology, Ministry of Health of the Russian Federation, Moscow, Russia
- E. I. Chazov National Medical Research Center of Cardiology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - V P Chekhonin
- V. P. Serbsky National Medical Research Center of Psychiatry and Narcology, Ministry of Health of the Russian Federation, Moscow, Russia
- Pirogov Russian National Research Medical University, Ministry of Health of the Russian Federation, Moscow, Russia
| |
Collapse
|
6
|
The effect of combination pretreatment of donepezil and environmental enrichment on memory deficits in amyloid-beta-induced Alzheimer-like rat model. Biochem Biophys Rep 2022; 32:101392. [DOI: 10.1016/j.bbrep.2022.101392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 11/07/2022] [Accepted: 11/15/2022] [Indexed: 11/25/2022] Open
|
7
|
Pupyshev AB, Belichenko VM, Tenditnik MV, Bashirzade AA, Dubrovina NI, Ovsyukova MV, Akopyan AA, Fedoseeva LA, Korolenko TA, Amstislavskaya TG, Tikhonova MA. Combined induction of mTOR-dependent and mTOR-independent pathways of autophagy activation as an experimental therapy for Alzheimer's disease-like pathology in a mouse model. Pharmacol Biochem Behav 2022; 217:173406. [DOI: 10.1016/j.pbb.2022.173406] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 03/18/2022] [Accepted: 05/17/2022] [Indexed: 12/21/2022]
|
8
|
Quiroga IY, Cruikshank AE, Bond ML, Reed KSM, Evangelista BA, Tseng JH, Ragusa JV, Meeker RB, Won H, Cohen S, Cohen TJ, Phanstiel DH. Synthetic amyloid beta does not induce a robust transcriptional response in innate immune cell culture systems. J Neuroinflammation 2022; 19:99. [PMID: 35459147 PMCID: PMC9034485 DOI: 10.1186/s12974-022-02459-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 04/07/2022] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is a progressive neurodegenerative disease that impacts nearly 400 million people worldwide. The accumulation of amyloid beta (Aβ) in the brain has historically been associated with AD, and recent evidence suggests that neuroinflammation plays a central role in its origin and progression. These observations have given rise to the theory that Aβ is the primary trigger of AD, and induces proinflammatory activation of immune brain cells (i.e., microglia), which culminates in neuronal damage and cognitive decline. To test this hypothesis, many in vitro systems have been established to study Aβ-mediated activation of innate immune cells. Nevertheless, the transcriptional resemblance of these models to the microglia in the AD brain has never been comprehensively studied on a genome-wide scale. METHODS We used bulk RNA-seq to assess the transcriptional differences between in vitro cell types used to model neuroinflammation in AD, including several established, primary and iPSC-derived immune cell lines (macrophages, microglia and astrocytes) and their similarities to primary cells in the AD brain. We then analyzed the transcriptional response of these innate immune cells to synthetic Aβ or LPS and INFγ. RESULTS We found that human induced pluripotent stem cell (hIPSC)-derived microglia (IMGL) are the in vitro cell model that best resembles primary microglia. Surprisingly, synthetic Aβ does not trigger a robust transcriptional response in any of the cellular models analyzed, despite testing a wide variety of Aβ formulations, concentrations, and treatment conditions. Finally, we found that bacterial LPS and INFγ activate microglia and induce transcriptional changes that resemble many, but not all, aspects of the transcriptomic profiles of disease associated microglia (DAM) present in the AD brain. CONCLUSIONS These results suggest that synthetic Aβ treatment of innate immune cell cultures does not recapitulate transcriptional profiles observed in microglia from AD brains. In contrast, treating IMGL with LPS and INFγ induces transcriptional changes similar to those observed in microglia detected in AD brains.
