1
|
Ma X, Xu J, Wang Y, Fleishman JS, Bing H, Yu B, Li Y, Bo L, Zhang S, Chen ZS, Zhao L. Research progress on gene mutations and drug resistance in leukemia. Drug Resist Updat 2024; 79:101195. [PMID: 39740374 DOI: 10.1016/j.drup.2024.101195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 12/05/2024] [Accepted: 12/20/2024] [Indexed: 01/02/2025]
Abstract
Leukemia is a type of blood cancer characterized by the uncontrolled growth of abnormal cells in the bone marrow, which replace normal blood cells and disrupt normal blood cell function. Timely and personalized interventions are crucial for disease management and improving survival rates. However, many patients experience relapse following conventional chemotherapy, and increasing treatment intensity often fails to improve outcomes due to mutated gene-induced drug resistance in leukemia cells. This article analyzes the association of gene mutations and drug resistance in leukemia. It explores genetic abnormalities in leukemia, highlighting recently identified mutations affecting signaling pathways, cell apoptosis, epigenetic regulation, histone modification, and splicing mechanisms. Additionally, the article discusses therapeutic strategies such as molecular targeting of gene mutations, alternative pathway targeting, and immunotherapy in leukemia. These approaches aim to combat specific drug-resistant mutations, providing potential avenues to mitigate leukemia relapse. Future research with these strategies holds promise for advancing leukemia treatment and addressing the challenges of drug-resistant mutations to improve patient outcomes.
Collapse
Affiliation(s)
- Xiangyu Ma
- Department of Pharmacy, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, 100045, China
| | - Jiamin Xu
- Department of Pharmacy, Peking University Third Hospital, Beijing 100191, China
| | - Yanan Wang
- Department of Pharmacy, Peking University Third Hospital, Beijing 100191, China
| | - Joshua S Fleishman
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, New York, NY 11439, USA
| | - Hao Bing
- Department of Pharmacy, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, 100045, China
| | - Boran Yu
- Department of Pharmacy, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, 100045, China
| | - Yanming Li
- Department of Pharmacy, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, 100045, China
| | - Letao Bo
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, New York, NY 11439, USA
| | - Shaolong Zhang
- Department of Pharmacy, Peking University Third Hospital, Beijing 100191, China
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, New York, NY 11439, USA.
| | - Libo Zhao
- Department of Pharmacy, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, 100045, China; Department of Pharmacy, Peking University Third Hospital, Beijing 100191, China.
| |
Collapse
|
2
|
Bao B, Yu X, Zheng W, Sun J. Ergotamine Targets KIF5A to Facilitate Anoikis in Lung Adenocarcinoma. THE CLINICAL RESPIRATORY JOURNAL 2024; 18:e70020. [PMID: 39517115 PMCID: PMC11549061 DOI: 10.1111/crj.70020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 08/16/2024] [Accepted: 09/18/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND Kinesin family member 5A (KIF5A) has been reported to be closely related to cancer progression. The aim of this study was to investigate the effect of KIF5A on lung adenocarcinoma (LUAD) and its potential molecular mechanisms. METHODS Using bioinformatics analysis methods and molecular experiments, the expression of KIF5A in LUAD was analyzed, with its expression in attached and detached tumor cells assessed. Gene set enrichment analysis (GSEA) of KIF5A was carried out. The small molecular drug with the highest affinity for KIF5A was screened out through molecular docking experiments, which was validated through cellular thermal shift assay (CETSA). Quantitative polymerase chain reaction (qPCR) was employed to measure the expression levels of anoikis-repressing genes (BCL2, CAV1), as well as anoikis-inducing gene (PDCD4). CCK-8 assay was applied to examine cell viability. Cell colony formation experiments were utilized to evaluate cell proliferation ability. RESULTS We observed that KIF5A was highly upregulated in LUAD tissues and cells, with a higher level detected in detached LUAD cells. By resorting to bioinformatics analysis, we discovered that KIF5A was abundant in the anoikis pathway. Knocking down KIF5A reinforced anoikis in LUAD. Further screening identified Ergotamine as the small molecular drug with the highest affinity for KIF5A. The CETSA confirmed the binding relationship between the two. In addition, Ergotamine has a promoting effect on the anoikis of LUAD, while overexpression of KIF5A reversed the effects of Ergotamine on LUAD cells. CONCLUSION This project uncovered that the small molecular drug Ergotamine targets and inhibits the expression of KIF5A. Downregulated KIF5A can enhance the anoikis of LUAD. Our results supported the inhibition of KIF5A as an attractive therapeutic strategy for LUAD. This finding provides a new innovative pathway for the treatment of LUAD and offers a strong theoretical basis for the development of therapeutic drugs targeting KIF5A.
Collapse
Affiliation(s)
- Bin Bao
- Cardiothoracic Surgery DepartmentThe First People's Hospital of FuyangHangzhouChina
| | - Xiaojun Yu
- Cardiothoracic Surgery DepartmentThe First People's Hospital of FuyangHangzhouChina
| | - Wujun Zheng
- Cardiothoracic Surgery DepartmentThe First People's Hospital of FuyangHangzhouChina
| | - Jiewei Sun
- Cardiothoracic Surgery DepartmentThe First People's Hospital of FuyangHangzhouChina
| |
Collapse
|
3
|
La Marca JE, Kelly GL, Strasser A, Diepstraten ST. Don't fear the reaper: The role of regulated cell death in tumorigenesis and BH3-mimetics for cancer therapy. Dev Cell 2024; 59:2532-2548. [PMID: 39378839 DOI: 10.1016/j.devcel.2024.06.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/20/2024] [Accepted: 06/20/2024] [Indexed: 10/10/2024]
Abstract
From its earliest characterization, it has been recognized that there is a role for regulated (programmed) cell death in cancer. As our understanding of the different types of programmed cell death processes and their molecular control has advanced, so have the technologies that allow us to manipulate these processes to, for example, fight against cancer. In this review, we describe the roles of the different forms of regulated cell death in the development of cancer as well as their potential therapeutic exploitation. In that vein, we explore the development and use of BH3-mimetics, a unique class of drugs that can directly activate the apoptotic cell death machinery to treat cancer. Finally, we address key challenges that face the field to improve the use of these therapeutics and the efforts that are being undertaken to do so.
Collapse
Affiliation(s)
- John E La Marca
- The Walter and Eliza Hall Institute, Parkville, VIC, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia; Genome Engineering and Cancer Modelling Program, Olivia Newton-John Cancer Research Institute, Heidelberg, VIC, Australia; School of Cancer Medicine, La Trobe University, Bundoora, VIC, Australia.
| | - Gemma L Kelly
- The Walter and Eliza Hall Institute, Parkville, VIC, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia.
| | - Andreas Strasser
- The Walter and Eliza Hall Institute, Parkville, VIC, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia.
| | - Sarah T Diepstraten
- The Walter and Eliza Hall Institute, Parkville, VIC, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia.
| |
Collapse
|
4
|
Judd AS, Bawa B, Buck WR, Tao ZF, Li Y, Mitten MJ, Bruncko M, Catron N, Doherty G, Durbin KR, Enright B, Frey R, Haasch D, Haman S, Haight AR, Henriques TA, Holms J, Izeradjene K, Judge RA, Jenkins GJ, Kunzer A, Leverson JD, Martin RL, Mitra D, Mittelstadt S, Nelson L, Nimmer P, Palma J, Peterson R, Phillips DC, Ralston SL, Rosenberg SH, Shen X, Song X, Vaidya KS, Wang X, Wang J, Xiao Y, Zhang H, Zhang X, Blomme EA, Boghaert ER, Kalvass JC, Phillips A, Souers AJ. BCL-X L-targeting antibody-drug conjugates are active in preclinical models and mitigate on-mechanism toxicity of small-molecule inhibitors. SCIENCE ADVANCES 2024; 10:eado7120. [PMID: 39365864 PMCID: PMC11451551 DOI: 10.1126/sciadv.ado7120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 08/30/2024] [Indexed: 10/06/2024]
Abstract
Overexpression of the antiapoptotic protein B-cell lymphoma-extra large (BCL-XL) is associated with drug resistance and disease progression in numerous cancers. The compelling nature of this protein as a therapeutic target prompted efforts to develop selective small-molecule BCL-XL inhibitors. Although efficacious in preclinical models, we report herein that selective BCL-XL inhibitors cause severe mechanism-based cardiovascular toxicity in higher preclinical species. To overcome this liability, antibody-drug conjugates were constructed using altered BCL-XL-targeting warheads, unique linker technologies, and therapeutic antibodies. The epidermal growth factor receptor-targeting antibody-drug conjugate AM1-15 inhibited growth of tumor xenografts and did not cause cardiovascular toxicity nor dose-limiting thrombocytopenia in monkeys. While an unprecedented BCL-XL-mediated toxicity was uncovered in monkey kidneys upon repeat dosing of AM1-15, this toxicity was mitigated via further drug-linker modification to afford AM1-AAA (AM1-25). The AAA drug-linker has since been incorporated into mirzotamab clezutoclax, the first selective BCL-XL-targeting agent to enter human clinical trials.
Collapse
Affiliation(s)
- Andrew S. Judd
- AbbVie Inc., 1 N. Waukegan Road, North Chicago, IL 60064, USA
| | - Bhupinder Bawa
- AbbVie Inc., 1 N. Waukegan Road, North Chicago, IL 60064, USA
| | - Wayne R. Buck
- AbbVie Inc., 1 N. Waukegan Road, North Chicago, IL 60064, USA
| | - Zhi-Fu Tao
- AbbVie Inc., 1 N. Waukegan Road, North Chicago, IL 60064, USA
| | - Yingchun Li
- AbbVie Inc., 1 N. Waukegan Road, North Chicago, IL 60064, USA
| | | | - Milan Bruncko
- AbbVie Inc., 1 N. Waukegan Road, North Chicago, IL 60064, USA
| | | | - George Doherty
- AbbVie Inc., 1 N. Waukegan Road, North Chicago, IL 60064, USA
| | | | - Brian Enright
- AbbVie Inc., 1 N. Waukegan Road, North Chicago, IL 60064, USA
| | - Robin Frey
- AbbVie Inc., 1 N. Waukegan Road, North Chicago, IL 60064, USA
| | - Deanna Haasch
- AbbVie Inc., 1 N. Waukegan Road, North Chicago, IL 60064, USA
| | | | | | | | | | | | | | - Gary J. Jenkins
- AbbVie Inc., 1 N. Waukegan Road, North Chicago, IL 60064, USA
| | - Aaron Kunzer
- AbbVie Inc., 1 N. Waukegan Road, North Chicago, IL 60064, USA
| | | | - Ruth L. Martin
- AbbVie Inc., 1 N. Waukegan Road, North Chicago, IL 60064, USA
| | - Diya Mitra
- AbbVie Inc., 1 N. Waukegan Road, North Chicago, IL 60064, USA
| | | | - Lorne Nelson
- AbbVie Inc., 1 N. Waukegan Road, North Chicago, IL 60064, USA
| | | | - Joann Palma
- AbbVie Inc., 1 N. Waukegan Road, North Chicago, IL 60064, USA
| | | | | | | | | | - Xiaoqiang Shen
- AbbVie Inc., 1 N. Waukegan Road, North Chicago, IL 60064, USA
| | - Xiaohong Song
- AbbVie Inc., 1 N. Waukegan Road, North Chicago, IL 60064, USA
| | | | - Xilu Wang
- AbbVie Inc., 1 N. Waukegan Road, North Chicago, IL 60064, USA
| | - Jin Wang
- AbbVie Inc., 1 N. Waukegan Road, North Chicago, IL 60064, USA
| | - Yu Xiao
- AbbVie Inc., 1 N. Waukegan Road, North Chicago, IL 60064, USA
| | - Haichao Zhang
- AbbVie Inc., 1 N. Waukegan Road, North Chicago, IL 60064, USA
| | - Xinxin Zhang
- AbbVie Inc., 1 N. Waukegan Road, North Chicago, IL 60064, USA
| | - Eric A. Blomme
- AbbVie Inc., 1 N. Waukegan Road, North Chicago, IL 60064, USA
| | | | - John C. Kalvass
- AbbVie Inc., 1 N. Waukegan Road, North Chicago, IL 60064, USA
| | - Andrew Phillips
- AbbVie Inc., 1 N. Waukegan Road, North Chicago, IL 60064, USA
| | | |
Collapse
|
5
|
Smart SK, Yeung TY, Santos MO, McSwain LF, Wang X, Frye SV, Earp HS, DeRyckere D, Graham DK. MERTK Is a Potential Therapeutic Target in Ewing Sarcoma. Cancers (Basel) 2024; 16:2831. [PMID: 39199601 PMCID: PMC11352666 DOI: 10.3390/cancers16162831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 07/27/2024] [Accepted: 08/08/2024] [Indexed: 09/01/2024] Open
Abstract
Outcomes are poor in patients with advanced or relapsed Ewing sarcoma (EWS) and current treatments have significant short- and long-term side effects. New, less toxic and more effective treatments are urgently needed. MER proto-oncogene tyrosine kinase (MERTK) promotes tumor cell survival, metastasis, and resistance to cytotoxic and targeted therapies in a variety of cancers. MERTK was ubiquitously expressed in five EWS cell lines and five patient samples. Moreover, data from CRISPR-based library screens indicated that EWS cell lines are particularly dependent on MERTK. Treatment with MRX-2843, a first-in-class, MERTK-selective tyrosine kinase inhibitor currently in clinical trials, decreased the phosphorylation of MERTK and downstream signaling in a dose-dependent manner in A673 and TC106 cells and provided potent anti-tumor activity against all five EWS cell lines, with IC50 values ranging from 178 to 297 nM. Inhibition of MERTK correlated with anti-tumor activity, suggesting MERTK inhibition as a therapeutic mechanism of MRX-2843. Combined treatment with MRX-2843 and BCL-2 inhibitors venetoclax or navitoclax provided enhanced therapeutic activity compared to single agents. These data highlight MERTK as a promising therapeutic target in EWS and provide rationale for the development of MRX-2843 for the treatment of EWS, especially in combination with BCL-2 inhibitors.
Collapse
Affiliation(s)
- Sherri K. Smart
- Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta, Atlanta, GA 30322, USA; (S.K.S.); (T.Y.Y.); (L.F.M.); (D.D.)
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Tsz Y. Yeung
- Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta, Atlanta, GA 30322, USA; (S.K.S.); (T.Y.Y.); (L.F.M.); (D.D.)
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | | - Leon F. McSwain
- Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta, Atlanta, GA 30322, USA; (S.K.S.); (T.Y.Y.); (L.F.M.); (D.D.)
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Xiaodong Wang
- Center for Integrative Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, Chapel Hill, NC 27599, USA; (X.W.); (S.V.F.)
| | - Stephen V. Frye
- Center for Integrative Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, Chapel Hill, NC 27599, USA; (X.W.); (S.V.F.)
- UNC Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA;
| | - H. Shelton Earp
- UNC Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA;
- Departments of Medicine and Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Deborah DeRyckere
- Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta, Atlanta, GA 30322, USA; (S.K.S.); (T.Y.Y.); (L.F.M.); (D.D.)
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Douglas K. Graham
- Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta, Atlanta, GA 30322, USA; (S.K.S.); (T.Y.Y.); (L.F.M.); (D.D.)
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|
6
|
Chen B, Lu M, Chen Q, Zou E, Bo Z, Li J, Zhao R, Zhao J, Yu Z, Chen G, Wu L. Systematic profiling of mitochondria-related transcriptome in tumorigenesis, prognosis, and tumor immune microenvironment of intrahepatic cholangiocarcinoma: a multi-center cohort study. Front Genet 2024; 15:1430885. [PMID: 39130746 PMCID: PMC11310173 DOI: 10.3389/fgene.2024.1430885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 07/12/2024] [Indexed: 08/13/2024] Open
Abstract
Background Mitochondrial dysfunction has been shown to play a critical role in cancer biology. However, its involvement in intrahepatic cholangiocarcinoma (iCCA) remains significantly understudied. Methods RNA sequencing data of 30 pairs of iCCA and paracancerous tissues were collected from the First Affiliated Hospital of Wenzhou Medical University (WMU). The WMU cohort (n = 30) was integrated with public TCGA (n = 30) and GSE107943 (n = 30) datasets to establish a multi-center iCCA cohort. We merged the TCGA and GSE107943 cohorts into an exploration cohort to develop a mitochondria signature for prognosis assessment, and utilized the WMU cohort for external validation. Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and Hallmarker analyses were used for functional interpretation of iCCA associated mitochondria-related genes (MRGs). In addition, unsupervised clustering was performed to identify mitochondria-based iCCA subtypes with the data of three institutions. Further investigations were conducted to examine the impact of mitochondrial dysfunction on drug responses, alteration of the tumor immune microenvironment, and immune responses. Results Two hundred and sixty-three iCCA-related MRGs were identified to be related to fatty acid metabolism, oxidative phosphorylation, and apoptosis. Through univariate and multivariate Cox, and LASSO analyses, a mitochondria signature with five optimal MRGs was established to evaluate the prognosis of iCCA patients with the AUC values ranged from 0.785 to 0.928 in the exploration cohort. The signature also exhibited satisfactory performance in the WMU cohort with AUC values of 0.817-0.871, and was identified as an independent risk predictor in both cohorts. Additionally, we found that patients with higher mitochondria score with poor prognosis presented lower infiltration levels of CD4+ T-cell, NK cells, and monocytes, and demonstrated higher sensitivity to targeted therapies, including sorafenib. Furthermore, two distant mitochondria-based subtypes were determined, and subtype 2 was associated with shorter survival time and immunosuppressive tumor microenvironment. Finally, the differential protein expression of five key MRGs was verified by Immunohistochemistry. Conclusion We found mitochondrial dysfunction modulates aberrant metabolism, oxidative stress, immune responses, apoptosis, and drug sensitivity in iCCA. A mitochondria signature and two mitochondria-based iCCA subtypes were identified for clinical risk stratification and immunophenotyping.
