1
|
Zhang J, Qi L, Chen B, Li H, Hu L, Wang Q, Wang S, Xi J. Trehalose-6-Phosphate Synthase Contributes to Rapid Cold Hardening in the Invasive Insect Lissorhoptrus oryzophilus (Coleoptera: Curculionidae) by Regulating Trehalose Metabolism. INSECTS 2023; 14:903. [PMID: 38132577 PMCID: PMC10744047 DOI: 10.3390/insects14120903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/17/2023] [Accepted: 11/21/2023] [Indexed: 12/23/2023]
Abstract
Rapid cold hardening (RCH) is known to rapidly enhance the cold tolerance of insects. Trehalose has been demonstrated to be a cryoprotectant in Lissorhoptrus oryzophilus, an important invasive pest of rice in China. Trehalose synthesis mainly occurs through the Trehalose-6-phosphate synthase (TPS)/trehalose-6-phosphate phosphatase (TPP) pathway in insects. In this study, the TPS gene from L. oryzophilus (LoTPS) was cloned and characterized for the first time. Its expression and trehalose content changes elicited by RCH were investigated. Our results revealed that RCH not only increased the survival rate of adults but also upregulated the expression level of LoTPS and increased the trehalose content under low temperature. We hypothesized that upregulated LoTPS promoted trehalose synthesis and accumulation to protect adults from low-temperature damage. To further verify the function of the LoTPS gene, we employed RNA interference (RNAi) technology. Our findings showed that RCH efficiency disappeared and the survival rate did not increase when the adults were fed dsRNA of LoTPS. Additionally, inhibiting LoTPS expression resulted in no significant difference in trehalose content between the RCH and non-RCH treatments. Furthermore, the expression patterns of trehalose transporter (TRET) and trehalase (TRE) were also affected. Collectively, these results indicate the critical role of LoTPS in L. oryzophilus cold resistance after RCH induction. LoTPS can enhance survival ability by regulating trehalose metabolism. These findings contribute to further understanding the role of TPS in insect cold resistance and the invasiveness of L. oryzophilus. Moreover, RNAi of LoTPS opens up possibilities for novel control strategies against L. oryzophilus in the future.
Collapse
Affiliation(s)
- Juhong Zhang
- College of Plant Science, Jilin University, Changchun 130062, China; (J.Z.); (L.Q.); (H.L.); (L.H.); (Q.W.); (S.W.)
| | - Lizhong Qi
- College of Plant Science, Jilin University, Changchun 130062, China; (J.Z.); (L.Q.); (H.L.); (L.H.); (Q.W.); (S.W.)
| | - Baoyu Chen
- Key Laboratory of Plant Nutrition and Agro-Environment in Northeast Region, Ministry of Agriculture and Rural Affairs of the People’s Republic of China, Institute of Agricultural Resources and Environment Research, Jilin Academy of Agricultural Sciences, Changchun 130033, China;
| | - Hongye Li
- College of Plant Science, Jilin University, Changchun 130062, China; (J.Z.); (L.Q.); (H.L.); (L.H.); (Q.W.); (S.W.)
| | - Lianglin Hu
- College of Plant Science, Jilin University, Changchun 130062, China; (J.Z.); (L.Q.); (H.L.); (L.H.); (Q.W.); (S.W.)
| | - Qingtai Wang
- College of Plant Science, Jilin University, Changchun 130062, China; (J.Z.); (L.Q.); (H.L.); (L.H.); (Q.W.); (S.W.)
| | - Shang Wang
- College of Plant Science, Jilin University, Changchun 130062, China; (J.Z.); (L.Q.); (H.L.); (L.H.); (Q.W.); (S.W.)
| | - Jinghui Xi
- College of Plant Science, Jilin University, Changchun 130062, China; (J.Z.); (L.Q.); (H.L.); (L.H.); (Q.W.); (S.W.)