Collapse
Affiliation(s)
- I Y Quiroga
- Thurston Arthritis Research Center, University of North Carolina, Chapel Hill, NC, USA
| | - A E Cruikshank
- Postbaccalaureate Research Education Program, University of North Carolina, Chapel Hill, NC, USA
| | - M L Bond
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC, USA
| | - K S M Reed
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC, USA
| | - B A Evangelista
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC, USA
| | - J H Tseng
- Department of Neurology, University of North Carolina, Chapel Hill, NC, USA
| | - J V Ragusa
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC, USA
| | - R B Meeker
- Department of Neurology, University of North Carolina, Chapel Hill, NC, USA
| | - H Won
- Department of Genetics and Neuroscience Center, University of North Carolina, Chapel Hill, NC, USA
- Neuroscience Center, University of North Carolina, Chapel Hill, NC, USA
| | - S Cohen
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC, USA
| | - T J Cohen
- Department of Neurology, University of North Carolina, Chapel Hill, NC, USA
| | - D H Phanstiel
- Thurston Arthritis Research Center, University of North Carolina, Chapel Hill, NC, USA.
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC, USA.
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC, USA.
| |
Collapse
|
9
|
New Paradigm in Cell Therapy Using Sperm Head to Restore Brain Function and Structure in Animal Model of Alzheimer’s Disease: Support for Boosting Constructive Inflammation vs. Anti-Inflammatory Approach. J Immunol Res 2022; 2022:8343763. [PMID: 35571563 PMCID: PMC9095412 DOI: 10.1155/2022/8343763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 02/25/2022] [Accepted: 03/10/2022] [Indexed: 11/18/2022] Open
Abstract
Alzheimer’s is characterized by accumulation of amyloid-β (Aβ) associated with insufficient clearance of toxicants from the brain establishing a chronic inflammation and other abnormalities in the brain. Inflammatory microglia and astrocytes along with abnormal lymphatics associated with insufficient clearance of Aβ and other toxicants from the brain establish a chronic inflammation. This causes abnormal choroid plexus, leukocyte trafficking, and hypoxic condition along with high levels of regulatory T cells (Tregs). There is no consensus among researchers regarding decreasing or increasing Tregs to achieve therapeutic effects. Different opposing studies tried to suppress or boost inflammation to treat AD. Based on reproductive immunology, sperm induces constructive inflammatory response and seminal-vesicle-fluid (SVF) suppresses inflammation leading to uterus remodeling. It prompted us to compare therapeutic efficiency of inflammatory or anti-inflammatory approaches in AD model based on reproductive immunology. To do so, SVF, sperm, or sperm head (from Wistar rat) was administered via intra-cerebro-ventricular route to Sprague Dawley rat AD model. Behavioral and histological examination were made and treatment groups were compared with control AD model and normal groups. Therapeutic efficacy was in the order of sperm head>sperm>SVF. Sperm head returned learning memory, Aβ, lymphatics, neural growth factors, choroid plexus function, Iba-1/GFAP, MHC II/CD86/CD40, CD38/IL-10, and hypoxia levels back to normal level. However, SVF just partially ameliorated the disease. Immunologic properties of sperm/sperm head to elicit constructive inflammation can be extended to organs other than reproductive. This nature-based approach overcomes genetic difference as an important obstacle and limitation in cell therapy, and is expected to be safe or with least side effects.
Collapse
|
10
|
Gavriel Y, Rabinovich-Nikitin I, Ezra A, Barbiro B, Solomon B. Subcutaneous Administration of AMD3100 into Mice Models of Alzheimer's Disease Ameliorated Cognitive Impairment, Reduced Neuroinflammation, and Improved Pathophysiological Markers. J Alzheimers Dis 2021; 78:653-671. [PMID: 33016905 DOI: 10.3233/jad-200506] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND Alzheimer's disease (AD), the prevalent dementia in the elderly, involves many related and interdependent pathologies that manifest simultaneously, leading to cognitive impairment and death. Amyloid-β (Aβ) accumulation in the brain triggers the onset of AD, accompanied by neuroinflammatory response and pathological changes. The CXCR4/CXCL12 (SDF1) axis is one of the major signal transduction cascades involved in the inflammation process and regulation of homing of hematopoietic stem cells (HSCs) within the bone marrow niche. Inhibition of the axis with AMD3100, a reversible antagonist of CXCR4 mobilizes endogenous HSCs from the bone marrow into the periphery, facilitating the recruitment of bone marrow-derived microglia-like cells into the brain, attenuates the neuroinflammation process that involves release of excitotoxic markers such as TNFα, intracellular Ca2 +, and glutamate and upregulates monocarboxylate transporter 1, the major L-lactate transporter in the brain. OBJECTIVE Herein, we investigate if administration of a combination of AMD3100 and L-lactate may have beneficial effects in the treatment of AD. METHODS We tested the feasibility of the combined treatment for short- and long-term efficacy for inducing endogenous stem cells' mobilization and attenuation of neuroinflammation in two distinct amyloid-β-induced AD mouse models. RESULTS The combined treatment did not demonstrate any adverse effects on the mice, and resulted in a significant improvement in cognitive/memory functions, attenuated neuroinflammation, and alleviated AD pathologies compared to each treatment alone. CONCLUSION This study showed AMD3100's beneficial effect in ameliorating AD pathogenesis, suggesting an alternative to the multistep procedures of transplantation of stem cells in the treatment of AD.