Collapse
Affiliation(s)
- Bo Chen
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Zhejiang-Germany Interdisciplinary Joint Laboratory of Hepatobiliary-Pancreatic Tumor and Bioengineering, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Mengmeng Lu
- Department of Gastroenterology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Qiwen Chen
- Department of Gastroenterology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Enguang Zou
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zhiyuan Bo
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Zhejiang-Germany Interdisciplinary Joint Laboratory of Hepatobiliary-Pancreatic Tumor and Bioengineering, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jiacheng Li
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Zhejiang-Germany Interdisciplinary Joint Laboratory of Hepatobiliary-Pancreatic Tumor and Bioengineering, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Rui Zhao
- Department of Gastroenterology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jungang Zhao
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Zhejiang-Germany Interdisciplinary Joint Laboratory of Hepatobiliary-Pancreatic Tumor and Bioengineering, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zhengping Yu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Gang Chen
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Zhejiang-Germany Interdisciplinary Joint Laboratory of Hepatobiliary-Pancreatic Tumor and Bioengineering, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Lijun Wu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Zhejiang-Germany Interdisciplinary Joint Laboratory of Hepatobiliary-Pancreatic Tumor and Bioengineering, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
7
|
Atmaca H, Ilhan S, Çamli Pulat Ç, Dundar BA, Zora M. Evaluation of Novel Spiro-pyrrolopyridazine Derivatives as Anticancer Compounds: In Vitro Selective Cytotoxicity, Induction of Apoptosis, EGFR Inhibitory Activity, and Molecular Docking Analysis. ACS OMEGA 2024; 9:23713-23723. [PMID: 38854531 PMCID: PMC11154717 DOI: 10.1021/acsomega.4c00794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/26/2024] [Accepted: 05/13/2024] [Indexed: 06/11/2024]
Abstract
Cancer, characterized by uncontrolled cell proliferation, remains a global health challenge. Despite advancements in cancer treatment, drug resistance and adverse effects on normal cells remain challenging. The epidermal growth factor receptor (EGFR), a transmembrane tyrosine kinase protein, is crucial in controlling cell proliferation and is implicated in various cancers. Here, the cytotoxic and apoptotic potential of 21 newly synthesized spiro-pyrrolopyridazine (SPP) derivatives was investigated on breast (MCF-7), lung (H69AR), and prostate (PC-3) cancer cells. XTT assay was used for cytotoxicity assessment. Flow cytometry and western blot (WB) analyses were conducted for apoptosis detection. Additionally, the EGFR inhibitory potential of these derivatives was evaluated via a homogeneous time-resolved fluorescence (HTRF) assay, and WB and molecular docking studies were conducted to analyze the binding affinities of SPP10 with EGFR. SPPs, especially SPP10, exhibit significant cytotoxicity across MCF-7, H69AR, and PC-3 cancer cells with IC50 values of 2.31 ± 0.3, 3.16 ± 0.8, and 4.2 ± 0.2 μM, respectively. Notably, SPP10 demonstrates selective cytotoxicity against cancer cells with a low impact on nontumorigenic cells (IC50 value: 26.8 ± 0.4 μM). Flow cytometric analysis demonstrated the potent induction of apoptotic cell death by SPP10 in all of the tested cancer cells. Western blot analysis revealed the involvement of key apoptotic proteins, with SPP10 notably inhibiting antiapoptotic Bcl-2 while inducing pro-apoptotic Bax and cytochrome c. SPP10 exhibited significant EGFR kinase inhibitory activity, surpassing the efficacy of the reference drug erlotinib. Molecular docking studies support these findings, revealing strong binding affinities of SPP10 with both wild-type and mutated EGFR. The study underscores the significance of heterocyclic compounds, particularly spiro-class heterocyclic molecules, in advancing cancer research. Overall, SPP10 emerges as a promising candidate for further investigations in cancer treatment, combining potent cytotoxicity, apoptotic induction, and targeted EGFR inhibition.
Collapse
Affiliation(s)
- Harika Atmaca
- Department
of Biology, Faculty of Engineering and Natural Sciences, Manisa Celal Bayar University, Manisa 45140, Turkey
| | - Suleyman Ilhan
- Department
of Biology, Faculty of Engineering and Natural Sciences, Manisa Celal Bayar University, Manisa 45140, Turkey
| | - Çisil Çamli Pulat
- Applied
Science Research Center, Manisa Celal Bayar
University, Manisa 45140, Turkey
| | - Buse Aysen Dundar
- Department
of Chemistry, Middle East Technical University, Ankara 06800, Turkey
| | - Metin Zora
- Department
of Chemistry, Middle East Technical University, Ankara 06800, Turkey
| |
Collapse
|
8
|
Lee HK, Na YJ, Seong SM, Ahn D, Choi KC. Cordycepin Enhanced Therapeutic Potential of Gemcitabine against Cholangiocarcinoma via Downregulating Cancer Stem-Like Properties. Biomol Ther (Seoul) 2024; 32:369-378. [PMID: 38589021 PMCID: PMC11063483 DOI: 10.4062/biomolther.2023.198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/08/2023] [Accepted: 01/12/2024] [Indexed: 04/10/2024] Open
Abstract
Cordycepin, a valuable bioactive component isolated from Cordyceps militaris, has been reported to possess anti-cancer potential and the property to enhance the effects of chemotherapeutic agents in various types of cancers. However, the ability of cordycepin to chemosensitize cholangiocarcinoma (CCA) cells to gemcitabine has not yet been evaluated. The current study was performed to evaluate the above, and the mechanisms associated with it. The study analyzed the effects of cordycepin in combination with gemcitabine on the cancer stem-like properties of the CCA SNU478 cell line, including its anti-apoptotic, migratory, and antioxidant effects. In addition, the combination of cordycepin and gemcitabine was evaluated in the CCA xenograft model. The cordycepin treatment significantly decreased SNU478 cell viability and, in combination with gemcitabine, additively reduced cell viability. The cordycepin and gemcitabine co-treatment significantly increased the Annexin V+ population and downregulated B-cell lymphoma 2 (Bcl-2) expression, suggesting that the decreased cell viability in the cordycepin+gemcitabine group may result from an increase in apoptotic death. In addition, the cordycepin and gemcitabine co-treatment significantly reduced the migratory ability of SNU478 cells in the wound healing and trans-well migration assays. It was observed that the cordycepin and gemcitabine cotreatment reduced the CD44highCD133high population in SNU478 cells and the expression level of sex determining region Y-box 2 (Sox-2), indicating the downregulation of the cancer stem-like population. Cordycepin also enhanced oxidative damage mediated by gemcitabine in MitoSOX staining associated with the upregulated Kelch like ECH Associated Protein 1 (Keap1)/nuclear factor erythroid 2-related factor 2 (Nrf2) expression ratio. In the SNU478 xenograft model, co-administration of cordycepin and gemcitabine additively delayed tumor growth. These results indicate that cordycepin potentiates the chemotherapeutic property of gemcitabine against CCA, which results from the downregulation of its cancer-stem-like properties. Hence, the combination therapy of cordycepin and gemcitabine may be a promising therapeutic strategy in the treatment of CCA.
Collapse
Affiliation(s)
- Hong Kyu Lee
- Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Yun-Jung Na
- Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Su-Min Seong
- Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Dohee Ahn
- Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Kyung-Chul Choi
- Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Republic of Korea
| |
Collapse
|
9
|
Wang Y, Xu H, Zhang X, Ma J, Xue S, Shentu D, Mao T, Li S, Yue M, Cui J, Wang L. The Role of Bile Acids in Pancreatic Cancer. Curr Cancer Drug Targets 2024; 24:1005-1014. [PMID: 38284711 DOI: 10.2174/0115680096281168231215060301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 11/02/2023] [Accepted: 11/06/2023] [Indexed: 01/30/2024]
Abstract
Bile acids are well known to promote the digestion and absorption of fat, and at the same time, they play an important role in lipid and glucose metabolism. More studies have found that bile acids such as ursodeoxycholic acid also have anti-inflammatory and immune-regulating effects. Bile acids have been extensively studied in biliary and intestinal tumors but less in pancreatic cancer. Patients with pancreatic cancer, especially pancreatic head cancer, are often accompanied by biliary obstruction and elevated bile acids caused by tumors. Elevated total bile acid levels in pancreatic cancer patients usually have a poor prognosis. There has been controversy over whether elevated bile acids are harmful or beneficial to pancreatic cancer. Still, there is no doubt that bile acids are important for the occurrence and development of pancreatic cancer. This article summarizes the research on bile acid as a biomarker and regulation of the occurrence, development and chemoresistance of pancreatic cancer, hoping to provide some inspiration for future research.
Collapse
Affiliation(s)
- Yanling Wang
- Oncology Department and State Key Laboratory of Systems Medicine for Cancer of Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200127, China
| | - Haiyan Xu
- Oncology Department and State Key Laboratory of Systems Medicine for Cancer of Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200127, China
| | - Xiaofei Zhang
- Oncology Department and State Key Laboratory of Systems Medicine for Cancer of Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200127, China
| | - Jingyu Ma
- Oncology Department and State Key Laboratory of Systems Medicine for Cancer of Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200127, China
| | - Shengbai Xue
- Oncology Department and State Key Laboratory of Systems Medicine for Cancer of Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200127, China
| | - Daiyuan Shentu
- Oncology Department and State Key Laboratory of Systems Medicine for Cancer of Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200127, China
| | - Tiebo Mao
- Oncology Department and State Key Laboratory of Systems Medicine for Cancer of Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200127, China
| | - Shumin Li
- Oncology Department and State Key Laboratory of Systems Medicine for Cancer of Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200127, China
| | - Ming Yue
- Oncology Department and State Key Laboratory of Systems Medicine for Cancer of Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200127, China
| | - Jiujie Cui
- Oncology Department and State Key Laboratory of Systems Medicine for Cancer of Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200127, China
| | - Liwei Wang
- Oncology Department and State Key Laboratory of Systems Medicine for Cancer of Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200127, China
| |
Collapse
|
10
|
Kovács SA, Fekete JT, Győrffy B. Predictive biomarkers of immunotherapy response with pharmacological applications in solid tumors. Acta Pharmacol Sin 2023; 44:1879-1889. [PMID: 37055532 PMCID: PMC10462766 DOI: 10.1038/s41401-023-01079-6] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 03/14/2023] [Indexed: 04/15/2023] Open
Abstract
Immune-checkpoint inhibitors show promising effects in the treatment of multiple tumor types. Biomarkers are biological indicators used to select patients for a systemic anticancer treatment, but there are only a few clinically useful biomarkers such as PD-L1 expression and tumor mutational burden, which can be used to predict immunotherapy response. In this study, we established a database consisting of both gene expression and clinical data to identify biomarkers of response to anti-PD-1, anti-PD-L1, and anti-CTLA-4 immunotherapies. A GEO screening was executed to identify datasets with simultaneously available clinical response and transcriptomic data regardless of cancer type. The screening was restricted to the studies involving administration of anti-PD-1 (nivolumab, pembrolizumab), anti-PD-L1 (atezolizumab, durvalumab) or anti-CTLA-4 (ipilimumab) agents. Receiver operating characteristic (ROC) analysis and Mann-Whitney test were executed across all genes to identify features related to therapy response. The database consisted of 1434 tumor tissue samples from 19 datasets with esophageal, gastric, head and neck, lung, and urothelial cancers, plus melanoma. The strongest druggable gene candidates linked to anti-PD-1 resistance were SPIN1 (AUC = 0.682, P = 9.1E-12), SRC (AUC = 0.667, P = 5.9E-10), SETD7 (AUC = 0.663, P = 1.0E-09), FGFR3 (AUC = 0.657, P = 3.7E-09), YAP1 (AUC = 0.655, P = 6.0E-09), TEAD3 (AUC = 0.649, P = 4.1E-08) and BCL2 (AUC = 0.634, P = 9.7E-08). In the anti-CTLA-4 treatment cohort, BLCAP (AUC = 0.735, P = 2.1E-06) was the most promising gene candidate. No therapeutically relevant target was found to be predictive in the anti-PD-L1 cohort. In the anti-PD-1 group, we were able to confirm the significant correlation with survival for the mismatch-repair genes MLH1 and MSH6. A web platform for further analysis and validation of new biomarker candidates was set up and available at https://www.rocplot.com/immune . In summary, a database and a web platform were established to investigate biomarkers of immunotherapy response in a large cohort of solid tumor samples. Our results could help to identify new patient cohorts eligible for immunotherapy.
Collapse
Affiliation(s)
- Szonja Anna Kovács
- Department of Bioinformatics, Semmelweis University, Tűzoltó utca 7-9, 1094, Budapest, Hungary
- Doctoral School of Pathological Sciences, Semmelweis University, Üllői út 26, 1085, Budapest, Hungary
- National Laboratory for Drug Research and Development, Magyar tudósok körútja 2 1117, Budapest, Hungary
| | - János Tibor Fekete
- National Laboratory for Drug Research and Development, Magyar tudósok körútja 2 1117, Budapest, Hungary
- Research Centre for Natural Sciences, Oncology Biomarker Research Group, Institute of Enzymology, Eötvös Loránd Research Network, Magyar Tudósok körútja 2, 1117, Budapest, Hungary
| | - Balázs Győrffy
- Department of Bioinformatics, Semmelweis University, Tűzoltó utca 7-9, 1094, Budapest, Hungary.
- Department of Pediatrics, Semmelweis University, Tűzoltó utca 7-9, 1094, Budapest, Hungary.
| |
Collapse
|
11
|
Oliveira RC, Gama J, Casanova J. B-cell lymphoma 2 family members and sarcomas: a promising target in a heterogeneous disease. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2023; 4:583-599. [PMID: 37720343 PMCID: PMC10501895 DOI: 10.37349/etat.2023.00154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 04/14/2023] [Indexed: 09/19/2023] Open
Abstract
Targeting the B-cell lymphoma 2 (Bcl-2) family proteins has been the backbone for hematological malignancies with overall survival improvements. The Bcl-2 family is a major player in apoptosis regulation and, has captured the researcher's interest in the treatment of solid tumors. Sarcomas are a heterogeneous group of diseases, comprising several entities, with high morbidity and mortality and with few specific therapies available. The treatment for sarcomas is based on platinum regimens, with variable results and poor outcomes, especially in advanced lesions. The high number of different sarcoma entities makes treatment standardization as well as the performance of clinical trials difficult. The use of Bcl-2 family members modifiers has revealed promising results in in vitro and in vivo models and may be a valid option, especially when used in combination with chemotherapy. In this article, a revision of these results and possibilities for the use of Bcl-2 family members inhibitors in sarcomas was performed.