| |
Collapse
|
2
|
Liu C, Chen F, Zhang J, Liu L, Lei H, Li H, Wang Y, Liao YC, Tang H. Metabolic Changes of Fusarium graminearum Induced by TPS Gene Deletion. J Proteome Res 2019; 18:3317-3327. [PMID: 31241341 DOI: 10.1021/acs.jproteome.9b00259] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Fusarium head blight (FHB) mainly resulting from Fusarium graminearum (Fg) Schwabe is a notorious wheat disease causing huge losses in wheat production globally. Fg also produces mycotoxins, which are harmful to human and domestic animals. In our previous study, we obtained two Fg mutants, TPS1- and TPS2-, respectively, with a single deletion of trehalose 6-phosphate synthase (TPS1) and trehalose 6-phosphate phosphatase (TPS2) compared with the wild type (WT). Both mutants were unable to synthesize trehalose and produced fewer mycotoxins. To understand the other biochemical changes induced by TPS gene deletion in Fg, we comprehensively analyzed the metabolomic differences between TPS- mutants and the WT using NMR together with gas chromatography-flame ionization detection/mass spectrometry. The expression of some relevant genes was also quantified. The results showed that TPS1- and TPS2- mutants shared some common metabolic feature such as decreased levels for trehalose, Val, Thr, Lys, Asp, His, Trp, malonate, citrate, uridine, guanosine, inosine, AMP, C10:0, and C16:1 compared with the WT. Both mutants also shared some common expressional patterns for most of the relevant genes. This suggests that apart from the reduced trehalose biosynthesis, both TPS1 and TPS2 have roles in inhibiting glycolysis and the tricarboxylic acid cycle but promoting the phosphopentose pathway and nucleotide synthesis; the depletion of either TPS gene reduces the acetyl-CoA-mediated mycotoxin biosynthesis. TPS2- mutants produced more fatty acids than TPS1- mutants, suggesting different roles for TPS1 and TPS2, with TPS2- mutants having impaired trehalose biosynthesis and trehalose 6-phosphate accumulation. This may offer opportunities for developing new fungicides targeting trehalose biosynthesis in Fg for FHB control and mycotoxin reduction in the FHB-affected cereals.
Collapse
Affiliation(s)
- Caixiang Liu
- CAS Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Centre for Magnetic Resonance in Wuhan , Wuhan Institute of Physics and Mathematics , Wuhan 430071 , P. R. China
| | - Fangfang Chen
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, School of Life Sciences , Hubei University , Wuhan 430062 , P. R. China.,Molecular Biotechnology Laboratory of Triticeae Crops, College of Plant Science and Technology , Huazhong Agricultural University , Wuhan 430070 , P. R. China
| | - Jingtao Zhang
- CAS Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Centre for Magnetic Resonance in Wuhan , Wuhan Institute of Physics and Mathematics , Wuhan 430071 , P. R. China
| | - Laixing Liu
- School of Management , Wuhan Institute of Technology , Wuhan 430205 , P. R. China
| | - Hehua Lei
- CAS Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Centre for Magnetic Resonance in Wuhan , Wuhan Institute of Physics and Mathematics , Wuhan 430071 , P. R. China
| | - Heping Li
- Molecular Biotechnology Laboratory of Triticeae Crops, College of Plant Science and Technology , Huazhong Agricultural University , Wuhan 430070 , P. R. China
| | - Yulan Wang
- CAS Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Centre for Magnetic Resonance in Wuhan , Wuhan Institute of Physics and Mathematics , Wuhan 430071 , P. R. China.,Singapore Phenome Centre, Lee Kong Chian School of Medicine, School of Biological Sciences , Nanyang Technological University , Nanyang , Singapore
| | - Yu-Cai Liao
- Molecular Biotechnology Laboratory of Triticeae Crops, College of Plant Science and Technology , Huazhong Agricultural University , Wuhan 430070 , P. R. China
| | - Huiru Tang
- CAS Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Centre for Magnetic Resonance in Wuhan , Wuhan Institute of Physics and Mathematics , Wuhan 430071 , P. R. China.,State Key Laboratory of Genetic Engineering, Zhongshan Hospital and School of Life Sciences, Metabolomics and Systems Biology Laboratory in Human Phenome Institute, Collaborative Innovation Center for Genetics and Development , Fudan University , Shanghai 200433 , P. R. China
| |
Collapse
|
3
|
Long live the worms: methods for maintaining and assessing the viability of intestinal stages of Parascaris spp. in vitro. Parasitology 2018; 146:685-693. [PMID: 30561286 DOI: 10.1017/s0031182018002019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
In vitro maintenance of helminth parasites enables a variety of molecular, pharmaceutical and immunological analyses. Currently, the nutritional and environmental in vitro requirements of the equine ascarid parasite, Parascaris spp., have not been determined. Additionally, an objective method for assessing viability of Parascaris spp. intestinal stages does not exist. The purpose of this study was to ascertain the in vitro requirements of intestinal stages of Parascaris spp., and to develop a viability assessment method. A total of 1045 worms were maintained in a total of 212 cultures. Worms obtained from naturally infected foals at necropsy were immediately placed in culture flasks containing 200 mL of culture media. A variety of media types, nutrient supplementation and environmental conditions were examined. A motility-based scoring system was used to assess worm viability. Worms maintained in Roswell Park Memorial Institute-1640 had significantly better viability than any other media (P < 0.0001) and all media types supplemented with any of the nutrients examined (P < 0.0001). The use of a platform rocker also significantly improved viability (P = 0.0305). This is the first study to examine the requirements for maintaining Parascaris spp. intestinal stages in vitro and to evaluate their viability based on movement using an objective scoring system.