Collapse
Affiliation(s)
- Yuval Gavriel
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Inna Rabinovich-Nikitin
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Assaf Ezra
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Becki Barbiro
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Beka Solomon
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
11
|
Zhou Y, Chen Y, Xu C, Zhang H, Lin C. TLR4 Targeting as a Promising Therapeutic Strategy for Alzheimer Disease Treatment. Front Neurosci 2020; 14:602508. [PMID: 33390886 PMCID: PMC7775514 DOI: 10.3389/fnins.2020.602508] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 11/16/2020] [Indexed: 12/30/2022] Open
Abstract
Alzheimer disease (AD) is a devastating neurodegenerative disorder characterized by extracellular accumulation of amyloid-beta and formation of intracellular neurofibrillary tangles. Microglia activation and neuroinflammation play important roles in the pathogenesis of AD; Toll-like receptor 4 (TLR4)-a key component of the innate immune system-in microglia is also thought to be involved based on the observed association between TLR gene polymorphisms and AD risk. TLR4 has been shown to exert both detrimental and beneficial effects on AD-related pathologies. In preclinical models, experimental manipulations targeting TLR4 were shown to improve learning and memory, which was related to inhibition of pro-inflammatory cytokine release and reduction of oxidative stress. In this review, we summarize the key evidence supporting TLR4 as a promising therapeutic target in AD treatment.
Collapse
Affiliation(s)
- Yongji Zhou
- Department of Neurology, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yanxing Chen
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Congcong Xu
- The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hao Zhang
- Department of Neurology, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Caixiu Lin
- Department of Neurology, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
12
|
Dallagi Y, Rahali D, Perrotte M, Dkhili H, Korsan A, El May MV, El Fazaa S, Ramassamy C, El Golli N. Date seeds alleviate behavioural and neuronal complications of metabolic syndrome in rats. Arch Physiol Biochem 2020; 129:582-596. [PMID: 33290103 DOI: 10.1080/13813455.2020.1849311] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Unhealthy dietary habits can play a crucial role in metabolic damages, promoting alteration of neural functions through the lifespan. Recently, dietary change has been perceived as the first line intervention in prevention and/or treatment of metabolic damages and related diseases. In this context, our study was designed to assess the eventual therapeutic effect of date seeds administration on memory and learning and on neuronal markers in a rat Metabolic Syndrome model. For this purpose, 32 adult male Wistar rats were fed with standard diet or high-fat high-sugar diet during ten weeks. After this, 16 rats were sacrified and the remaining rats received an oral administration of 300 mg of date seeds/kg of body weight during four supplementary weeks. Before sacrifice, we evaluate cognitive performances by the Barnes maze test. Afterwards, neuronal, astrocytic, microtubular and oxidative markers were investigated by immunoblotting methods. In Metabolic syndrome rats, results showed impairment of spatial memory and histological alterations. We identified neuronal damages in hippocampus, marked by a decrease of NeuN and an increase of GFAP and pTau396. Finally, we recorded an increase in protein oxidation and lipid peroxidation, respectively identified by an up-regulation of protein carbonyls and 4-HNe. Interestingly, date seeds administration improved these behavioural, histological, neuronal and oxidative damages highlighting the neuroprotective effect of this natural compound. Liquid Chromatography-Mass Spectrometry (LC-MS) identified, in date seeds, protocatechuic acid, caffeoylshikimic acid and vanillic acid, that could potentially prevent the progression of neurodegenerative diseases, acting through their antioxidant properties.