Collapse
Affiliation(s)
- Rui Caetano Oliveira
- Centro de Anatomia Patológica Germano de Sousa, 3000 Coimbra, Portugal
- Coimbra Institute for Clinical and Biomedical Research (iCBR), 3000 Coimbra, Portugal
- Centre of Investigation on Genetics and Oncobiology (CIMAGO), 3000 Coimbra, Portugal
| | - João Gama
- Pathology Department, Centro Hospitalar e Universitário de Coimbra, 3000 Coimbra, Portugal
| | - José Casanova
- Centre of Investigation on Genetics and Oncobiology (CIMAGO), 3000 Coimbra, Portugal
- Orthopedic Oncology Department, Centro Hospitalar e Universitário de Coimbra, 3000 Coimbra, Portugal
- Faculdade de Medicina da Universidade de Coimbra, 3000 Coimbra, Portugal
| |
Collapse
|
12
|
Odetayo AF, Adeyemi WJ, Olayaki LA. In vivo exposure to bisphenol F induces oxidative testicular toxicity: role of Erβ and p53/Bcl-2 signaling pathway. FRONTIERS IN REPRODUCTIVE HEALTH 2023; 5:1204728. [PMID: 37601897 PMCID: PMC10433915 DOI: 10.3389/frph.2023.1204728] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 07/07/2023] [Indexed: 08/22/2023] Open
Abstract
Introduction Bisphenol F (BPF), an alternative to bisphenol A has been implicated as a gonadotoxic substance. BPF has been shown to induce hormonal imbalance and testicular oxidative damage. However, the mechanism associated with BPF-induced testicular toxicity has not been fully explored. This study was designed to explore the role of tumor protein (p53)/ B-cell lymphoma 2 (BCl-2) signaling and oestrogen receptor beta (Erβ) in BPF-induced testicular toxicity. Methods Male Wistar rats were randomized into control (Cntrl), BPF-treated (10, 30, and 50 mg/kg for low dose (BPF-L), medium dose (BPF-M), and high dose (BPF-H) respectively), and BPF-treated recovery (Cntrl-R, BPF-L-R, BPF-M-R, and BPF-H-R). The administration was via gavage and lasted for 28 days and the animals in the recovery groups were allowed 28-days exposure free period for recovery from BPF exposure. Results BPF resulted in the distortion of the testicular histoarchitecture, which was accompanied by a significant rise in testicular gamma-lutamyl transferase and lactate dehydrogenase activities but a decline in sorbitol dehydrogenase activities. Also, BPF caused a significant reduction in plasma gonadotropin-releasing hormone, luteinising hormone, follicle-stimulating hormone, and testosterone, which was associated with the downregulation of testicular 3beta-hydroxysteroid dehydrogenase and 17beta-hydroxysteroid dehydrogenase activities. Furthermore, BPF induced testicular inflammation, redox imbalance, and apoptosis, accompanied by distortion in p53/BCl-2 signaling and overexpression of Erβ. Again, the observed toxic effects of BPF were dose-dependent and not completely reversed by BPF cessation. Discussion Bisphenol F induced gonadotoxicity by distorting p53/BCl2 signaling and the expression of Erβ. These observed alterations were not completely reversed after the cessation of BPF exposure.
Collapse
Affiliation(s)
- Adeyemi Fatai Odetayo
- Physiology Department, University of Ilorin, Ilorin, Nigeria
- Physiology Department, Federal University of Health Sciences, Ila Orangun, Nigeria
| | | | | |
Collapse
|
13
|
Ilhan S, Çamli Pulat Ç, Oguz F, Bektaş H, Menteşe E, Atmaca H. Design and synthesis of benzimidazole derivatives as apoptosis-inducing agents by targeting Bcl-2 protein. Mol Divers 2023; 27:1703-1712. [PMID: 36065037 DOI: 10.1007/s11030-022-10524-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 08/26/2022] [Indexed: 11/24/2022]
Abstract
Bcl-2, an anti-apoptotic protein, is a well-known and appealing cancer therapy target. Novel series of benzimidazole derivatives were synthesized and tested for their activity as Bcl-2 inhibitors on T98G glioblastoma, PC3 prostate, MCF-7 breast, and H69AR lung cancer cells. MTT assay was used to evaluate the cytotoxic effect. PI Annexin V Apoptosis Detection Kit was used to detect apoptosis. Expression levels of the Bcl-2 protein were examined by the Western blot analysis and qRT-PCR. All synthesized benzimidazole derivatives exhibited a cytotoxic effect on cancer cells with IC50 values in the range of 25.2-88.2 µg/mL. Among all derivatives, compounds C1 and D1 demonstrated a higher cytotoxic effect on cancer cells with IC50 values < 50 µg/mL, while a lower cytotoxic effect against human embryonic kidney cells with IC50 values of > 100 µg/mL. C1 and D1 caused a significant increase in the percentage of apoptotic cells in all types of cancer cell cells and both Bcl-2 mRNA and protein levels were significantly reduced. These results suggest that the novel benzimidazole derivatives may be candidates for apoptosis-inducing agents in cancer treatment by targeting anti-Bcl-2 proteins in cancer cells.
Collapse
Affiliation(s)
- Suleyman Ilhan
- Department of Biology, Faculty of Science and Letters, Celal Bayar University, 45140, Manisa, Turkey
| | - Çisil Çamli Pulat
- Applied Science Research Center, Manisa Celal Bayar University, Manisa, Turkey
| | - Ferdi Oguz
- Department of Biology, Faculty of Science and Letters, Celal Bayar University, 45140, Manisa, Turkey
| | - Hakan Bektaş
- Department of Chemistry, Faculty of Science and Art, Giresun University, Giresun, Turkey
| | - Emre Menteşe
- Department of Chemistry, Faculty of Science and Art, Recep Tayyip Erdogan University, Rize, Turkey
| | - Harika Atmaca
- Department of Biology, Faculty of Science and Letters, Celal Bayar University, 45140, Manisa, Turkey.
| |
Collapse
|
14
|
Hasan G, Hassan MI, Sohal SS, Shamsi A, Alam M. Therapeutic Targeting of Regulated Signaling Pathways of Non-Small Cell Lung Carcinoma. ACS OMEGA 2023; 8:26685-26698. [PMID: 37546685 PMCID: PMC10398694 DOI: 10.1021/acsomega.3c02424] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 06/15/2023] [Indexed: 08/08/2023]
Abstract
Non-small cell lung carcinoma (NSCLC) is the most common cancer globally. Phytochemicals and small molecule inhibitors significantly prevent varying types of cancers, including NSCLC. These therapeutic molecules serve as important sources for new drugs that interfere with cellular proliferation, apoptosis, metastasis, and angiogenesis by regulating signaling pathways. These molecules affect several cellular signaling cascades, including p53, NF-κB, STAT3, RAS, MAPK/ERK, Wnt, and AKT/PI3K, and are thus implicated in the therapeutic management of cancers. This review aims to describe the bioactive compounds and small-molecule inhibitors, their anticancer action, and targeting cellular signaling cascades in NSCLC. We highlighted the therapeutic potential of Epigallocatechin gallate (EGCG), Perifosine, ABT-737, Thymoquinine, Quercetin, Venetoclax, Gefitinib, and Genistein. These compounds are implicated in the therapeutic management of NSCLC. This review further offers deeper mechanistic insights into different signaling pathways that could be targeted for NSCLC therapy by phytochemicals and small-molecule inhibitors.
Collapse
Affiliation(s)
- Gulam
Mustafa Hasan
- Department
of Biochemistry, College of Medicine, Prince
Sattam Bin Abdulaziz University, P.O. Box 173, Al-Kharj 11942, Saudi Arabia
| | - Md. Imtaiyaz Hassan
- Centre
for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Sukhwinder Singh Sohal
- Respiratory
Translational Research Group, Department of Laboratory Medicine, School
of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston 7001, Tasmania, Australia
| | - Anas Shamsi
- Centre
of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman 346, United Arab
Emirates
| | - Manzar Alam
- Centre
for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India
| |
Collapse
|
15
|
Haasler L, von Montfort C, Kondadi AK, Golombek M, Ebbert L, Wenzel CK, Stahl W, Reichert AS, Brenneisen P. Involvement of necroptosis in the selective toxicity of the natural compound (±) gossypol on squamous skin cancer cells in vitro. Arch Toxicol 2023; 97:1997-2014. [PMID: 37210688 PMCID: PMC10256661 DOI: 10.1007/s00204-023-03516-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 05/08/2023] [Indexed: 05/22/2023]
Abstract
Cutaneous basal and squamous cell carcinoma reflect the first and second most common type of non-melanoma skin cancer, respectively. Especially cutaneous squamous cell carcinoma has the tendency to metastasize, finally resulting in a rather poor prognosis. Therapeutic options comprise surgery, radiation therapy, and a systemic or targeted chemotherapy. There are some good treatment results, but overall, the response rate of newly developed drugs is still modest. Drug repurposing represents an alternative approach where already available and clinically approved substances are used, which originally intended for other clinical benefits. In this context, we tested the effect of the naturally occurring polyphenolic aldehyde (±) gossypol with concentrations between 1 and 5 µM on the invasive squamous cell carcinoma cell line SCL-1 and normal human epidermal keratinocytes. Gossypol treatment up to 96 h resulted in a selective cytotoxicity of SCL-1 cells (IC50: 1.7 µM, 96 h) compared with normal keratinocytes (IC50: ≥ 5.4 µM, 96 h) which is mediated by mitochondrial dysfunction and finally leading to necroptotic cell death. Taken together, gossypol shows a high potential as an alternative anticancer drug for the treatment of cutaneous squamous cell carcinoma.
Collapse
Affiliation(s)
- Lisa Haasler
- Institute of Biochemistry and Molecular Biology I, Medical Faculty, Heinrich-Heine University Düsseldorf, 40225, Düsseldorf, Germany
| | - Claudia von Montfort
- Institute of Biochemistry and Molecular Biology I, Medical Faculty, Heinrich-Heine University Düsseldorf, 40225, Düsseldorf, Germany
| | - Arun Kumar Kondadi
- Institute of Biochemistry and Molecular Biology I, Medical Faculty, Heinrich-Heine University Düsseldorf, 40225, Düsseldorf, Germany
| | - Mathias Golombek
- Institute of Biochemistry and Molecular Biology I, Medical Faculty, Heinrich-Heine University Düsseldorf, 40225, Düsseldorf, Germany
| | - Lara Ebbert
- Institute of Biochemistry and Molecular Biology I, Medical Faculty, Heinrich-Heine University Düsseldorf, 40225, Düsseldorf, Germany
| | - Chantal-Kristin Wenzel
- Institute of Biochemistry and Molecular Biology I, Medical Faculty, Heinrich-Heine University Düsseldorf, 40225, Düsseldorf, Germany
| | - Wilhelm Stahl
- Institute of Biochemistry and Molecular Biology I, Medical Faculty, Heinrich-Heine University Düsseldorf, 40225, Düsseldorf, Germany
| | - Andreas S Reichert
- Institute of Biochemistry and Molecular Biology I, Medical Faculty, Heinrich-Heine University Düsseldorf, 40225, Düsseldorf, Germany
| | - Peter Brenneisen
- Institute of Biochemistry and Molecular Biology I, Medical Faculty, Heinrich-Heine University Düsseldorf, 40225, Düsseldorf, Germany.
| |
Collapse
|
16
|
Kim HJ, Eom YH, Choi SH. Prognostic influences of B-cell lymphoma 2-positive expression on late recurrence in breast cancer. Ann Surg Treat Res 2023; 105:20-30. [PMID: 37441325 PMCID: PMC10333802 DOI: 10.4174/astr.2023.105.1.20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/23/2023] [Accepted: 06/14/2023] [Indexed: 07/15/2023] Open
Abstract
Purpose B-cell lymphoma 2 (BCL2) has an antiapoptotic role, however, has resulted in it being a powerful favorable prognostic factor in breast cancer. Several studies revealed BCL2 is strongly associated with a lower rate of early recurrence after initial treatment in breast cancer patients, but study of a prolonged effect after 5 years is lacking. We investigated BCL2 as a prognostic factor in breast cancer in comparison to early and late recurrence. Methods We retrieved data from 2,198 patients with primary breast cancer who underwent surgical treatment and adjuvant treatment at the breast cancer center between 2005 and 2015. Each molecular subtype was classified, and Ki-67 and BCL2 were also assessed by immunohistochemistry. BCL2 and the association between molecular subtypes were assessed in early and late recurrences, respectively. Five-year postrecurrence survival and BCL2 were also assessed. Results The BCL2-positive group was associated with favorable clinicopathologic characteristics. The time to recurrence was significantly longer in the BCL2-positive group (P = 0.035). Late recurrence after 5 years was higher in the BCL2-positive group (P = 0.029). In multivariate survival analysis, tumor size and BCL2-positive expression were the only independent prognostic factors for late recurrence (P = 0.004). In the patients with recurrence, 5-year postrecurrence survival was significantly higher in the BCL2-positive group (P < 0.001). Conclusion Our result showed that prognosis was better in BCL2-positive patients compared to BCL2-negative patients at late recurrence. We suggested that BCL2 expression could be used as a marker to help determine additional adjuvant therapy or extended hormone therapy in hormone-dependent breast cancer.
Collapse
Affiliation(s)
- Hee Ju Kim
- Division of Breast Surgery, Department of Surgery, Eunpyeong St. Mary’s Hospital, College of Medicine, The Catholic University, Seoul, Korea
| | - Yong Hwa Eom
- Division of Breast Surgery, Department of Surgery, Eunpyeong St. Mary’s Hospital, College of Medicine, The Catholic University, Seoul, Korea
| | - Seung Hye Choi
- Division of Breast Surgery, Department of Surgery, Eunpyeong St. Mary’s Hospital, College of Medicine, The Catholic University, Seoul, Korea
| |
Collapse
|
17
|
Gao C, Pan H, Ma F, Zhang Z, Zhao Z, Song J, Li W, Fan X. Centipeda minima active components and mechanisms in lung cancer. BMC Complement Med Ther 2023; 23:89. [PMID: 36959600 PMCID: PMC10035269 DOI: 10.1186/s12906-023-03915-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 03/09/2023] [Indexed: 03/25/2023] Open
Abstract
BACKGROUND Traditional Chinese medicine (TCM) has been extensively used for neoplasm treatment and has provided many promising therapeutic candidates. We previously found that Centipeda minima (C. minima), a Chinese medicinal herb, showed anti-cancer effects in lung cancer. However, the active components and underlying mechanisms remain unclear. In this study, we used network pharmacology to evaluate C. minima active compounds and molecular mechanisms in lung cancer. METHODS We screened the TCMSP database for bioactive compounds and their corresponding potential targets. Lung cancer-associated targets were collected from Genecards, OMIM, and Drugbank databases. We then established a drug-ingredients-gene symbols-disease (D-I-G-D) network and a protein-protein interaction (PPI) network using Cytoscape software, and we performed Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses using R software. To verify the network pharmacology results, we then performed survival analysis, molecular docking analysis, as well as in vitro and in vivo experiments. RESULTS We identified a total of 21 C. minima bioactive compounds and 179 corresponding targets. We screened 804 targets related to lung cancer, 60 of which overlapped with C. minima. The top three candidate ingredients identified by D-I-G-D network analysis were quercetin, nobiletin, and beta-sitosterol. PPI network and core target analyses suggested that TP53, AKT1, and MYC are potential therapeutic targets. Moreover, molecular docking analysis confirmed that quercetin, nobiletin, and beta-sitosterol, combined well with TP53, AKT1, and MYC respectively. In vitro experiments verified that quercetin induced non-small cell lung cancer (NSCLC) cell death in a dose-dependent manner. GO and KEGG analyses found 1771 enriched GO terms and 144 enriched KEGG pathways, including a variety of cancer related pathways, the IL-17 signaling pathway, the platinum drug resistance pathway, and apoptosis pathways. Our in vivo experimental results confirmed that a C. minima ethanol extract (ECM) enhanced cisplatin (CDDP) induced cell apoptosis in NSCLC xenografts. CONCLUSIONS This study revealed the key C. minima active ingredients and molecular mechanisms in the treatment of lung cancer, providing a molecular basis for further C. minima therapeutic investigation.
Collapse
Affiliation(s)
- Cuiyun Gao
- Department of Rehabilitation Medicine, Binzhou Medical University Hospital, Binzhou, Shandong, China
- School of Rehabilitation Medicine, Binzhou Medical University, Yantai, Shandong, China
| | - Huafeng Pan
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Fengjun Ma
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Ze Zhang
- School of Rehabilitation Medicine, Binzhou Medical University, Yantai, Shandong, China
| | - Zedan Zhao
- School of Rehabilitation Medicine, Binzhou Medical University, Yantai, Shandong, China
| | - Jialing Song
- School of Rehabilitation Medicine, Binzhou Medical University, Yantai, Shandong, China
| | - Wei Li
- Department of Rehabilitation Medicine, Binzhou Medical University Hospital, Binzhou, Shandong, China.
| | - Xiangzhen Fan
- Department of Rehabilitation Medicine, Binzhou Medical University Hospital, Binzhou, Shandong, China.
| |
Collapse
|
18
|
Yue A, Chen M, Dai S, Zhang Y, Wei W, Fan L, Wang F, Zhang F, Yu H, Lu Y, Lei Y. Tastin promotes non-small-cell lung cancer progression through the ErbB4, PI3K/AKT, and ERK1/2 pathways. Exp Biol Med (Maywood) 2023; 248:519-531. [PMID: 36691332 PMCID: PMC10281536 DOI: 10.1177/15353702221147566] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 12/07/2022] [Indexed: 01/25/2023] Open
Abstract
Tastin might be involved in tumorigenesis, but its role in non-small-cell lung cancer (NSCLC) has not been adequately explored. This work aimed to examine tastin's role in NSCLC and to explore the underlying mechanism. The Gene Expression Omnibus (GEO), Gene Expression Database of Normal and Tumor tissues (GENT), and Cancer Genome Atlas (TCGA) databases were used. Four GEO datasets (GSE81089, GSE40419, GSE74706, and GSE19188) containing gene expression data for NSCLC and normal tissue samples were analyzed for tastin mRNA expression. Tastin expression levels in different tissues were compared using the GENT website. TCGA biolinks were used to download gene expression quantification (n = 594) and overall survival data (n = 535). In total, 30 lung adenocarcinoma and 25 lung squamous cell carcinoma cases were enrolled. In addition, four-week-old male BALB/c nude mice (n = 9/group) were used to establish xenograft mouse models. Furthermore, cultured HEK293T, A549, and NCI-H226 cells assessed. Immunoblot, hematoxylin and eosin (H&E) staining, immunohistochemistry, real-time quantitative reverse transcription polymerase chain reaction (qRT-PCR), fluorescence microscopy, flow cytometry, lentiviral transduction, and MTT, colony formation, wound healing, and Transwell assays were carried out. Tastin expression levels were markedly increased in NSCLC tumor tissue specimens and correlated with a poorer prognosis. Silencing of tastin inhibited the proliferative and migratory abilities of NSCLC cells. Bioinformatic analysis suggested that tastin interacts with ErbB4. The PI3K/AKT and ERK1/2 downstream pathways were suppressed in tastin-deficient cells. In conclusion, tastin might be involved in NSCLC growth and invasion and is a potential therapeutic target in NSCLC.