Collapse
|
4
|
Tang B, Wang S, Wang SG, Wang HJ, Zhang JY, Cui SY. Invertebrate Trehalose-6-Phosphate Synthase Gene: Genetic Architecture, Biochemistry, Physiological Function, and Potential Applications. Front Physiol 2018; 9:30. [PMID: 29445344 PMCID: PMC5797772 DOI: 10.3389/fphys.2018.00030] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 01/09/2018] [Indexed: 11/15/2022] Open
Abstract
The non-reducing disaccharide trehalose is widely distributed among various organisms. It plays a crucial role as an instant source of energy, being the major blood sugar in insects. In addition, it helps countering abiotic stresses. Trehalose synthesis in insects and other invertebrates is thought to occur via the trehalose-6-phosphate synthase (TPS) and trehalose-6-phosphate phosphatase (TPP) pathways. In many insects, the TPP gene has not been identified, whereas multiple TPS genes that encode proteins harboring TPS/OtsA and TPP/OtsB conserved domains have been found and cloned in the same species. The function of the TPS gene in insects and other invertebrates has not been reviewed in depth, and the available information is quite fragmented. The present review discusses the current understanding of the trehalose synthesis pathway, TPS genetic architecture, biochemistry, physiological function, and potential sensitivity to insecticides. We note the variability in the number of TPS genes in different invertebrate species, consider whether trehalose synthesis may rely only on the TPS gene, and discuss the results of in vitro TPS overexpression experiment. Tissue expression profile and developmental characteristics of the TPS gene indicate that it is important in energy production, growth and development, metamorphosis, stress recovery, chitin synthesis, insect flight, and other biological processes. We highlight the molecular and biochemical properties of insect TPS that make it a suitable target of potential pest control inhibitors. The application of trehalose synthesis inhibitors is a promising direction in insect pest control because vertebrates do not synthesize trehalose; therefore, TPS inhibitors would be relatively safe for humans and higher animals, making them ideal insecticidal agents without off-target effects.
Collapse
Affiliation(s)
- Bin Tang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China.,Department of Medicine, Boston University School of Medicine, Boston, MA, United States
| | - Su Wang
- Beijing Key Laboratory of Environment Friendly Management on Fruit Diseases and Pests in North China, Institute of Plant and Environment Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Shi-Gui Wang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Hui-Juan Wang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Jia-Yong Zhang
- Key Lab of Wildlife Biotechnology, Conservation and Utilization of Zhejiang Province, College of Life Science and Chemistry, Zhejiang Normal University, Jinhua, China
| | - Shuai-Ying Cui
- Department of Medicine, Boston University School of Medicine, Boston, MA, United States
| |
Collapse
|
5
|
Weeks JC, Roberts WM, Robinson KJ, Keaney M, Vermeire JJ, Urban JF, Lockery SR, Hawdon JM. Microfluidic platform for electrophysiological recordings from host-stage hookworm and Ascaris suum larvae: A new tool for anthelmintic research. INTERNATIONAL JOURNAL FOR PARASITOLOGY-DRUGS AND DRUG RESISTANCE 2016; 6:314-328. [PMID: 27751868 PMCID: PMC5196495 DOI: 10.1016/j.ijpddr.2016.08.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 08/17/2016] [Accepted: 08/17/2016] [Indexed: 12/27/2022]
Abstract
The screening of candidate compounds and natural products for anthelmintic activity is important for discovering new drugs against human and animal parasites. We previously validated in Caenorhabditis elegans a microfluidic device (‘chip’) that records non-invasively the tiny electrophysiological signals generated by rhythmic contraction (pumping) of the worm's pharynx. These electropharyngeograms (EPGs) are recorded simultaneously from multiple worms per chip, providing a medium-throughput readout of muscular and neural activity that is especially useful for compounds targeting neurotransmitter receptors and ion channels. Microfluidic technologies have transformed C. elegans research and the goal of the current study was to validate hookworm and Ascaris suum host-stage larvae in the microfluidic EPG platform. Ancylostoma ceylanicum and A. caninum infective L3s (iL3s) that had been activated in vitro generally produced erratic EPG activity under the conditions tested. In contrast, A. ceylanicum L4s recovered from hamsters exhibited robust, sustained EPG activity, consisting of three waveforms: (1) conventional pumps as seen in other nematodes; (2) rapid voltage deflections, associated with irregular contractions of the esophagus and openings of the esophogeal-intestinal valve (termed a ‘flutter’); and (3) hybrid waveforms, which we classified as pumps. For data analysis, pumps and flutters were combined and termed EPG ‘events.’ EPG waveform identification and analysis were performed semi-automatically using custom-designed software. The neuromodulator serotonin (5-hydroxytryptamine; 5HT) increased EPG event frequency in A. ceylanicum L4s at an optimal concentration of 0.5 mM. The anthelmintic drug ivermectin (IVM) inhibited EPG activity in a concentration-dependent manner. EPGs from A. suum L3s recovered from pig lungs exhibited robust pharyngeal pumping in 1 mM 5HT, which was inhibited by IVM. These experiments validate the use of A. ceylanicum L4s and A. suum L3s with the microfluidic EPG platform, providing a new tool for screening anthelmintic candidates or investigating parasitic nematode feeding behavior. Pharyngeal pumping in nematodes generates an electropharyngeogram (EPG). The EPG provides a readout of the electrical activity of neurons and muscles. A microfluidic platform for recording EPGs was validated in parasitic nematodes. EPG activity and drug responses were characterized in host-stage larvae. Microfluidic EPG recordings provide a powerful new tool for anthelmintic research.
Collapse
Affiliation(s)
- Janis C Weeks
- Institute of Neuroscience and African Studies Program, University of Oregon, 1254 University of Oregon, Eugene, OR 97403-1254, USA.
| | - William M Roberts
- Institute of Neuroscience, University of Oregon, 1254 University of Oregon, Eugene, OR 97403-1254, USA.
| | - Kristin J Robinson
- Institute of Neuroscience, University of Oregon, 1254 University of Oregon, Eugene, OR 97403-1254, USA.
| | - Melissa Keaney
- Department of Microbiology, Immunology, and Tropical Medicine, School of Medicine and Health Sciences, The George Washington University, Washington, DC 20037, USA.
| | - Jon J Vermeire
- Center for Discovery and Innovation in Parasitic Diseases, Dept. of Pathology and Laboratory Medicine, UC, San Francisco, USA.
| | - Joseph F Urban
- US Department of Agriculture, Agricultural Research Service, Beltsville Human Nutrition Research Center, Diet, Genomic and Immunology Laboratory, Beltsville, MD, USA.
| | - Shawn R Lockery
- Institute of Neuroscience, University of Oregon, 1254 University of Oregon, Eugene, OR 97403-1254, USA.
| | - John M Hawdon
- Department of Microbiology, Immunology, and Tropical Medicine, School of Medicine and Health Sciences, The George Washington University, Washington, DC 20037, USA.
| |
Collapse
|
6
|
Erkut C, Gade VR, Laxman S, Kurzchalia TV. The glyoxylate shunt is essential for desiccation tolerance in C. elegans and budding yeast. eLife 2016; 5. [PMID: 27090086 PMCID: PMC4880444 DOI: 10.7554/elife.13614] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 04/18/2016] [Indexed: 02/04/2023] Open
Abstract
Many organisms, including species from all kingdoms of life, can survive desiccation by entering a state with no detectable metabolism. To survive, C. elegans dauer larvae and stationary phase S. cerevisiae require elevated amounts of the disaccharide trehalose. We found that dauer larvae and stationary phase yeast switched into a gluconeogenic mode in which metabolism was reoriented toward production of sugars from non-carbohydrate sources. This mode depended on full activity of the glyoxylate shunt (GS), which enables synthesis of trehalose from acetate. The GS was especially critical during preparation of worms for harsh desiccation (preconditioning) and during the entry of yeast into stationary phase. Loss of the GS dramatically decreased desiccation tolerance in both organisms. Our results reveal a novel physiological role for the GS and elucidate a conserved metabolic rewiring that confers desiccation tolerance on organisms as diverse as worm and yeast.
Collapse
Affiliation(s)
- Cihan Erkut
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Vamshidhar R Gade
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Sunil Laxman
- Institute for Stem Cell Biology and Regenerative Medicine, Bangalore, India
| | | |
Collapse
|