Collapse
Affiliation(s)
- Yosra Dallagi
- Laboratory of Neurophysiology, Cellular physiopathology and Biomolecule valorization, Faculty of Sciences of Tunis, University Tunis El Manar, Tunis, Tunisia
| | - Dalila Rahali
- Laboratory of Neurophysiology, Cellular physiopathology and Biomolecule valorization, Faculty of Sciences of Tunis, University Tunis El Manar, Tunis, Tunisia
| | - Morgane Perrotte
- INRS-Institute Armand Frappier, boul. des Prairies, Laval, Canada
| | - Houssem Dkhili
- Laboratory of Neurophysiology, Cellular physiopathology and Biomolecule valorization, Faculty of Sciences of Tunis, University Tunis El Manar, Tunis, Tunisia
| | - Asma Korsan
- Laboratory of Microorganisms and Active Biomolecules, Department of Biology, Faculty of Sciences, University of Tunis El Manar, Tunis, Tunisia
| | - Michele Veronique El May
- Laboratory of Histology Faculty of Medicine of Tunis, University of Tunis, El Manar, Tunis, Tunisia
| | - Saloua El Fazaa
- Laboratory of Neurophysiology, Cellular physiopathology and Biomolecule valorization, Faculty of Sciences of Tunis, University Tunis El Manar, Tunis, Tunisia
| | - Charles Ramassamy
- INRS-Institute Armand Frappier, boul. des Prairies, Laval, Canada
- Institute of Nutrition and Functional Food (INAF), Laval University, Quebec, Canada
| | - Narges El Golli
- Laboratory of Neurophysiology, Cellular physiopathology and Biomolecule valorization, Faculty of Sciences of Tunis, University Tunis El Manar, Tunis, Tunisia
| |
Collapse
|
13
|
Belo RF, Martins MLF, Shvachiy L, Costa-Coelho T, de Almeida-Borlido C, Fonseca-Gomes J, Neves V, Vicente Miranda H, Outeiro TF, Coelho JE, Xapelli S, Valente CA, Heras M, Bardaji E, Castanho MARB, Diógenes MJ, Sebastião AM. The Neuroprotective Action of Amidated-Kyotorphin on Amyloid β Peptide-Induced Alzheimer's Disease Pathophysiology. Front Pharmacol 2020; 11:985. [PMID: 32733240 PMCID: PMC7363954 DOI: 10.3389/fphar.2020.00985] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 06/18/2020] [Indexed: 12/16/2022] Open
Abstract
Kyotorphin (KTP, l-tyrosyl-l-arginine) is an endogenous dipeptide initially described to have analgesic properties. Recently, KTP was suggested to be an endogenous neuroprotective agent, namely for Alzheimer’s disease (AD). In fact, KTP levels were shown to be decreased in the cerebrospinal fluid of patients with AD, and recent data showed that intracerebroventricular (i.c.v.) injection of KTP ameliorates memory impairments in a sporadic rat model of AD. However, this administration route is far from being a suitable therapeutic strategy. Here, we evaluated if the blood-brain permeant KTP-derivative, KTP-NH2, when systemically administered, would be effective in preventing memory deficits in a sporadic AD animal model and if so, which would be the synaptic correlates of that action. The sporadic AD model was induced in male Wistar rats through i.c.v. injection of amyloid β peptide (Aβ). Animals were treated for 20 days with KTP-NH2 (32.3 mg/kg, intraperitoneally (i.p.), starting at day 3 after Aβ administration) before memory testing (Novel object recognition (NOR) and Y-maze (YM) tests). Animals were then sacrificed, and markers for gliosis were assessed by immunohistochemistry and Western blot analysis. Synaptic correlates were assessed by evaluating theta-burst induced long term potentiation (LTP) of field excitatory synaptic potentials (fEPSPs) recorded from hippocampal slices and cortical spine density analysis. In the absence of KTP-NH2 treatment, Aβ-injected rats had clear memory deficits, as assessed through NOR or YM tests. Importantly, these memory deficits were absent in Aβ-injected rats that had been treated with KTP-NH2, which scored in memory tests as control (sham i.c.v. injected) rats. No signs of gliosis could be detected at the end of the treatment in any group of animals. LTP magnitude was significantly impaired in hippocampal slices that had been incubated with Aβ oligomers (200 nM) in the absence of KTP-NH2. Co-incubation with KTP-NH2 (50 nM) rescued LTP toward control values. Similarly, Aβ caused a significant decrease in spine density in cortical neuronal cultures, and this was prevented by co-incubation with KTP-NH2 (50 nM). In conclusion, the present data demonstrate that i.p. KTP-NH2 treatment counteracts Aβ-induced memory impairments in an AD sporadic model, possibly through the rescuing of synaptic plasticity mechanisms.