Collapse
Affiliation(s)
- Andong Yue
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, P.R. China
| | - Maoxi Chen
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, P.R. China
- Department of Oncology, Anhui Chest Hospital, Hefei 230022, P.R. China
| | - Shihui Dai
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, P.R. China
| | - Yiyin Zhang
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, P.R. China
| | - Wei Wei
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, P.R. China
| | - Lulu Fan
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, P.R. China
| | - Fang Wang
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, P.R. China
| | - Fei Zhang
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, P.R. China
| | - Hanqing Yu
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, P.R. China
| | - Yan Lu
- Department of Gastroenterology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, P.R. China
| | - Yu Lei
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, P.R. China
| |
Collapse
|
19
|
Bcl-2 pathway inhibition in solid tumors: a review of clinical trials. CLINICAL & TRANSLATIONAL ONCOLOGY : OFFICIAL PUBLICATION OF THE FEDERATION OF SPANISH ONCOLOGY SOCIETIES AND OF THE NATIONAL CANCER INSTITUTE OF MEXICO 2023; 25:1554-1578. [PMID: 36639602 DOI: 10.1007/s12094-022-03070-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 12/30/2022] [Indexed: 01/15/2023]
Abstract
Due to their key role in the pathogenesis of cancer through the regulation of apoptosis, the B-cell leukemia/lymphoma-2 (BCL-2) family proteins have been an attractive target for cancer therapy for the past decades. Throughout the years, many Bcl-2 family inhibitors have been developed, with Venetoclax being now successfully used in treating hematological malignancies. Although their effectiveness in the treatment of solid tumors is yet to be established, some preclinical evidence indicates their possible clinical application. This review aims to summarize current data from completed clinical trials that used Bcl-2 protein family inhibitors as monotherapy or in combination with other agents for the treatment of solid malignancies. We managed to include clinical trials of various phases which analyze the pharmacokinetics and pharmacodynamics of the drugs, as well as the effectiveness and adverse effects. Active and recruiting clinical trials are also briefly presented and future prospects and challenges are discussed.
Collapse
|
20
|
Doroshenko A, Tomkova S, Kozar T, Stroffekova K. Hypericin, a potential new BH3 mimetic. Front Pharmacol 2022; 13:991554. [PMID: 36267274 PMCID: PMC9577225 DOI: 10.3389/fphar.2022.991554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 08/30/2022] [Indexed: 11/13/2022] Open
Abstract
Many types of cancer such as prostate cancer, myeloid leukemia, breast cancer, glioblastoma display strong chemo resistance, which is supported by enhanced expression of multiple anti-apoptotic Bcl-2, Bcl-XL and Mcl-1 proteins. The viable anti-cancer strategies are based on developing anti-apoptotic Bcl-2 proteins inhibitors, BH3 mimetics. Our focus in past years has been on the investigating a new potential BH3 mimetic, Hypericin (Hyp). Hyp is a naturally occurring photosensitive compound used in photodynamic therapy and diagnosis. We have demonstrated that Hyp can cause substantial effects in cellular ultrastructure, mitochondria function and metabolism, and distribution of Bcl2 proteins in malignant and non-malignant cells. One of the possible mechanisms of Hyp action could be the direct interactions between Bcl-2 proteins and Hyp. We investigated this assumption by in silico computer modelling and in vitro fluorescent spectroscopy experiments with the small Bcl2 peptide segments designed to correspond to Bcl2 BH3 and BH1 domains. We show here that Hyp interacts with BH3 and BH1 peptides in concentration dependent manner, and shows the stronger interactions than known BH3 mimetics, Gossypol (Goss) and ABT-263. In addition, interactions of Hyp, Goss and ABT263, with whole purified proteins Bcl-2 and Mcl-1 by fluorescence spectroscopy show that Hyp interacts stronger with the Bcl-2 and less with Mcl-1 protein than Goss or ABT-263. This suggest that Hyp is comparable to other BH3 mimetics and could be explore as such. Hyp cytotoxicity was low in human U87 MG glioma, similar to that of ABT263, where Goss exerted sufficient cytotoxicity, suggesting that Hyp acts primarily on Bcl-2, but not on Mcl-1 protein. In combination therapy, low doses of Hyp with Goss effectively decreased U87 MG viability, suggesting a possible synergy effect. Overall, we can conclude that Hyp as BH3 mimetic acts primarily on Bcl-2 protein and can be explored to target cells with Bcl-2 over-expression, or in combination with other BH3 mimetics, that target Mcl-1 or Bcl-XL proteins, in dual therapy.
Collapse
Affiliation(s)
- Anastasia Doroshenko
- Department of Biophysics, Faculty of Natural Sciences, PJ Safarik University, Kosice, Slovakia
| | - Silvia Tomkova
- Department of Biophysics, Faculty of Natural Sciences, PJ Safarik University, Kosice, Slovakia
| | - Tibor Kozar
- Center of Interdisciplinary Biosciences, TIP-Safarik University, Kosice, Slovakia
| | - Katarina Stroffekova
- Department of Biophysics, Faculty of Natural Sciences, PJ Safarik University, Kosice, Slovakia
- *Correspondence: Katarina Stroffekova,
| |
Collapse
|
21
|
Negi A, Voisin‐Chiret AS. Strategies to Reduce the On-Target Platelet Toxicity of Bcl-x L Inhibitors: PROTACs, SNIPERs and Prodrug-Based Approaches. Chembiochem 2022; 23:e202100689. [PMID: 35263486 PMCID: PMC9311450 DOI: 10.1002/cbic.202100689] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 03/08/2022] [Indexed: 11/07/2022]
Abstract
Apoptosis is a highly regulated cellular process. Aberration in apoptosis is a common characteristic of various disorders. Therefore, proteins involved in apoptosis are prime targets in multiple therapies. Bcl-xL is an antiapoptotic protein. Compared to other antiapoptotic proteins, the expression of Bcl-xL is common in solid tumors and, to an extent, in some leukemias and lymphomas. The overexpression of Bcl-xL is also linked to survival and chemoresistance in cancer and senescent cells. Therefore, Bcl-xL is a promising anticancer and senolytic target. Various nanomolar range Bcl-xL inhibitors have been developed. ABT-263 was successfully identified as a Bcl-xL /Bcl-2 dual inhibitor. But it failed in the clinical trial (phase-II) because of its on-target platelet toxicity, which also implies an essential role of Bcl-xL protein in the survival of human platelets. Classical Bcl-xL inhibitor designs utilize occupancy-driven pharmacology with typical shortcomings (such as dose-dependent off-target and on-target platelet toxicities). Hence, event-driven pharmacology-based approaches, such as proteolysis targeting chimeras (PROTACs) and SNIPERs (specific non-genetic IAP-based protein erasers) have been developed. The development of Bcl-xL based PROTACs was expected, as 600 E3-ligases are available in humans, while some (such as cereblon (CRBN), von Hippel-Lindau (VHL)) are relatively less expressed in platelets. Therefore, E3 ligase ligand-based Bcl-xL PROTACs (CRBN: XZ424, XZ739; VHL: DT2216, PZ703b, 753b) showed a significant improvement in platelet therapeutic index than their parent molecules (ABT-263: DT2216, PZ703b, 753b, XZ739, PZ15227; A1155463: XZ424). Other than their distinctive pharmacology, PROTACs are molecularly large, which limits their cell permeability and plays a role in improving their cell selectivity. We also discuss prodrug-based approaches, such as antibody-drug conjugates (ABBV-155), phosphate prodrugs (APG-1252), dendrimer conjugate (AZD0466), and glycosylated conjugates (Nav-Gal). Studies of in-vitro, in-vivo, structure-activity relationships, biophysical characterization, and status of preclinical/clinical inhibitors derived from these strategies are also discussed in the review.
Collapse
Affiliation(s)
- Arvind Negi
- Department of Bioproduct and BiosystemsAalto UniversityFI-00076EspooFinland
| | | |
Collapse
|
22
|
Singh M, Gupta R, Comez L, Paciaroni A, Rani R, Kumar V. BCL2 G quadruplex-binding small molecules: Current status and prospects for the development of next-generation anticancer therapeutics. Drug Discov Today 2022; 27:2551-2561. [PMID: 35709931 DOI: 10.1016/j.drudis.2022.06.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 06/01/2022] [Accepted: 06/08/2022] [Indexed: 11/03/2022]
Abstract
B cell lymphoma 2 (BCL2) overexpression in a range of human tumors is often related to chemotherapy resistance and poor prognosis. GC-rich regions upstream of the P1 promoter in human BCL2 can form G-quadruplex (G4) structures through the stacking of four Hoogsteen-paired guanine bases. Stabilizing the G4 fold implies the inhibition of BCL2 expression and, thus, small molecules that selectively bind to the G4 are promising anticancer candidates. In this review, we discuss the structural aspects, binding affinity, selectivity, and biological activity of well-characterized BCL2 G4 binding ligands in vitro and in vivo. We also explore future directions in the research and development of G4-based anticancer therapeutics.
Collapse
Affiliation(s)
- Mamta Singh
- Amity Institute of Molecular Medicine and Stem Cell Research, Amity University, Noida, UP, 201303, India
| | - Rajat Gupta
- Amity Institute of Molecular Medicine and Stem Cell Research, Amity University, Noida, UP, 201303, India
| | - Lucia Comez
- IOM-CNR National Research Council, Via Pascoli, Perugia I-06123, Italy
| | - Alessandro Paciaroni
- Department of Physics and Geology, University of Perugia, via Pascoli, 06123, Italy
| | - Reshma Rani
- Drug Discovery Unit, Jubilant Biosys Ltd, Sector 58, Noida, UP 201301, India.
| | - Vinit Kumar
- Amity Institute of Molecular Medicine and Stem Cell Research, Amity University, Noida, UP, 201303, India.
| |
Collapse
|
23
|
Alqalshy EM, Ibrahim AM, Abdel-Hafiz AAS, Kamal KAER, Alazzazi MA, Omar MR, Abdel-Wahab AS, Mohammed SS. Effect of docosahexaenoic acid as a chemopreventive agent on experimentally induced hamster buccal pouch carcinogenesis. Cancer Treat Res Commun 2022; 31:100558. [PMID: 35443225 DOI: 10.1016/j.ctarc.2022.100558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/20/2022] [Accepted: 04/04/2022] [Indexed: 06/14/2023]
Abstract
PURPOSE The current study was directed to investigate the effectiveness of docosahexaenoic acid (DHA) as a chemopreventive agent on experimentally induced hamster buccal pouch (HBP) carcinogenesis. MATERIAL AND METHODS In this study we used 40 Syrian male hamsters, five weeks old, were divided into 4 groups (GI, GII, GIII, and GIV) of 10 animals in each as follows, GI: Topical application of liquid paraffin alone (thrice a week for 14 weeks), GII: Topical application of 7, 12 dimethyl benz[a]anthracene (DMBA) alone (0.5% in liquid paraffin, thrice a week for 14 weeks), GIII: Topical application of DMBA (0.5% in liquid paraffin, thrice a week for 14 weeks) + Oral administration of DHA (125 mg/kg b.w. in 1 ml distilled water by oral gavage, thrice a week for 14 weeks on alternative days of DMBA application), GIV: Oral administration of DHA alone (125 mg/kg b.w. in 1 ml distilled water by oral gavage, thrice a week for 14 weeks). RESULTS Gross observations and histopathological findings revealed that, in GI: normal stratified squamous epithelium, in GII: well and moderately differentiated squamous cell carcinoma (SCC), in GIII: variable results ranges from hyperkeratosis, hyperkeratosis and focal hyperplasia, mild dysplasia, and well differentiated SCC with superficial invasion of tumor cells not extended to deeper areas, while in GIV: normal similar to GI. Immunohistochemical results indicated that oral DHA treatment to DMBA treated hamsters restored the normal expression of bcl-2. CONCLUSION Our results indicated that DHA has the potential to be a dietary chemopreventive agent due to its capacity to improve carcinogen detoxification and to block/suppress the initiation and promotion stages of experimentally produced HBP carcinogenesis.
Collapse
Affiliation(s)
| | - Amr Mohamed Ibrahim
- Faculty of Dental Medicine (Boys-Cairo), AL- Azhar University, Basic Dental Sciences Department, Faculty of Dentistry, Deraya University, New Miya, Minya, Egypt.
| | | | | | - Magdy Alabasiry Alazzazi
- Faculty of Dental Medicine (Boys-Cairo), AL- Azhar University, Egypt; Oral Biology, College of Dentistry, The Islamic University, Najaf, Iraq
| | | | | | | |
Collapse
|
24
|
Alam M, Alam S, Shamsi A, Adnan M, Elasbali AM, Al-Soud WA, Alreshidi M, Hawsawi YM, Tippana A, Pasupuleti VR, Hassan MI. Bax/Bcl-2 Cascade Is Regulated by the EGFR Pathway: Therapeutic Targeting of Non-Small Cell Lung Cancer. Front Oncol 2022; 12:869672. [PMID: 35402265 PMCID: PMC8990771 DOI: 10.3389/fonc.2022.869672] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 02/21/2022] [Indexed: 12/12/2022] Open
Abstract
Non-small cell lung carcinoma (NSCLC) comprises 80%-85% of lung cancer cases. EGFR is involved in several cancer developments, including NSCLC. The EGFR pathway regulates the Bax/Bcl-2 cascade in NSCLC. Increasing understanding of the molecular mechanisms of fundamental tumor progression has guided the development of numerous antitumor drugs. The development and improvement of rationally planned inhibitors and agents targeting particular cellular and biological pathways in cancer have been signified as a most important paradigm shift in the strategy to treat and manage lung cancer. Newer approaches and novel chemotherapeutic agents are required to accompany present cancer therapies for improving efficiency. Using natural products as a drug with an effective delivery system may benefit therapeutics. Naturally originated compounds such as phytochemicals provide crucial sources for novel agents/drugs and resources for tumor therapy. Applying the small-molecule inhibitors (SMIs)/phytochemicals has led to potent preclinical discoveries in various human tumor preclinical models, including lung cancer. In this review, we summarize recent information on the molecular mechanisms of the Bax/Bcl-2 cascade and EGFR pathway in NSCLC and target them for therapeutic implications. We further described the therapeutic potential of Bax/Bcl-2/EGFR SMIs, mainly those with more potent and selectivity, including gefitinib, EGCG, ABT-737, thymoquinone, quercetin, and venetoclax. In addition, we explained the targeting EGFR pathway and ongoing in vitro and in vivo and clinical investigations in NSCLC. Exploration of such inhibitors facilitates the future treatment and management of NSCLC.