Collapse
Affiliation(s)
- Rita F Belo
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal.,Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Margarida L F Martins
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal.,Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Liana Shvachiy
- Cardiovascular Autonomic Function Lab, Centro Cardiovascular da Universidade de Lisboa, Lisbon, Portugal
| | - Tiago Costa-Coelho
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal.,Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Carolina de Almeida-Borlido
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal.,Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - João Fonseca-Gomes
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal.,Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Vera Neves
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal.,Instituto de Bioquímica, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Hugo Vicente Miranda
- CEDOC, Chronic Diseases Research Center, NOVA Medical School, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisboa, Portugal
| | - Tiago F Outeiro
- CEDOC, Chronic Diseases Research Center, NOVA Medical School, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisboa, Portugal.,Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Göttingen, Germany.,Max Planck Institute for Experimental Medicine, Göttingen, Germany.,Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle Upon Tyne, United Kingdom
| | - Joana E Coelho
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Sara Xapelli
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal.,Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Cláudia A Valente
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal.,Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Montserrat Heras
- Laboratori d'Innovació en Processos i Productes de Síntesi Orgànica (LIPPSO), Departament de Química, Universitat de Girona, Girona, Spain
| | - Eduard Bardaji
- Laboratori d'Innovació en Processos i Productes de Síntesi Orgànica (LIPPSO), Departament de Química, Universitat de Girona, Girona, Spain
| | - Miguel A R B Castanho
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal.,Instituto de Bioquímica, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Maria José Diógenes
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal.,Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Ana M Sebastião
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal.,Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
14
|
Budni J, de Oliveira J. Amyloid beta 1–42-induced animal model of dementia. GENETICS, NEUROLOGY, BEHAVIOR, AND DIET IN DEMENTIA 2020:865-880. [DOI: 10.1016/b978-0-12-815868-5.00054-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
15
|
Hardeland R. Aging, Melatonin, and the Pro- and Anti-Inflammatory Networks. Int J Mol Sci 2019; 20:ijms20051223. [PMID: 30862067 PMCID: PMC6429360 DOI: 10.3390/ijms20051223] [Citation(s) in RCA: 199] [Impact Index Per Article: 33.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 03/05/2019] [Accepted: 03/07/2019] [Indexed: 12/17/2022] Open
Abstract
Aging and various age-related diseases are associated with reductions in melatonin secretion, proinflammatory changes in the immune system, a deteriorating circadian system, and reductions in sirtuin-1 (SIRT1) activity. In non-tumor cells, several effects of melatonin are abolished by inhibiting SIRT1, indicating mediation by SIRT1. Melatonin is, in addition to its circadian and antioxidant roles, an immune stimulatory agent. However, it can act as either a pro- or anti-inflammatory regulator in a context-dependent way. Melatonin can stimulate the release of proinflammatory cytokines and other mediators, but also, under different conditions, it can suppress inflammation-promoting processes such as NO release, activation of cyclooxygenase-2, inflammasome NLRP3, gasdermin D, toll-like receptor-4 and mTOR signaling, and cytokine release by SASP (senescence-associated secretory phenotype), and amyloid-β toxicity. It also activates processes in an anti-inflammatory network, in which SIRT1 activation, upregulation of Nrf2 and downregulation of NF-κB, and release of the anti-inflammatory cytokines IL-4 and IL-10 are involved. A perhaps crucial action may be the promotion of macrophage or microglia polarization in favor of the anti-inflammatory phenotype M2. In addition, many factors of the pro- and anti-inflammatory networks are subject to regulation by microRNAs that either target mRNAs of the respective factors or upregulate them by targeting mRNAs of their inhibitor proteins.
Collapse
Affiliation(s)
- Rüdiger Hardeland
- Johann Friedrich Blumenbach Institute of Zoology and Anthropology, University of Göttingen, 37073 Göttingen, Germany.
| |
Collapse
|
16
|
Moir RD, Lathe R, Tanzi RE. The antimicrobial protection hypothesis of Alzheimer's disease. Alzheimers Dement 2018; 14:1602-1614. [DOI: 10.1016/j.jalz.2018.06.3040] [Citation(s) in RCA: 222] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 06/22/2018] [Indexed: 12/31/2022]
Affiliation(s)
- Robert D. Moir
- Genetics and Aging Research Unit; MassGeneral Institute for Neurodegenerative Disease; Department of Neurology; Massachusetts General Hospital and Harvard Medical School; Charlestown MA USA
| | - Richard Lathe
- Division of Infection and Pathway Medicine; University of Edinburgh; Little France Edinburgh UK
| | - Rudolph E. Tanzi
- Genetics and Aging Research Unit; MassGeneral Institute for Neurodegenerative Disease; Department of Neurology; Massachusetts General Hospital and Harvard Medical School; Charlestown MA USA
| |
Collapse
|
17
|
Environmental enrichment and exercise are better than social enrichment to reduce memory deficits in amyloid beta neurotoxicity. Proc Natl Acad Sci U S A 2018; 115:E2403-E2409. [PMID: 29463708 DOI: 10.1073/pnas.1718435115] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Recently, nongenetic animal models to study the onset and development of Alzheimer's disease (AD) have appeared, such as the intrahippocampal infusion of peptides present in Alzheimer amyloid plaques [i.e., amyloid-β (Aβ)]. Nonpharmacological approaches to AD treatment also have been advanced recently, which involve combinations of behavioral interventions whose specific effects are often difficult to determine. Here we isolate the neuroprotective effects of three of these interventions-environmental enrichment (EE), anaerobic physical exercise (AnPE), and social enrichment (SE)-on Aβ-induced oxidative stress and on impairments in learning and memory induced by Aβ. Wistar rats were submitted to 8 wk of EE, AnPE, or SE, followed by Aβ infusion in the dorsal hippocampus. Short-term memory (STM) and long-term memory (LTM) of object recognition (OR) and social recognition (SR) were evaluated. Biochemical assays determined hippocampal oxidative status: reactive oxygen species, lipid peroxidation by thiobarbituric acid reactive substance (TBARS) test, and total antioxidant capacity by ferric reducing/antioxidant power (FRAP), as well as acetylcholinesterase activity. Aβ infusion resulted in memory deficits and hippocampal oxidative damage. EE and AnPE prevented all memory deficits (STM and LTM of OR and SR) and lipid peroxidation (i.e., TBARS). SE prevented only the SR memory deficits and the decrease of total antioxidant capacity decrease (i.e., FRAP). Traditionally, findings obtained with EE protocols do not allow discrimination of the roles of the three individual factors involved. Here we demonstrate that EE and physical exercise have better neuroprotective effects than SE in memory deficits related to Aβ neurotoxicity in the AD model tested.
Collapse
|
18
|
Shahidi S, Zargooshnia S, Asl SS, Komaki A, Sarihi A. Influence of N -acetyl cysteine on beta-amyloid-induced Alzheimer’s disease in a rat model: A behavioral and electrophysiological study. Brain Res Bull 2017; 131:142-149. [DOI: 10.1016/j.brainresbull.2017.04.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 03/29/2017] [Accepted: 04/05/2017] [Indexed: 01/29/2023]
|
19
|
Bell RL, Hauser S, Rodd ZA, Liang T, Sari Y, McClintick J, Rahman S, Engleman EA. A Genetic Animal Model of Alcoholism for Screening Medications to Treat Addiction. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2016; 126:179-261. [PMID: 27055615 PMCID: PMC4851471 DOI: 10.1016/bs.irn.2016.02.017] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The purpose of this review is to present up-to-date pharmacological, genetic, and behavioral findings from the alcohol-preferring P rat and summarize similar past work. Behaviorally, the focus will be on how the P rat meets criteria put forth for a valid animal model of alcoholism with a highlight on its use as an animal model of polysubstance abuse, including alcohol, nicotine, and psychostimulants. Pharmacologically and genetically, the focus will be on the neurotransmitter and neuropeptide systems that have received the most attention: cholinergic, dopaminergic, GABAergic, glutamatergic, serotonergic, noradrenergic, corticotrophin releasing hormone, opioid, and neuropeptide Y. Herein, we sought to place the P rat's behavioral and neurochemical phenotypes, and to some extent its genotype, in the context of the clinical literature. After reviewing the findings thus far, this chapter discusses future directions for expanding the use of this genetic animal model of alcoholism to identify molecular targets for treating drug addiction in general.