Collapse
Affiliation(s)
- Manzar Alam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, India
| | - Shoaib Alam
- Department of Biotechnology, Jamia Millia Islamia, Jamia Nagar, India
| | - Anas Shamsi
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, India
| | - Mohd Adnan
- Department of Biology, College of Science, University of Hail, Hail, Saudi Arabia
| | - Abdelbaset Mohamed Elasbali
- Department of Clinical Laboratory Science, College of Applied Sciences-Qurayyat, Jouf University, Sakaka, Saudi Arabia
| | - Waleed Abu Al-Soud
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Jouf University, Sakaka, Saudi Arabia
- Health Sciences Research Unit, Jouf University, Sakaka, Saudi Arabia
| | - Mousa Alreshidi
- Department of Biology, College of Science, University of Hail, Hail, Saudi Arabia
- Molecular Diagnostics and Personalized Therapeutics Unit, University of Hail, Hail, Saudi Arabia
| | | | - Anitha Tippana
- Regional Agricultural Research Station, Acharya N. G. Ranga Agricultural University (ANGRAU), Tirupati, India
| | - Visweswara Rao Pasupuleti
- Department of Biomedical Sciences and Therapeutics, Faculty of Medicine & Health Sciences, University Malaysia Sabah, Kota Kinabalu, Malaysia
- Department of Biochemistry, Faculty of Medicine and Health Sciences, Abdurrab University, Pekanbaru, Indonesia
- Centre for International Collaboration and Research, Reva University, Rukmini Knowledge Park, Bangalore, India
| | - Md. Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, India
| |
Collapse
|
25
|
Kattan SW, Hobani YH, Abubakr Babteen N, Alghamdi SA, Toraih EA, Ibrahiem AT, Fawzy MS, Faisal S. Association of B-cell lymphoma 2/microRNA-497 gene expression ratio score with metastasis in patients with colorectal cancer: A propensity-matched cohort analysis. J Clin Lab Anal 2022; 36:e24227. [PMID: 34994989 PMCID: PMC8841134 DOI: 10.1002/jcla.24227] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/24/2021] [Accepted: 12/27/2021] [Indexed: 12/14/2022] Open
Abstract
Background Deregulated microRNAs (miRs) significantly impact cancer development and progression. Our in silico analysis revealed that miR‐497 and its target gene B‐cell lymphoma‐2 (BCL2) could be related to poor cancer outcomes. Purpose To investigate the BCL2/miRNA‐497 expression ratio in colorectal cancer (CRC) and explore its association with the clinicopathological characteristics and CRC prognosis. Methods Archived samples from 106 CRC patients were enrolled. MiR‐497 and BCL2 gene expressions were detected by Taq‐Man Real‐Time quantitative polymerase chain reaction in propensity‐matched metastatic and nonmetastatic cohorts after elimination of confounder bias. Results B‐cell lymphoma‐2 gene was upregulated in metastatic samples (median = 1.16, 95%CI = 1.09–1.60) compared to nonmetastatic (median = 1.02, 95%CI = 0.89–1.25, p < 0.001). In contrast, lower levels of miR‐495 were detected in specimens with distant metastasis (median = 0.05, 95%CI = 0.04–0.20) than nonmetastatic samples (median = 0.54, 95%CI = 0.47–0.58, p < 0.001). Estimated BCL2/miR‐497 ratio yielded a significant differential expression between the two cohort groups. Higher scores were observed in metastasis group (median = 1.39, 95%CI = 0.9–1.51) than nonmetastatic patients (median = 0.29, 95%CI = 0.19–0.39, p < 0.001). Receiver operating characteristic curve analysis showed BCL2/miR‐497 ratio score to have the highest predictive accuracy for metastasis at presentation. The area under the curve was 0.90 (95%CI = 0.839–0.964, p < 0.001) at cut‐off of >0.525, with high sensitivity 81.1% (95%CI = 68.6%–89.4%) and specificity 92.5% (95%CI = 82.1%–97.0%). Also, the ratio score was negatively correlated with disease‐free survival (r = −0.676, p < 0.001) and overall survival times (r = −0.650, p < 0.001). Kaplan–Meier curves showed lower survival rates in cohorts with high‐score compared to low‐score patients. Conclusion The BCL2/miR497 expression ratio is associated with poor CRC prognosis in terms of metastasis and short survival.
Collapse
Affiliation(s)
- Shahad W Kattan
- Department of Medical Laboratory, College of Applied Medical Sciences, Taibah University, Yanbu, Saudi Arabia
| | - Yahya H Hobani
- Medical Laboratory Technology, College of Applied Medical Sciences, Jazan University, Jazan, Saudi Arabia
| | - Nouf Abubakr Babteen
- Department of Biochemistry, College of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Saleh A Alghamdi
- Medical Genetics, Clinical Laboratory Department, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
| | - Eman A Toraih
- Department of Surgery, School of Medicine, Tulane University, New Orleans, Louisiana, USA.,Genetics Unit, Department of Histology and Cell Biology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Afaf T Ibrahiem
- Department of Pathology, Faculty of Medicine, Northern Border University, Arar, Saudi Arabia.,Department of Pathology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Manal S Fawzy
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt.,Department of Biochemistry, Faculty of Medicine, Northern Border University, Arar, Saudi Arabia
| | - Salwa Faisal
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| |
Collapse
|
26
|
Bui ATN, Son H, Park S, Oh S, Kim JS, Cho JH, Hwang HJ, Kim JH, Yi GS, Chi SW. Artificial intelligence-based identification of octenidine as a Bcl-xL inhibitor. Biochem Biophys Res Commun 2021; 588:97-103. [PMID: 34953212 DOI: 10.1016/j.bbrc.2021.12.061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 12/16/2021] [Indexed: 11/18/2022]
Abstract
Apoptosis plays an essential role in maintaining cellular homeostasis and preventing cancer progression. Bcl-xL, an anti-apoptotic protein, is an important modulator of the mitochondrial apoptosis pathway and is a promising target for anticancer therapy. In this study, we identified octenidine as a novel Bcl-xL inhibitor through structural feature-based deep learning and molecular docking from a library of approved drugs. The NMR experiments demonstrated that octenidine binds to the Bcl-2 homology 3 (BH3) domain-binding hydrophobic region that consists of the BH1, BH2, and BH3 domains in Bcl-xL. A structural model of the Bcl-xL/octenidine complex revealed that octenidine binds to Bcl-xL in a similar manner to that of the well-known Bcl-2 family protein antagonist ABT-737. Using the NanoBiT protein-protein interaction system, we confirmed that the interaction between Bcl-xL and Bak-BH3 domains within cells was inhibited by octenidine. Furthermore, octenidine inhibited the proliferation of MCF-7 breast and H1299 lung cancer cells by promoting apoptosis. Taken together, our results shed light on a novel mechanism in which octenidine directly targets anti-apoptotic Bcl-xL to trigger mitochondrial apoptosis in cancer cells.
Collapse
Affiliation(s)
- Anh Thi Ngoc Bui
- Disease Target Structure Research Center, KRIBB, Daejeon, 31441, Republic of Korea
| | - Hyojin Son
- Department of Bio and Brain Engineering, KAIST, Daejeon, 34141, Republic of Korea
| | - Seulki Park
- Disease Target Structure Research Center, KRIBB, Daejeon, 31441, Republic of Korea
| | - Sohee Oh
- Disease Target Structure Research Center, KRIBB, Daejeon, 31441, Republic of Korea
| | - Jin-Sik Kim
- Disease Target Structure Research Center, KRIBB, Daejeon, 31441, Republic of Korea
| | - Jin Hwa Cho
- Disease Target Structure Research Center, KRIBB, Daejeon, 31441, Republic of Korea
| | - Hye-Jin Hwang
- Disease Target Structure Research Center, KRIBB, Daejeon, 31441, Republic of Korea; Department of Proteome Structural Biology, KRIBB School of Bioscience, Korea University of Science and Technology, Daejeon, 34113, Republic of Korea
| | - Jeong-Hoon Kim
- Disease Target Structure Research Center, KRIBB, Daejeon, 31441, Republic of Korea; Department of Bioscience, University of Science and Technology, Daejeon, 34113, Republic of Korea; Graduate School of New Drug Discovery and Development, Chungnam National University, Republic of Korea.
| | - Gwan-Su Yi
- Department of Bio and Brain Engineering, KAIST, Daejeon, 34141, Republic of Korea.
| | - Seung-Wook Chi
- Disease Target Structure Research Center, KRIBB, Daejeon, 31441, Republic of Korea; Department of Proteome Structural Biology, KRIBB School of Bioscience, Korea University of Science and Technology, Daejeon, 34113, Republic of Korea.
| |
Collapse
|
27
|
Townsend PA, Kozhevnikova MV, Cexus ONF, Zamyatnin AA, Soond SM. BH3-mimetics: recent developments in cancer therapy. J Exp Clin Cancer Res 2021; 40:355. [PMID: 34753495 PMCID: PMC8576916 DOI: 10.1186/s13046-021-02157-5] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 10/26/2021] [Indexed: 01/11/2023] Open
Abstract
The hopeful outcomes from 30 years of research in BH3-mimetics have indeed served a number of solid paradigms for targeting intermediates from the apoptosis pathway in a variety of diseased states. Not only have such rational approaches in drug design yielded several key therapeutics, such outputs have also offered insights into the integrated mechanistic aspects of basic and clinical research at the genetics level for the future. In no other area of medical research have the effects of such work been felt, than in cancer research, through targeting the BAX-Bcl-2 protein-protein interactions. With these promising outputs in mind, several mimetics, and their potential therapeutic applications, have also been developed for several other pathological conditions, such as cardiovascular disease and tissue fibrosis, thus highlighting the universal importance of the intrinsic arm of the apoptosis pathway and its input to general tissue homeostasis. Considering such recent developments, and in a field that has generated so much scientific interest, we take stock of how the broadening area of BH3-mimetics has developed and diversified, with a focus on their uses in single and combined cancer treatment regimens and recently explored therapeutic delivery methods that may aid the development of future therapeutics of this nature.
Collapse
Affiliation(s)
- Paul A Townsend
- University of Surrey, Guildford, UK.
- Sechenov First Moscow State Medical University, Moscow, Russian Federation.
- University of Manchester, Manchester, UK.
| | - Maria V Kozhevnikova
- University of Surrey, Guildford, UK
- Sechenov First Moscow State Medical University, Moscow, Russian Federation
| | | | - Andrey A Zamyatnin
- University of Surrey, Guildford, UK
- Sechenov First Moscow State Medical University, Moscow, Russian Federation
- Lomonosov Moscow State University, Moscow, Russian Federation
- Sirius University of Science and Technology, Sochi, Russian Federation
| | - Surinder M Soond
- University of Surrey, Guildford, UK.
- Sechenov First Moscow State Medical University, Moscow, Russian Federation.
| |
Collapse
|
28
|
Sirotković-Skerlev M, Plavetić ND, Sedlić F, Kuna SK, Vrbanec D, Belev B, Pleština S, Kovač Z, Kulić A. Prognostic value of circulating Bcl-2 and anti-p53 antibodies in patients with breast cancer: A long term follow-up (17.5 years). Cancer Biomark 2021; 30:95-104. [PMID: 32986661 DOI: 10.3233/cbm-201497] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND Apoptosis inhibition is a major tumorigenic factor. Bcl-2 dysregulation and TP53 mutation status, which may correlate with autoantibody generation, contribute to impaired apoptosis. OBJECTIVE This study aimed to investigate the prognostic value of circulating Bcl-2 and anti-p53 antibodies (p53Abs) in a 17.5-year follow-up of breast cancer patients. We also analyzed the correlations of Bcl-2 and p53Abs with various clinicopathological parameters in order to assess their impact on tumor aggressiveness. METHODS Serum Bcl-2 and p53Abs levels were analyzed by the enzyme-linked immunosorbent assay (ELISA) in 82 patients with invasive breast cancer and twenty individuals without malignancy. RESULTS Serum Bcl-2 and p53Abs levels in breast cancer patients were significantly higher than those in controls. Patients with high levels of Bcl-2 (cut-off 200 U/ml) had a poorer prognosis (17.5-year survival) than those with lower Bcl-2 values. In combined analysis the subgroup of patients with elevated p53Abs (cut-off 15 U/ml) and elevated Bcl-2 (cut-offs 124 U/ml and 200 U/ml) had the worse prognosis in 17.5-year survival. In correlation analysis p53Abs and Bcl-2 were associated with unfavorable clinicopathological parameters. CONCLUSIONS Our results suggest that breast cancer patients with high serum levels of p53Abs and Bcl-2 present an especially unfavorable group in a long follow-up.
Collapse
Affiliation(s)
- Maja Sirotković-Skerlev
- Department of Oncology, Division of Pathophysiology and Experimental Oncology, University Hospital Center Zagreb, Zagreb, Croatia.,School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Natalija Dedić Plavetić
- Department of Oncology, Division of Medical Oncology, University Hospital Center Zagreb, Zagreb, Croatia.,School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Filip Sedlić
- Department of Oncology, Division of Pathophysiology and Experimental Oncology, University Hospital Center Zagreb, Zagreb, Croatia.,School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Sanja Kusačić Kuna
- Department of Nuclear Medicine and Radiation Protection, University Hospital Center Zagreb, Zagreb, Croatia.,School of Medicine, University of Zagreb, Zagreb, Croatia
| | | | - Borislav Belev
- Department of Oncology, Division of Medical Oncology, University Hospital Center Zagreb, Zagreb, Croatia.,School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Stjepko Pleština
- Department of Oncology, Division of Medical Oncology, University Hospital Center Zagreb, Zagreb, Croatia.,School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Zdenko Kovač
- Department of Oncology, Division of Pathophysiology and Experimental Oncology, University Hospital Center Zagreb, Zagreb, Croatia.,School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Ana Kulić
- Department of Oncology, Division of Pathophysiology and Experimental Oncology, University Hospital Center Zagreb, Zagreb, Croatia
| |
Collapse
|
29
|
Alam M, Ali S, Mohammad T, Hasan GM, Yadav DK, Hassan MI. B Cell Lymphoma 2: A Potential Therapeutic Target for Cancer Therapy. Int J Mol Sci 2021; 22:ijms221910442. [PMID: 34638779 PMCID: PMC8509036 DOI: 10.3390/ijms221910442] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 09/15/2021] [Accepted: 09/23/2021] [Indexed: 12/13/2022] Open
Abstract
Defects in the apoptosis mechanism stimulate cancer cell growth and survival. B cell lymphoma 2 (Bcl-2) is an anti-apoptotic molecule that plays a central role in apoptosis. Bcl-2 is the founding constituent of the Bcl-2 protein family of apoptosis controllers, the primary apoptosis regulators linked with cancer. Bcl-2 has been identified as being over-expressed in several cancers. Bcl-2 is induced by protein kinases and several signaling molecules which stimulate cancer development. Identifying the important function played by Bcl-2 in cancer progression and development, and treatment made it a target related to therapy for multiple cancers. Among the various strategies that have been proposed to block Bcl-2, BH3-mimetics have appeared as a novel group of compounds thanks to their favorable effects on many cancers within several clinical settings. Because of the fundamental function of Bcl-2 in the regulation of apoptosis, the Bcl-2 protein is a potent target for the development of novel anti-tumor treatments. Bcl-2 inhibitors have been used against several cancers and provide a pre-clinical platform for testing novel therapeutic drugs. Clinical trials of multiple investigational agents targeting Bcl-2 are ongoing. This review discusses the role of Bcl-2 in cancer development; it could be exploited as a potential target for developing novel therapeutic strategies to combat various types of cancers. We further highlight the therapeutic activity of Bcl-2 inhibitors and their implications for the therapeutic management of cancer.
Collapse
Affiliation(s)
- Manzar Alam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India; (M.A.); (S.A.); (T.M.)
| | - Sabeeha Ali
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India; (M.A.); (S.A.); (T.M.)
| | - Taj Mohammad
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India; (M.A.); (S.A.); (T.M.)
| | - Gulam Mustafa Hasan
- Department of Biochemistry, College of Medicine, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia;
| | - Dharmendra Kumar Yadav
- Department of Pharmacy and Gachon Institute of Pharmaceutical Science, College of Pharmacy, Gachon University, Hambakmoeiro 191, Yeonsu-gu, Incheon 21924, Korea
- Correspondence: (D.K.Y.); (M.I.H.)
| | - Md. Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India; (M.A.); (S.A.); (T.M.)
- Correspondence: (D.K.Y.); (M.I.H.)
| |
Collapse
|
30
|
Nonpanya N, Sanookpan K, Joyjamras K, Wichadakul D, Sritularak B, Chaotham C, Chanvorachote P. Norcycloartocarpin targets Akt and suppresses Akt-dependent survival and epithelial-mesenchymal transition in lung cancer cells. PLoS One 2021; 16:e0254929. [PMID: 34383763 PMCID: PMC8360371 DOI: 10.1371/journal.pone.0254929] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 07/06/2021] [Indexed: 12/24/2022] Open
Abstract
In searching for novel targeted therapeutic agents for lung cancer treatment, norcycloartocarpin from Artocarpus gomezianus was reported in this study to promisingly interacted with Akt and exerted the apoptosis induction and epithelial-to-mesenchymal transition suppression. Selective cytotoxic profile of norcycloartocarpin was evidenced with approximately 2-fold higher IC50 in normal dermal papilla cells (DPCs) compared with human lung cancer A549, H460, H23, and H292 cells. We found that norcycloartocarpin suppressed anchorage-independent growth, cell migration, invasion, filopodia formation, and decreased EMT in a dose-dependent manner at 24 h, which were correlated with reduced protein levels of N-cadherin, Vimentin, Slug, p-FAK, p-Akt, as well as Cdc42. In addition, norcycloartocarpin activated apoptosis caspase cascade associating with restoration of p53, down-regulated Bcl-2 and augmented Bax in A549 and H460 cells. Interestingly, norcycloartocarpin showed potential inhibitory role on protein kinase B (Akt) the up-stream dominant molecule controlling EMT and apoptosis. Computational molecular docking analysis further confirmed that norcycloartocarpin has the best binding affinity of -12.52 kcal/mol with Akt protein at its critical active site. As Akt has recently recognized as an attractive molecular target for therapeutic approaches, these findings support its use as a plant-derived anticancer agent in cancer therapy.