Collapse
Affiliation(s)
- R L Bell
- Institute of Psychiatric Research, Indiana University School of Medicine, Indianapolis, IN, United States.
| | - S Hauser
- Institute of Psychiatric Research, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Z A Rodd
- Institute of Psychiatric Research, Indiana University School of Medicine, Indianapolis, IN, United States
| | - T Liang
- Indiana University School of Medicine, Indianapolis, IN, United States
| | - Y Sari
- University of Toledo, Toledo, OH, United States
| | - J McClintick
- Center for Medical Genomics, Indiana University School of Medicine, Indianapolis, IN, United States
| | - S Rahman
- Department of Pharmaceutical Sciences, South Dakota State University, Brookings, SD, United States
| | - E A Engleman
- Institute of Psychiatric Research, Indiana University School of Medicine, Indianapolis, IN, United States
| |
Collapse
|
20
|
Asadi F, Jamshidi AH, Khodagholi F, Yans A, Azimi L, Faizi M, Vali L, Abdollahi M, Ghahremani MH, Sharifzadeh M. Reversal effects of crocin on amyloid β-induced memory deficit: Modification of autophagy or apoptosis markers. Pharmacol Biochem Behav 2015; 139:47-58. [DOI: 10.1016/j.pbb.2015.10.011] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Revised: 09/25/2015] [Accepted: 10/16/2015] [Indexed: 12/29/2022]
|
21
|
Nazem A, Sankowski R, Bacher M, Al-Abed Y. Rodent models of neuroinflammation for Alzheimer's disease. J Neuroinflammation 2015; 12:74. [PMID: 25890375 PMCID: PMC4404276 DOI: 10.1186/s12974-015-0291-y] [Citation(s) in RCA: 170] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2015] [Accepted: 03/27/2015] [Indexed: 12/24/2022] Open
Abstract
Alzheimer's disease remains incurable, and the failures of current disease-modifying strategies for Alzheimer's disease could be attributed to a lack of in vivo models that recapitulate the underlying etiology of late-onset Alzheimer's disease. The etiology of late-onset Alzheimer's disease is not based on mutations related to amyloid-β (Aβ) or tau production which are currently the basis of in vivo models of Alzheimer's disease. It has recently been suggested that mechanisms like chronic neuroinflammation may occur prior to amyloid-β and tau pathologies in late-onset Alzheimer's disease. The aim of this study is to analyze the characteristics of rodent models of neuroinflammation in late-onset Alzheimer's disease. Our search criteria were based on characteristics of an idealistic disease model that should recapitulate causes, symptoms, and lesions in a chronological order similar to the actual disease. Therefore, a model based on the inflammation hypothesis of late-onset Alzheimer's disease should include the following features: (i) primary chronic neuroinflammation, (ii) manifestations of memory and cognitive impairment, and (iii) late development of tau and Aβ pathologies. The following models fit the pre-defined criteria: lipopolysaccharide- and PolyI:C-induced models of immune challenge; streptozotocin-, okadaic acid-, and colchicine neurotoxin-induced neuroinflammation models, as well as interleukin-1β, anti-nerve growth factor and p25 transgenic models. Among these models, streptozotocin, PolyI:C-induced, and p25 neuroinflammation models are compatible with the inflammation hypothesis of Alzheimer's disease.
Collapse
Affiliation(s)
- Amir Nazem
- Elmezzi Graduate School of Molecular Medicine, The Feinstein Institute for Medical Research, 350 Community drive, Manhasset, NY, 11030, USA.
| | - Roman Sankowski
- Elmezzi Graduate School of Molecular Medicine, The Feinstein Institute for Medical Research, 350 Community drive, Manhasset, NY, 11030, USA.
| | - Michael Bacher
- Institute of Immunology, Philipps University Marburg, Hans-Meerwein-Str., 35043, Marburg, Germany.
| | - Yousef Al-Abed
- Center for Molecular Innovation, The Feinstein Institute for Medical Research, 350 Community drive, Manhasset, NY, 11030, USA.
| |
Collapse
|
22
|
Hardeland R, Cardinali DP, Brown GM, Pandi-Perumal SR. Melatonin and brain inflammaging. Prog Neurobiol 2015; 127-128:46-63. [DOI: 10.1016/j.pneurobio.2015.02.001] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2014] [Revised: 10/27/2014] [Accepted: 02/05/2015] [Indexed: 02/07/2023]
|
23
|
Zahr NM, Alt C, Mayer D, Rohlfing T, Manning-Bog A, Luong R, Sullivan EV, Pfefferbaum A. Associations between in vivo neuroimaging and postmortem brain cytokine markers in a rodent model of Wernicke's encephalopathy. Exp Neurol 2014; 261:109-19. [PMID: 24973622 PMCID: PMC4194214 DOI: 10.1016/j.expneurol.2014.06.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Revised: 06/13/2014] [Accepted: 06/17/2014] [Indexed: 02/03/2023]
Abstract
Thiamine (vitamin B1) deficiency, associated with a variety of conditions, including chronic alcoholism and bariatric surgery for morbid obesity, can result in the neurological disorder Wernicke's encephalopathy (WE). Recent work building upon early observations in animal models of thiamine deficiency has demonstrated an inflammatory component to the neuropathology observed in thiamine deficiency. The present, multilevel study including in vivo magnetic resonance imaging (MRI) and spectroscopy (MRS) and postmortem quantification of chemokine and cytokine proteins sought to determine whether a combination of these in vivo neuroimaging tools could be used to characterize an in vivo MR signature for neuroinflammation. Thiamine deficiency for 12days was used to model neuroinflammation; glucose loading in thiamine deficiency was used to accelerate neurodegeneration. Among 38 animals with regional brain tissue assayed postmortem for cytokine/chemokine protein levels, three groups of rats (controls+glucose, n=6; pyrithiamine+saline, n=5; pyrithiamine+glucose, n=13) underwent MRI/MRS at baseline (time 1), after 12days of treatment (time 2), and 3h after challenge (glucose or saline, time 3). In the thalamus of glucose-challenged, thiamine deficient animals, correlations between in vivo measures of pathology (lower levels of N-acetyle aspartate and higher levels of lactate) and postmortem levels of monocyte chemotactic protein-1 (MCP-1, also known as chemokine ligand 2, CCL2) support a role for this chemokine in thiamine deficiency-related neurodegeneration, but do not provide a unique in vivo signature for neuroinflammation.
Collapse
Affiliation(s)
- Natalie M Zahr
- Psychiatry & Behavioral Sciences, Stanford University School of Medicine, 401 Quarry Rd., Stanford, CA 94305, USA; Neuroscience Program, SRI International, Menlo Park, CA 94025, USA.
| | - Carsten Alt
- Immunology Program, SRI International, Menlo Park, CA 94025, USA; Palo Alto Institute for Research and Education, Palo Alto, CA 94304, USA
| | - Dirk Mayer
- Psychiatry & Behavioral Sciences, Stanford University School of Medicine, 401 Quarry Rd., Stanford, CA 94305, USA; Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, 655 W. Baltimore Street, Baltimore, MD 21201, USA
| | - Torsten Rohlfing
- Neuroscience Program, SRI International, Menlo Park, CA 94025, USA
| | - Amy Manning-Bog
- Neuroscience Program, SRI International, Menlo Park, CA 94025, USA
| | - Richard Luong
- Department of Comparative Medicine, Stanford University School of Medicine, 300 Pasteur Drive, Edwards R321, Stanford, CA 94305, USA
| | - Edith V Sullivan
- Psychiatry & Behavioral Sciences, Stanford University School of Medicine, 401 Quarry Rd., Stanford, CA 94305, USA
| | - Adolf Pfefferbaum
- Psychiatry & Behavioral Sciences, Stanford University School of Medicine, 401 Quarry Rd., Stanford, CA 94305, USA; Neuroscience Program, SRI International, Menlo Park, CA 94025, USA
| |
Collapse
|