Collapse
Affiliation(s)
- Nongyao Nonpanya
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
- Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Kittipong Sanookpan
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
- Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Keerati Joyjamras
- Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
- Graduate Program of Pharmaceutical Sciences and Technology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Duangdao Wichadakul
- Department of Computer Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, Thailand
| | - Boonchoo Sritularak
- Departments of Pharmacognosy and Pharmaceutical Botany, Chulalongkorn University, Bangkok, Thailand
| | - Chatchai Chaotham
- Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
- Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Pithi Chanvorachote
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
- Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
31
|
Haasler L, Kondadi AK, Tsigaras T, von Montfort C, Graf P, Stahl W, Brenneisen P. The BH3 mimetic (±) gossypol induces ROS-independent apoptosis and mitochondrial dysfunction in human A375 melanoma cells in vitro. Arch Toxicol 2021; 95:1349-1365. [PMID: 33523262 PMCID: PMC8032633 DOI: 10.1007/s00204-021-02987-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 01/21/2021] [Indexed: 12/20/2022]
Abstract
A major challenge in current cancer therapy is still the treatment of metastatic melanomas of the skin. BH3 mimetics represent a novel group of substances inducing apoptosis. In this study, we investigated the cytotoxic effect of (±) gossypol (GP), a natural compound from cotton seed, on A375 melanoma cells and the underlying biochemical mechanisms. To prevent undesired side effects due to toxicity on normal (healthy) cells, concentrations only toxic for tumor cells have been elaborated. Viability assays were performed to determine the cytotoxicity of GP in A375 melanoma and normal (healthy) cells. For the majority of experiments, a concentration of 2.5 µM GP was used resulting in a ROS-independent but caspase-dependent cell death of A375 melanoma cells. At this level, GP was non-toxic for normal human epidermal melanocytes. GP has a very short half-life, however, it was demonstrated that only the “parent” compound and not decomposition products are responsible for the cytotoxic effect in A375 melanoma cells. GP significantly decreased mitochondrial membrane potential accompanied by a Drp1-dependent loss of mitochondrial integrity (fragmentation) in tumor cells. Taken together, GP induced a ROS-independent intrinsic apoptosis leading to the conclusion that within a specific concentration range, GP may work as effective anticancer drug without harmful side effects.
Collapse
Affiliation(s)
- Lisa Haasler
- Institute of Biochemistry and Molecular Biology I, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
| | - Arun Kumar Kondadi
- Institute of Biochemistry and Molecular Biology I, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Thanos Tsigaras
- Institute of Biochemistry and Molecular Biology I, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Claudia von Montfort
- Institute of Biochemistry and Molecular Biology I, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Peter Graf
- Institute of Biochemistry and Molecular Biology I, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Wilhelm Stahl
- Institute of Biochemistry and Molecular Biology I, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Peter Brenneisen
- Institute of Biochemistry and Molecular Biology I, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
32
|
Yu Q, Sun Y. Targeting Protein Neddylation to Inactivate Cullin-RING Ligases by Gossypol: A Lucky Hit or a New Start? DRUG DESIGN DEVELOPMENT AND THERAPY 2021; 15:1-8. [PMID: 33442232 PMCID: PMC7797302 DOI: 10.2147/dddt.s286373] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 12/16/2020] [Indexed: 01/26/2023]
Abstract
Cullin-RING E3 ligases (CRLs) are the largest family of E3 ubiquitin ligases, responsible for about 20% of the protein degradation by the ubiquitin-proteasome system (UPS). Given their vital roles in multiple cellular processes, and over-activation in many human cancers, CRLs are validated as promising targets for anti-cancer therapies. Activation of CRLs requires cullin neddylation, a process catalysed by three neddylation enzymes. Recently, our group established an AlphaScreen-based in vitro cullin neddylation assay and employed it for high-throughput screening to search for small-molecule inhibitors targeting cullin neddylation. During our pilot screen, gossypol, a natural product extracted from cottonseeds, was identified as one of the most potent neddylation inhibitors of cullin-1 and cullin-5. We further demonstrated that gossypol blocks cullin neddylation by binding to cullin-1/-5 to inactivate CRL1/5 ligase activity, leading to accumulation of MCL-1 and NOXA, the substrates of CRL1 and CRL5, respectively. The combination of gossypol and an MCL-1 inhibitor synergistically enhanced the anti-proliferative effect in multiple human cancer cell lines. Our study unveiled a rational combination of two previously known inhibitors of the Bcl-2 family for enhanced anti-cancer efficacy and identified a novel activity of gossypol as an inhibitor of CRL1 and CRL5 E3s, thus providing a new possibility in the development of novel CRL inhibitors for anti-cancer therapy.
Collapse
Affiliation(s)
- Qing Yu
- Department of Head and Neck Surgery, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Science, Hangzhou, Zhejiang, People's Republic of China.,Key Laboratory of Head & Neck Cancer Translational Research of Zhejiang Province, Hangzhou, Zhejiang, People's Republic of China.,Cancer Institute of the Second Affiliated Hospital and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China
| | - Yi Sun
- Cancer Institute of the Second Affiliated Hospital and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China
| |
Collapse
|
33
|
Chen Z, Ying J, Shang W, Ding D, Guo M, Wang H. miR-342-3p Regulates the Proliferation and Apoptosis of NSCLC Cells by Targeting BCL-2. Technol Cancer Res Treat 2021; 20:15330338211041193. [PMID: 34520298 PMCID: PMC8445541 DOI: 10.1177/15330338211041193] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 07/30/2021] [Indexed: 01/22/2023] Open
Abstract
microRNA-342-3p plays an important role in tumor occurrence and development. However, the expression pattern and roles of microRNA-342-3p in nonsmall cell lung cancer remain poorly understood. In the current study, we explored the roles and underlying mechanisms of microRNA-342-3p in nonsmall cell lung cancer via gain- and loss-of-function analyses. We used quantitative reverse-transcription-polymerase chain reaction and western blotting assays to measure the expression levels of microRNA-342-3p in nonsmall-cell lung cancer and B-cell lymphoma-2. Furthermore, we used small interfering RNA and RNA mimics to analyze the functions and underlying mechanisms of microRNA-342-3p in nonsmall cell lung cancer cells. A luciferase reporter assay was performed to evaluate the direct binding site of the 5'-untranslated region of B-cell lymphoma-2 targeted by microRNA-342-3p. We found that the expression of microRNA-342-3p was significantly lower in nonsmall cell lung cancer cells and tissues than in normal cells and tissues. The upregulation of microRNA-342-3p suppressed cell proliferation while promoting apoptosis in H1975, H460, and H226 cells. The overexpression of microRNA-342-3p in nonsmall cell lung cancer cells led to the downregulation of mRNA and protein levels in B-cell lymphoma-2 cells. Thus, B-cell lymphoma-2 was identified as a direct target of microRNA-342-3p. These findings indicate that microRNA-342-3p inhibits the growth of nonsmall cell lung cancer by repressing the expression of B-cell lymphoma-2, which suggests that microRNA-342-3p could be a potential target for the treatment of nonsmall cell lung cancer.
Collapse
Affiliation(s)
- Zhongjie Chen
- The People’s Hospital of Beilun District, Ningbo, China
- Beilun Branch of the First Affiliated Hospital of Medical College of Zhejiang University, Ningbo, China
| | - Junjie Ying
- The People’s Hospital of Beilun District, Ningbo, China
- Beilun Branch of the First Affiliated Hospital of Medical College of Zhejiang University, Ningbo, China
| | - Wenjun Shang
- The People’s Hospital of Beilun District, Ningbo, China
- Beilun Branch of the First Affiliated Hospital of Medical College of Zhejiang University, Ningbo, China
| | - Dongxiao Ding
- The People’s Hospital of Beilun District, Ningbo, China
- Beilun Branch of the First Affiliated Hospital of Medical College of Zhejiang University, Ningbo, China
| | - Min Guo
- Ningbo ZhenHai LongSai Hospital, Ningbo, China
| | - Haifeng Wang
- The People’s Hospital of Beilun District, Ningbo, China
- Beilun Branch of the First Affiliated Hospital of Medical College of Zhejiang University, Ningbo, China
| |
Collapse
|
34
|
O’Farrell AC, Jarzabek MA, Lindner AU, Carberry S, Conroy E, Miller IS, Connor K, Shiels L, Zanella ER, Lucantoni F, Lafferty A, White K, Meyer Villamandos M, Dicker P, Gallagher WM, Keek SA, Sanduleanu S, Lambin P, Woodruff HC, Bertotti A, Trusolino L, Byrne AT, Prehn JHM. Implementing Systems Modelling and Molecular Imaging to Predict the Efficacy of BCL-2 Inhibition in Colorectal Cancer Patient-Derived Xenograft Models. Cancers (Basel) 2020; 12:cancers12102978. [PMID: 33066609 PMCID: PMC7602510 DOI: 10.3390/cancers12102978] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 10/09/2020] [Indexed: 12/24/2022] Open
Abstract
Resistance to chemotherapy often results from dysfunctional apoptosis, however multiple proteins with overlapping functions regulate this pathway. We sought to determine whether an extensively validated, deterministic apoptosis systems model, 'DR_MOMP', could be used as a stratification tool for the apoptosis sensitiser and BCL-2 antagonist, ABT-199 in patient-derived xenograft (PDX) models of colorectal cancer (CRC). Through quantitative profiling of BCL-2 family proteins, we identified two PDX models which were predicted by DR_MOMP to be sufficiently sensitive to 5-fluorouracil (5-FU)-based chemotherapy (CRC0344), or less responsive to chemotherapy but sensitised by ABT-199 (CRC0076). Treatment with ABT-199 significantly improved responses of CRC0076 PDXs to 5-FU-based chemotherapy, but showed no sensitisation in CRC0344 PDXs, as predicted from systems modelling. 18F-Fluorodeoxyglucose positron emission tomography/computed tomography (18F-FDG-PET/CT) scans were performed to investigate possible early biomarkers of response. In CRC0076, a significant post-treatment decrease in mean standard uptake value was indeed evident only in the combination treatment group. Radiomic CT feature analysis of pre-treatment images in CRC0076 and CRC0344 PDXs identified features which could phenotypically discriminate between models, but were not predictive of treatment responses. Collectively our data indicate that systems modelling may identify metastatic (m)CRC patients benefitting from ABT-199, and that 18F-FDG-PET could independently support such predictions.
Collapse
Affiliation(s)
- Alice C. O’Farrell
- Precision Cancer Medicine Group, Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, D02 YN77 Dublin, Ireland; (A.C.O.); (M.A.J.); (I.S.M.); (K.C.); (L.S.); (A.L.); (K.W.); (A.T.B.)
| | - Monika A. Jarzabek
- Precision Cancer Medicine Group, Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, D02 YN77 Dublin, Ireland; (A.C.O.); (M.A.J.); (I.S.M.); (K.C.); (L.S.); (A.L.); (K.W.); (A.T.B.)
| | - Andreas U. Lindner
- Department of Physiology and Medical Physics, Centre for Systems Medicine, Royal College of Surgeons in Ireland, D02 YN77 Dublin, Ireland; (A.U.L.); (S.C.); (F.L.); (M.M.V.)
| | - Steven Carberry
- Department of Physiology and Medical Physics, Centre for Systems Medicine, Royal College of Surgeons in Ireland, D02 YN77 Dublin, Ireland; (A.U.L.); (S.C.); (F.L.); (M.M.V.)
| | - Emer Conroy
- UCD School of Biomolecular and Biomedical Science, UCD Conway Institute, University College Dublin, Belfield, D04 V1W8 Dublin, Ireland; (E.C.); (W.M.G.)
| | - Ian S. Miller
- Precision Cancer Medicine Group, Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, D02 YN77 Dublin, Ireland; (A.C.O.); (M.A.J.); (I.S.M.); (K.C.); (L.S.); (A.L.); (K.W.); (A.T.B.)
| | - Kate Connor
- Precision Cancer Medicine Group, Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, D02 YN77 Dublin, Ireland; (A.C.O.); (M.A.J.); (I.S.M.); (K.C.); (L.S.); (A.L.); (K.W.); (A.T.B.)
| | - Liam Shiels
- Precision Cancer Medicine Group, Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, D02 YN77 Dublin, Ireland; (A.C.O.); (M.A.J.); (I.S.M.); (K.C.); (L.S.); (A.L.); (K.W.); (A.T.B.)
| | - Eugenia R. Zanella
- Candiolo Cancer Institute—FPO IRCCS, Candiolo, 10060 Torino, Italy; (E.R.Z.); (A.B.); (L.T.)
- Department of Oncology, University of Torino, Candiolo, 10060 Torino, Italy
| | - Federico Lucantoni
- Department of Physiology and Medical Physics, Centre for Systems Medicine, Royal College of Surgeons in Ireland, D02 YN77 Dublin, Ireland; (A.U.L.); (S.C.); (F.L.); (M.M.V.)
| | - Adam Lafferty
- Precision Cancer Medicine Group, Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, D02 YN77 Dublin, Ireland; (A.C.O.); (M.A.J.); (I.S.M.); (K.C.); (L.S.); (A.L.); (K.W.); (A.T.B.)
| | - Kieron White
- Precision Cancer Medicine Group, Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, D02 YN77 Dublin, Ireland; (A.C.O.); (M.A.J.); (I.S.M.); (K.C.); (L.S.); (A.L.); (K.W.); (A.T.B.)
| | - Mariangela Meyer Villamandos
- Department of Physiology and Medical Physics, Centre for Systems Medicine, Royal College of Surgeons in Ireland, D02 YN77 Dublin, Ireland; (A.U.L.); (S.C.); (F.L.); (M.M.V.)
| | - Patrick Dicker
- Department of Epidemiology and Public Health Medicine, Royal College of Surgeons in Ireland, D02 YN77 Dublin, Ireland;
| | - William M. Gallagher
- UCD School of Biomolecular and Biomedical Science, UCD Conway Institute, University College Dublin, Belfield, D04 V1W8 Dublin, Ireland; (E.C.); (W.M.G.)
| | - Simon A. Keek
- The D-Lab, Department of Precision Medicine, GROW—School for Oncology, Maastricht University, 6229 ER Maastricht, The Netherlands; (S.A.K.); (S.S.); (P.L.); (H.C.W.)
| | - Sebastian Sanduleanu
- The D-Lab, Department of Precision Medicine, GROW—School for Oncology, Maastricht University, 6229 ER Maastricht, The Netherlands; (S.A.K.); (S.S.); (P.L.); (H.C.W.)
| | - Philippe Lambin
- The D-Lab, Department of Precision Medicine, GROW—School for Oncology, Maastricht University, 6229 ER Maastricht, The Netherlands; (S.A.K.); (S.S.); (P.L.); (H.C.W.)
- Department of Radiology and Nuclear Imaging, Maastricht University Medical Center, 6229 HX Maastricht, The Netherlands
| | - Henry C. Woodruff
- The D-Lab, Department of Precision Medicine, GROW—School for Oncology, Maastricht University, 6229 ER Maastricht, The Netherlands; (S.A.K.); (S.S.); (P.L.); (H.C.W.)
- Department of Radiology and Nuclear Imaging, Maastricht University Medical Center, 6229 HX Maastricht, The Netherlands
| | - Andrea Bertotti
- Candiolo Cancer Institute—FPO IRCCS, Candiolo, 10060 Torino, Italy; (E.R.Z.); (A.B.); (L.T.)
- Department of Oncology, University of Torino, Candiolo, 10060 Torino, Italy
| | - Livio Trusolino
- Candiolo Cancer Institute—FPO IRCCS, Candiolo, 10060 Torino, Italy; (E.R.Z.); (A.B.); (L.T.)
- Department of Oncology, University of Torino, Candiolo, 10060 Torino, Italy
| | - Annette T. Byrne
- Precision Cancer Medicine Group, Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, D02 YN77 Dublin, Ireland; (A.C.O.); (M.A.J.); (I.S.M.); (K.C.); (L.S.); (A.L.); (K.W.); (A.T.B.)
- UCD School of Biomolecular and Biomedical Science, UCD Conway Institute, University College Dublin, Belfield, D04 V1W8 Dublin, Ireland; (E.C.); (W.M.G.)
| | - Jochen H. M. Prehn
- Department of Physiology and Medical Physics, Centre for Systems Medicine, Royal College of Surgeons in Ireland, D02 YN77 Dublin, Ireland; (A.U.L.); (S.C.); (F.L.); (M.M.V.)
- Correspondence: ; Tel.: +353-1-402-2255
| |
Collapse
|
35
|
Balachander SB, Criscione SW, Byth KF, Cidado J, Adam A, Lewis P, Macintyre T, Wen S, Lawson D, Burke K, Lubinski T, Tyner JW, Kurtz SE, McWeeney SK, Varnes J, Diebold RB, Gero T, Ioannidis S, Hennessy EJ, McCoull W, Saeh JC, Tabatabai A, Tavana O, Su N, Schuller A, Garnett MJ, Jaaks P, Coker EA, Gregory GP, Newbold A, Johnstone RW, Gangl E, Wild M, Zinda M, Secrist JP, Davies BR, Fawell SE, Gibbons FD. AZD4320, A Dual Inhibitor of Bcl-2 and Bcl-x L, Induces Tumor Regression in Hematologic Cancer Models without Dose-limiting Thrombocytopenia. Clin Cancer Res 2020; 26:6535-6549. [PMID: 32988967 DOI: 10.1158/1078-0432.ccr-20-0863] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 07/24/2020] [Accepted: 09/22/2020] [Indexed: 11/16/2022]
Abstract
PURPOSE Targeting Bcl-2 family members upregulated in multiple cancers has emerged as an important area of cancer therapeutics. While venetoclax, a Bcl-2-selective inhibitor, has had success in the clinic, another family member, Bcl-xL, has also emerged as an important target and as a mechanism of resistance. Therefore, we developed a dual Bcl-2/Bcl-xL inhibitor that broadens the therapeutic activity while minimizing Bcl-xL-mediated thrombocytopenia. EXPERIMENTAL DESIGN We used structure-based chemistry to design a small-molecule inhibitor of Bcl-2 and Bcl-xL and assessed the activity against in vitro cell lines, patient samples, and in vivo models. We applied pharmacokinetic/pharmacodynamic (PK/PD) modeling to integrate our understanding of on-target activity of the dual inhibitor in tumors and platelets across dose levels and over time. RESULTS We discovered AZD4320, which has nanomolar affinity for Bcl-2 and Bcl-xL, and mechanistically drives cell death through the mitochondrial apoptotic pathway. AZD4320 demonstrates activity in both Bcl-2- and Bcl-xL-dependent hematologic cancer cell lines and enhanced activity in acute myeloid leukemia (AML) patient samples compared with the Bcl-2-selective agent venetoclax. A single intravenous bolus dose of AZD4320 induces tumor regression with transient thrombocytopenia, which recovers in less than a week, suggesting a clinical weekly schedule would enable targeting of Bcl-2/Bcl-xL-dependent tumors without incurring dose-limiting thrombocytopenia. AZD4320 demonstrates monotherapy activity in patient-derived AML and venetoclax-resistant xenograft models. CONCLUSIONS AZD4320 is a potent molecule with manageable thrombocytopenia risk to explore the utility of a dual Bcl-2/Bcl-xL inhibitor across a broad range of tumor types with dysregulation of Bcl-2 prosurvival proteins.
Collapse
Affiliation(s)
| | | | - Kate F Byth
- Bioscience, Oncology R&D, AstraZeneca, Boston, Massachusetts
| | - Justin Cidado
- Bioscience, Oncology R&D, AstraZeneca, Boston, Massachusetts
| | - Ammar Adam
- Bioscience, Oncology R&D, AstraZeneca, Boston, Massachusetts
| | - Paula Lewis
- Bioscience, Oncology R&D, AstraZeneca, Boston, Massachusetts
| | - Terry Macintyre
- Bioscience, Oncology R&D, AstraZeneca, Boston, Massachusetts
| | - Shenghua Wen
- Bioscience, Oncology R&D, AstraZeneca, Boston, Massachusetts
| | - Deborah Lawson
- Bioscience, Oncology R&D, AstraZeneca, Boston, Massachusetts
| | - Kathleen Burke
- Bioscience, Oncology R&D, AstraZeneca, Boston, Massachusetts
| | - Tristan Lubinski
- Translational Science, Oncology R&D, AstraZeneca, Boston, Massachusetts
| | - Jeffrey W Tyner
- Division of Hematology & Medical Oncology, Knight Cancer Institute, Oregon Health and Science University, Ashland, Oregon
| | - Stephen E Kurtz
- Division of Hematology & Medical Oncology, Knight Cancer Institute, Oregon Health and Science University, Ashland, Oregon
| | - Shannon K McWeeney
- Division of Biostatistics, Department of Public Health and Preventive Medicine, Knight Cancer Institute, Oregon Health and Science University, Ashland, Oregon
| | - Jeffrey Varnes
- Chemistry, Oncology R&D, AstraZeneca, Boston, Massachusetts
| | | | - Thomas Gero
- Chemistry, Oncology R&D, AstraZeneca, Boston, Massachusetts
| | | | | | - William McCoull
- Chemistry, Oncology R&D, AstraZeneca, Cambridge, United Kingdom
| | - Jamal C Saeh
- Chemistry, Oncology R&D, AstraZeneca, Boston, Massachusetts
| | - Areya Tabatabai
- Bioscience, Oncology R&D, AstraZeneca, Boston, Massachusetts
| | - Omid Tavana
- Bioscience, Oncology R&D, AstraZeneca, Boston, Massachusetts
| | - Nancy Su
- Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Boston, Massachusetts
| | - Alwin Schuller
- Bioscience, Oncology R&D, AstraZeneca, Boston, Massachusetts
| | | | | | | | - Gareth P Gregory
- School of Clinical Sciences at Monash Health, Monash University, Melbourne, Australia
| | | | | | - Eric Gangl
- DMPK, Oncology R&D, AstraZeneca, Boston, Massachusetts
| | - Martin Wild
- DMPK, Oncology R&D, AstraZeneca, Cambridge, United Kingdom
| | - Michael Zinda
- Bioscience, Oncology R&D, AstraZeneca, Boston, Massachusetts
| | - J Paul Secrist
- Bioscience, Oncology R&D, AstraZeneca, Boston, Massachusetts
| | - Barry R Davies
- Projects, Oncology R&D, AstraZeneca, Cambridge, United Kingdom.
| | | | | |
Collapse
|
36
|
Cryptotanshinone chemosensitivity potentiation by TW-37 in human oral cancer cell lines by targeting STAT3-Mcl-1 signaling. Cancer Cell Int 2020; 20:405. [PMID: 32863764 PMCID: PMC7448991 DOI: 10.1186/s12935-020-01495-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 08/12/2020] [Indexed: 02/07/2023] Open
Abstract
Background Despite being one of the leading cancer types in the world, the diagnosis of oral cancer and its suitable therapeutic options remain limited. This study aims to investigate the single and chemosensitizing effects of TW-37, a BH3 mimetic in oral cancer, on human oral cancer cell lines. Methods We assessed the single and chemosensitizing effects of TW-37 in vitro using trypan blue exclusion assay, Western blotting, DAPI staining, Annexin V–FITC/PI double staining, and quantitative real-time PCR. Mcl-1 overexpression models were established by transforming vector and transient transfection was performed to test for apoptosis Results TW-37 enhanced the cytotoxicity of human oral cancer cell lines by inducing caspase-dependent apoptosis, which correlates with the reduction of the myeloid cell leukemia-1 (Mcl-1) expression via transcriptional and post-translational regulation. The ectopic expression of Mcl-1 partially attenuated the apoptosis-inducing capacity of TW-37 in human oral cancer cell lines. Besides, TW-37 decreased the phosphorylation of signal transducer and activator of transcription 3 (STAT3) at Tyr705 and nuclear translocation in human oral cancer cell lines at the early time points. Furthermore, TW-37 potentiated chemosusceptibility of cryptotanshinone in human oral cancer cell lines by suppressing STAT3–Mcl-1 signaling compared with either TW-37 or cryptotanshinone alone, resulting in potent apoptosis. Conclusions This study not only unravels the single and chemosensitizing effects of TW-37 for treatment of human oral cancer but also highlights the likelihood of TW-37 as a good therapeutic strategy to enhance the prognosis of patients with oral cancer in the future.
Collapse
|
37
|
Abstract
Apoptosis is a form of programmed cell death that is essential for tissue homeostasis. De-regulation of the balance between proliferation and apoptosis contributes to tumor initiation. Particularly in the colon where apoptosis is a crucial process in intestinal turnover, inhibition of apoptosis facilitates transformation and tumor progression. The BCL-2 family of proteins are key regulators of apoptosis and have been implicated in colorectal cancer (CRC) initiation, progression and resistance to therapy. In this review we outline the current knowledge on the BCL-2 family-regulated intrinsic apoptosis pathway and mechanisms by which it is de-regulated in CRC. We further review BH3 mimetics as a therapeutic opportunity to target this pathway and evaluate their potential for CRC treatment.
Collapse
Affiliation(s)
- Prashanthi Ramesh
- Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
- Oncode Institute, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Jan Paul Medema
- Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.
- Oncode Institute, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.
| |
Collapse
|
38
|
Zhang X, He Y, Zhang P, Budamagunta V, Lv D, Thummuri D, Yang Y, Pei J, Yuan Y, Zhou D, Zheng G. Discovery of IAP-recruiting BCL-X L PROTACs as potent degraders across multiple cancer cell lines. Eur J Med Chem 2020; 199:112397. [PMID: 32388279 DOI: 10.1016/j.ejmech.2020.112397] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 04/25/2020] [Accepted: 04/26/2020] [Indexed: 12/21/2022]
Abstract
Targeting BCL-XL via PROTACs is a promising strategy in reducing BCL-XL inhibition associated platelet toxicity. Recently, we reported potent BCL-XL PROTAC degraders that recruit VHL or CRBN E3 ligase. However, low protein expression or mutation of the responsible E3 ligase has been known to result in decreased protein degradation efficiency of the corresponding PROTACs. To overcome these mechanisms of resistance, PROTACs based on recruiting alternative E3 ligases could be generated. Thus, we designed and synthesized a series of PROTACs that recruit IAP E3 ligases for BCL-XL degradation. Among those PROTACs, compound 8a efficiently degrades BCL-XL in malignant T-cell lymphoma cell line MyLa 1929 while CRBN-based PROTACs that have high potency in other cancer cell lines show compromised potency, likely due to the low CRBN expression. Moreover, compared with the parent compound ABT-263, PROTAC 8a shows comparable cell killing effects in MyLa 1929 cells whereas the on-target platelet toxicity is significantly reduced. Our findings expand the anti-tumor spectra of BCL-XL degraders and further highlight the importance of selecting suitable E3 members to achieve effective cellular activity.
Collapse
Affiliation(s)
- Xuan Zhang
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, 1333 Center Drive, Gainesville, FL, 32610, United States
| | - Yonghan He
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, 1333 Center Drive, Gainesville, FL, 32610, United States
| | - Peiyi Zhang
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, 1333 Center Drive, Gainesville, FL, 32610, United States
| | - Vivekananda Budamagunta
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, 1333 Center Drive, Gainesville, FL, 32610, United States
| | - Dongwen Lv
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, 1333 Center Drive, Gainesville, FL, 32610, United States
| | - Dinesh Thummuri
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, 1333 Center Drive, Gainesville, FL, 32610, United States
| | - Yang Yang
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, 1333 Center Drive, Gainesville, FL, 32610, United States
| | - Jing Pei
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, 1333 Center Drive, Gainesville, FL, 32610, United States
| | - Yaxia Yuan
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, 1333 Center Drive, Gainesville, FL, 32610, United States
| | - Daohong Zhou
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, 1333 Center Drive, Gainesville, FL, 32610, United States.
| | - Guangrong Zheng
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, 1333 Center Drive, Gainesville, FL, 32610, United States.
| |
Collapse
|
39
|
Cell Survival Is Regulated via SOX9/BCL2L1 Axis in HCT-116 Colorectal Cancer Cell Line. JOURNAL OF ONCOLOGY 2020; 2020:5701527. [PMID: 32411238 PMCID: PMC7206885 DOI: 10.1155/2020/5701527] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 03/20/2020] [Accepted: 04/10/2020] [Indexed: 12/13/2022]
Abstract
Colorectal cancer (CRC) is one of the most frequent types of malignancies and one of the major causes of cancer-related death worldwide. Sex-determining region Y (SRY)-box 9 protein (SOX9) is a member of the SOX family of transcription factors which are involved in the regulation of differentiation and development. Recently, several reports suggest an important role of SOX9 in tumorigenesis since its overexpression correlates with tumor progression and poor outcome in several types of cancer; however, its role in CRC is not clear until now. Therefore, in this work, we searched for novel SOX9-regulated genes involved in cell survival of CRC. We silenced SOX9 in the poorly differentiated HCT-116 cell line, using a specific siRNA, to identify differential expressed genes by DNA microarrays and analyzed the role or candidate genes in apoptosis and autophagy. Transcriptome analysis showed that diverse cellular pathways, associated with CRC carcinogenesis such as Wnt/β-catenin, MAPK, TGF-β, and mTOR, were modulated after SOX9 silencing. Interestingly, we found that SOX9 silencing promotes downregulation of BCL2L1 and overexpression of CASP3, proteins related to apoptosis, which was further confirmed in SW-480, a moderated-differentiated cell line, but not in HT-29, well-differentiated cell line. Moreover, inhibition of BCL2L1 by ABT-737 (BH3 mimetic) in SOX9-silenced HCT-116 cells resulted in an increased apoptosis percentage. However, downregulation of BCL2L1 was not enough to induce autophagy. This is the first report, suggesting that cell survival in poorly and moderated-differentiated CRC cells lines is regulated by SOX9/BCL2L1 axis, but not in well-differentiated cell lines.
Collapse
|
40
|
Discovery of PROTAC BCL-X L degraders as potent anticancer agents with low on-target platelet toxicity. Eur J Med Chem 2020; 192:112186. [PMID: 32145645 DOI: 10.1016/j.ejmech.2020.112186] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 02/21/2020] [Accepted: 02/23/2020] [Indexed: 12/16/2022]
Abstract
Anti-apoptotic protein BCL-XL plays a key role in tumorigenesis and cancer chemotherapy resistance, rendering it an attractive target for cancer treatment. However, BCL-XL inhibitors such as ABT-263 cannot be safely used in the clinic because platelets solely depend on BCL-XL to maintain their viability. To reduce the on-target platelet toxicity associated with the inhibition of BCL-XL, we designed and synthesized PROTAC BCL-XL degraders that recruit CRBN or VHL E3 ligase because both of these enzymes are poorly expressed in human platelets compared to various cancer cell lines. We confirmed that platelet-toxic BCL-XL/2 dual inhibitor ABT-263 can be converted into platelet-sparing CRBN/VHL-based BCL-XL specific degraders. A number of BCL-XL degraders are more potent in killing cancer cells than their parent compound ABT-263. Specifically, XZ739, a CRBN-dependent BCL-XL degrader, is 20-fold more potent than ABT-263 against MOLT-4 T-ALL cells and has >100-fold selectivity for MOLT-4 cells over human platelets. Our findings further demonstrated the utility of PROTAC technology to achieve tissue selectivity through recruiting differentially expressed E3 ligases.
Collapse
|
41
|
Zhang P, Zhang X, Liu X, Khan S, Zhou D, Zheng G. PROTACs are effective in addressing the platelet toxicity associated with BCL-X L inhibitors. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2020; 1:259-272. [PMID: 34296214 PMCID: PMC8293695 DOI: 10.37349/etat.2020.00017] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
BCL-XL is an anti-apoptotic protein that plays an important role in tumorigenesis, metastasis, and intrinsic or therapy-induced cancer drug resistance. More recently, BCL-XL has also been identified as a key survival factor in senescent cells. Accumulation of senescent cells has been indicated as a causal factor of aging and many age-related diseases and contributes to tumor relapse and metastasis. Thus, inhibition of BCL-XL is an attractive strategy for the treatment of cancer and extension of healthspan. However, development of BCL-XL inhibitors such as navitoclax for clinical use has been challenging because human platelets depend on BCL-XL for survival. In this review, the authors discuss how BCL-XL-targeted proteolysis targeting chimeras (PROTACs) afford a novel approach to mitigate the on-target thrombocytopenia associated with BCL-XL inhibition. The authors summarize the progress in the development of BCL-XL PROTACs. The authors highlight the in vitro and in vivo data supporting that by hijacking the ubiquitin protein ligase (E3) that are poorly expressed in human platelets, BCL-XL PROTACs can significantly improve the therapeutic window compared to conventional BCL-XL inhibitors. These findings demonstrated the potentially broad utility of PROTAC technology to achieve tissue selectivity through recruiting differentially expressed E3 ligases and to reduce on-target toxicity.
Collapse
Affiliation(s)
- Peiyi Zhang
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL 32610, USA
| | - Xuan Zhang
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL 32610, USA
| | - Xingui Liu
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL 32610, USA
| | - Sajid Khan
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL 32610, USA
| | - Daohong Zhou
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL 32610, USA
| | - Guangrong Zheng
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
42
|
Zhang X, Thummuri D, He Y, Liu X, Zhang P, Zhou D, Zheng G. Utilizing PROTAC technology to address the on-target platelet toxicity associated with inhibition of BCL-X L. Chem Commun (Camb) 2019; 55:14765-14768. [PMID: 31754664 PMCID: PMC7057339 DOI: 10.1039/c9cc07217a] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BCL-XL, an anti-apoptotic BCL-2 family protein, plays a key role in cancer cell survival. However, the potential of BCL-XL as an anti-cancer target has been hampered by the on-target platelet toxicity because platelets depend on BCL-XL to maintain their viability. Here we report the development of a PROTAC BCL-XL degrader, XZ424, which has increased selectivity for BCL-XL-dependent MOLT-4 cells over human platelets compared with conventional BCL-XL inhibitors. This proof-of-concept study demonstrates the potential of utilizing a PROTAC approach to achieve tissue selectivity.
Collapse
Affiliation(s)
- Xuan Zhang
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, 1333 Center Drive, Gainesville, FL 32610, USA.
| | | | | | | | | | | | | |
Collapse
|
43
|
Khan S, Zhang X, Lv D, Zhang Q, He Y, Zhang P, Liu X, Thummuri D, Yuan Y, Wiegand JS, Pei J, Zhang W, Sharma A, McCurdy CR, Kuruvilla VM, Baran N, Ferrando AA, Kim YM, Rogojina A, Houghton PJ, Huang G, Hromas R, Konopleva M, Zheng G, Zhou D. A selective BCL-X L PROTAC degrader achieves safe and potent antitumor activity. Nat Med 2019; 25:1938-1947. [PMID: 31792461 PMCID: PMC6898785 DOI: 10.1038/s41591-019-0668-z] [Citation(s) in RCA: 371] [Impact Index Per Article: 61.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 10/28/2019] [Indexed: 12/20/2022]
Abstract
BCL-XL is a well-validated cancer target. However, the on-target and dose-limiting thrombocytopenia limits the use of BCL-XL inhibitors such as ABT263 as safe and effective anticancer agents. To reduce the toxicity of ABT263, we converted it into DT2216, a BCL-XL proteolysis targeting chimera (PROTAC), that targets BCL-XL to the Von Hippel-Lindau (VHL) E3 ligase for degradation. We found that DT2216 was more potent against various BCL-XL-dependent leukemia and cancer cells but significantly less toxic to platelets than ABT263 in vitro because VHL is poorly expressed in platelets. In vivo, DT2216 effectively inhibits the growth of several xenograft tumors as a single agent or in combination with other chemotherapeutic agents, without causing significant thrombocytopenia. These findings demonstrate the potential to use PROTAC technology to reduce on-target drug toxicities and rescue the therapeutic potential of previously undruggable targets. Furthermore, DT2216 may be developed as a safe first-in-class anticancer agent targeting BCL-XL.
Collapse
Affiliation(s)
- Sajid Khan
- Department of Pharmacodynamics, University of Florida, Gainesville, FL, USA
| | - Xuan Zhang
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL, USA
| | - Dongwen Lv
- Department of Pharmacodynamics, University of Florida, Gainesville, FL, USA
| | - Qi Zhang
- Department of Leukemia, University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Yonghan He
- Department of Pharmacodynamics, University of Florida, Gainesville, FL, USA
| | - Peiyi Zhang
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL, USA
| | - Xingui Liu
- Department of Pharmacodynamics, University of Florida, Gainesville, FL, USA
| | - Dinesh Thummuri
- Department of Pharmacodynamics, University of Florida, Gainesville, FL, USA
| | - Yaxia Yuan
- Department of Pharmacodynamics, University of Florida, Gainesville, FL, USA
| | - Janet S Wiegand
- Department of Pharmacodynamics, University of Florida, Gainesville, FL, USA
| | - Jing Pei
- Department of Pharmacodynamics, University of Florida, Gainesville, FL, USA
| | - Weizhou Zhang
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Abhisheak Sharma
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL, USA
| | - Christopher R McCurdy
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL, USA
| | - Vinitha M Kuruvilla
- Department of Leukemia, University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Natalia Baran
- Department of Leukemia, University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Adolfo A Ferrando
- Department of Pediatrics, Pathology, Cell Biology and Systems of Biology and Institute for Cancer Genetics, Columbia University, New York, NY, USA
| | - Yong-Mi Kim
- Department of Pediatrics, Children's Hospital Los Angeles, Los Angeles, CA, USA
| | - Anna Rogojina
- Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Peter J Houghton
- Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Guangcun Huang
- Department of Medicine, the Long School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Robert Hromas
- Department of Medicine, the Long School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Marina Konopleva
- Department of Leukemia, University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Guangrong Zheng
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL, USA.
| | - Daohong Zhou
- Department of Pharmacodynamics, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
44
|
Importance of Hypericin-Bcl2 interactions for biological effects at subcellular levels. Photodiagnosis Photodyn Ther 2019; 28:38-52. [PMID: 31430575 DOI: 10.1016/j.pdpdt.2019.08.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 07/18/2019] [Accepted: 08/12/2019] [Indexed: 02/06/2023]
Abstract
Hypericin (Hyp) is a naturally occurring compound used as photosensitizer in photodynamic therapy and diagnosis. Recently, we have shown that Hyp presence alone, without illumination, resulted in substantial biological effects at several sub-cellular levels. Hyp induced changes in cellular ultrastructure, mitochondria function and metabolism, and distribution of Bcl2 proteins in malignant and non-malignant cells. The molecular mechanisms that underlie Hyp light-independent effects are still elusive. We have hypothesized that Bcl2-Hyp interactions might be one possible mechanism. We performed molecular docking studies to determine the Hyp-Bcl2 interaction profile. Based on the interaction profiles small Bcl2 peptide segments were selected for further study. We designed small peptides corresponding to Bcl2 BH3 and BH1 domains and tested the binding of Hyp and Bcl2 known inhibitor, ABT263, to the peptides in computer modeling and in vitro binding studies. We employed endogenous tryptophan and tyrosine in the BH3 and BH1 peptides, respectively, and their fluorescent properties to show interaction with Hyp and ABT263. Overall, our results indicate that Hyp can interact with Bcl2 protein at its BH3-BH1 hydrophobic groove, and this interaction may trigger changes in intracellular distribution of Bcl2 proteins. In addition, our computer modeling results suggest that Hyp also interacts with other anti-apoptotic members of Bcl2 family similar to the known BH3 mimetics. Our findings are novel and might contribute to understanding Hyp light-independent effects. In addition, they may substantiate the therapeutic use of Hyp as a BH3 mimetic molecule to enhance other cancer treatments.
Collapse
|
45
|
Yalniz FF, Wierda WG. Targeting BCL2 in Chronic Lymphocytic Leukemia and Other Hematologic Malignancies. Drugs 2019; 79:1287-1304. [PMID: 31313099 DOI: 10.1007/s40265-019-01163-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Apoptosis, the process of programmed cell death, occurs normally during development and aging. Members of the B-cell lymphoma 2 (BCL2) family of proteins are central regulators of apoptosis, and resistance to apoptosis is one of the hallmarks of cancer. Targeting the apoptotic pathway via BCL2 inhibitors has been considered a promising treatment strategy in the past decade. Initial efforts with small molecule BH3 mimetics such as ABT-737 and ABT-263 (navitoclax) pioneered the development of the first-in-class Food and Drug Administration (FDA)-approved oral BCL2 inhibitor, venetoclax. Venetoclax was approved for the treatment of chronic lymphocytic leukemia and acute myeloid leukemia, and is now being studied in a number of hematologic malignancies. Several other inhibitors targeting different BCL2 family members are now in early stages of development.
Collapse
Affiliation(s)
- Fevzi F Yalniz
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Unit 428, Houston, TX, 77030, USA
| | - William G Wierda
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Unit 428, Houston, TX, 77030, USA.
| |
Collapse
|
46
|
The chemical biology of apoptosis: Revisited after 17 years. Eur J Med Chem 2019; 177:63-75. [PMID: 31129454 DOI: 10.1016/j.ejmech.2019.05.019] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 04/30/2019] [Accepted: 05/06/2019] [Indexed: 12/13/2022]
Abstract
A balance of Bcl-2 family proteins dictates cell survival or death, as the interactions between these proteins regulate mitochondrial apoptotic signaling pathways. However, cancer cells frequently show upregulation of pro-survival Bcl-2 proteins and sequester activated pro-apoptotic BH3-only proteins driven by diverse cytotoxic stresses, resulting in tumor progression and chemoresistance. Synthetic molecules from either structure-based design or screening procedures to engage and inactivate pro-survival Bcl-2 proteins and restore apoptotic process represent a chemical biological means of selectively killing malignant cells. 17 years ago, one of us reviewed on the discovery of novel Bcl-2 targeted agents [1]. Here we revisit this area and examine the progress and current status of small molecule Bcl-2 inhibitor development, demonstrating the Bcl-2 family as a valid target for cancer therapy and providing successful examples for the discovery of inhibitors that target protein-protein interactions.
Collapse
|
47
|
Heme Oxygenase-1 is a Key Molecule Underlying Differential Response of TW-37-Induced Apoptosis in Human Mucoepidermoid Carcinoma Cells. Molecules 2019; 24:molecules24091700. [PMID: 31052354 PMCID: PMC6539960 DOI: 10.3390/molecules24091700] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 04/22/2019] [Accepted: 04/27/2019] [Indexed: 12/25/2022] Open
Abstract
TW-37 is a small-molecule inhibitor of Bcl-2 family proteins, which can induce anti-cancer activities in various types of cancer. In the current study, we investigated the potential molecular mechanism underlying the differential response to TW-37-induced apoptosis in two human mucoepidermoid carcinoma (MEC) cell lines. The differential response and underlying molecular mechanism of human MEC cells to TW-37 was evaluated by trypan blue exclusion assay, western blotting, 4’, 6-diamidino-2-phenylindole staining, annexin V/propidium iodide double staining, analysis of the sub-G1 population, human apoptosis array, and measurements of intracellular reactive oxygen species (ROS). TW-37 decreased cell viability and induced apoptosis in YD-15 cells, but not in MC3 cells. Proteome profiling using a human apoptosis array revealed four candidate proteins and of these, heme oxygenase-1 (HO-1) was mainly related to the differential response to TW-37 of YD-15 and MC3 cells. TW-37 also led to a significant increase in intracellular levels of ROS in YD-15 cells, which is associated with apoptosis induction. The ectopic expression of HO-1 recovered YD-15 cells from TW-37-induced apoptosis by reducing intracellular levels of ROS. The expression of HO-1 was reduced through both transcriptional and post-translational modification during TW-37-mediated apoptosis. We conclude that HO-1 is a potential indicator to estimate response to TW37-induced apoptosis in human MEC.
Collapse
|
48
|
Osterlund EJ, Hirmiz N, Tardif C, Andrews DW. Rapid Imaging of BCL-2 Family Interactions in Live Cells Using FLIM-FRET. Methods Mol Biol 2019; 1877:305-335. [PMID: 30536013 DOI: 10.1007/978-1-4939-8861-7_19] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The Bcl-2 proteins control cell death via interchanging interactions within the Bcl-2 family. Fluorescence lifetime imaging microscopy (FLIM) is used to detect Förster resonance energy transfer (FRET) between two fluorescent-fusion proteins in live cells. FLIM-FRET has been used to detect specific interactions and their disruption, for Bcl-2 family proteins. To date, this has been possible only in low throughput, due to the time required for serial data acquisition. We developed an automated optical system with eight parallel detectors for rapid and efficient data collection. Here we describe how to use this system for FLIM-FRET imaging of Bcl-2 family protein interactions in a 384-well plate format.
Collapse
Affiliation(s)
- Elizabeth J Osterlund
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada.,Sunnybrook Research Institute, Toronto, ON, Canada
| | - Nehad Hirmiz
- Sunnybrook Research Institute, Toronto, ON, Canada.,School of Biomedical Engineering, McMaster University, Hamilton, ON, Canada
| | | | - David W Andrews
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada. .,Sunnybrook Research Institute, Toronto, ON, Canada.
| |
Collapse
|
49
|
Discovery of a small-molecule inhibitor of specific serine residue BAD phosphorylation. Proc Natl Acad Sci U S A 2018; 115:E10505-E10514. [PMID: 30309962 DOI: 10.1073/pnas.1804897115] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Human BCL-2-associated death promoter (hBAD) is an apoptosis-regulatory protein mediating survival signals to carcinoma cells upon phosphorylation of Ser99, among other residues. Herein, we screened multiple small-molecule databases queried in a Laplacian-modified naive Bayesian-based cheminformatics platform and identified a Petasis reaction product as a site-specific inhibitor for hBAD phosphorylation. Based on apoptotic efficacy against mammary carcinoma cells, N-cyclopentyl-3-((4-(2,3-dichlorophenyl) piperazin-1-yl) (2-hydroxyphenyl) methyl) benzamide (NPB) was identified as a potential lead compound. In vitro biochemical analyses demonstrated that NPB inhibited the phosphorylation of hBAD specifically on Ser99. NPB was observed to exert this effect independently of AKT and other kinase activities despite the demonstration of AKT-mediated BAD-Ser99 phosphorylation. Using a structure-based bioinformatics platform, we observed that NPB exhibited predicted interactions with hBAD in silico and verified the same by direct binding kinetics. NPB reduced phosphorylation of BAD-Ser99 and enhanced caspase 3/7 activity with associated loss of cell viability in various human cancer cell lines derived from mammary, endometrial, ovarian, hepatocellular, colon, prostatic, and pancreatic carcinoma. Furthermore, by use of a xenograft model, it was observed that NPB, as a single agent, markedly diminished BAD phosphorylation in tumor tissue and significantly inhibited tumor growth. Similar doses of NPB utilized in acute toxicity studies in mice did not exhibit significant effects. Hence, we report a site-specific inhibitor of BAD phosphorylation with efficacy in tumor models.
Collapse
|
50
|
Wang Y, Wang Y, Fan X, Song J, Wu H, Han J, Lu L, Weng X, Nie G. ABT-199-mediated inhibition of Bcl-2 as a potential therapeutic strategy for nasopharyngeal carcinoma. Biochem Biophys Res Commun 2018; 503:1214-1220. [PMID: 30017199 DOI: 10.1016/j.bbrc.2018.07.027] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 07/06/2018] [Indexed: 12/12/2022]
Abstract
BACKGROUND Aberrant overexpression of Bcl-2 protein has been detected in 80% of nasopharyngeal carcinoma (NPC), and Bcl-2 family proteins are implicated in both NPC oncogenesis and chemotherapy resistance. Previous studies have shown that while treatment of NPC cells with Bcl-2 family inhibitors alone is rarely effective, concomitant treatment with a cytotoxic reagent such as cisplatin can increase efficacy through a synergistic effect. The aim of the current work was to determine how we might increase the efficacy of Bcl-2 family inhibitors in the absence of cytotoxic reagents, which are associated with negative side effect profiles. METHODS We assessed cell proliferation in Bcl-2 high-expressing NPC cells by CCK-8 assay after treatment with the Bcl-2 inhibitor ABT-199 and/or the Mcl-1 inhibitor S63845. Apoptotic induction by ABT-199 was evaluated by Annexin V-FITC and PI double staining. We also evaluated Bcl-2 family protein expression (Bim, Mcl-1, Bcl-xL, Noxa) after treatment with ABT-199 by western blotting. Finally, xenografted Balb/c nude mice were used to test ABT-199 efficacy in vivo, H&E and immunohistochemistry assay were used to analyze tumor samples. RESULTS ABT-199 effectively induced NPC cell apoptosis in vitro and in the xenograft model. Following ABT-199 treatment in NPC cells, upregulation of Mcl-1 and Bcl-xL can lead to drug resistance, while concomitant Noxa overexpression partially neutralized the Mcl-1-caused resistance. Given that ABT-199 induces apoptosis in NPC cells through the Bcl-2/Noxa/Mcl-1 axis, treatment avenues further targeting this pathway should be promising. Indeed, the newly developed Mcl-1 inhibitor S63845 in combination with ABT-199 had a synergistic effect on NPC cell apoptosis. CONCLUSION Bcl-2 inhibition in NPC cells with ABT-199 triggers apoptosis through the Bcl-2/Noxa/Mcl-1 axis, and dual inhibition of the anti-apoptotic Bcl-2 family proteins Bcl-2 and Mcl-1 provided a strong synergistic effect without the need for adjunctive cytotoxic agent treatment with cisplatin.
Collapse
Affiliation(s)
- Yujie Wang
- Department of Otolaryngology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen, 518035, PR China; Institute of Translational Medicine, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen, 518035, PR China
| | - Yuyang Wang
- Department of Otolaryngology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen, 518035, PR China
| | - Xiaoqin Fan
- Department of Otolaryngology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen, 518035, PR China; Institute of Translational Medicine, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen, 518035, PR China
| | - Jian Song
- Department of Otolaryngology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen, 518035, PR China; Institute of Translational Medicine, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen, 518035, PR China
| | - Hanwei Wu
- Department of Otolaryngology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen, 518035, PR China
| | - Jinghong Han
- Department of Otolaryngology, Peking University Shenzhen Hospital, Shenzhen, 518036, PR China
| | - Lu Lu
- Department of Otolaryngology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen, 518035, PR China
| | - Xin Weng
- Department of Pathology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen, 518035, PR China
| | - Guohui Nie
- Department of Otolaryngology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen, 518035, PR China; Institute of Translational Medicine, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen, 518035, PR China.
| |
Collapse
|