1
|
An assessment of the existence of adult neurogenesis in humans and value of its rodent models for neuropsychiatric diseases. Mol Psychiatry 2022; 27:377-382. [PMID: 34667259 PMCID: PMC8967762 DOI: 10.1038/s41380-021-01314-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 09/08/2021] [Accepted: 09/22/2021] [Indexed: 12/14/2022]
Abstract
In sub-mammalian vertebrates like fishes, amphibians, and reptiles, new neurons are produced during the entire lifespan. This capacity diminishes considerably in birds and even more in mammals where it persists only in the olfactory system and hippocampal dentate gyrus. Adult neurogenesis declines even more drastically in nonhuman primates and recent evidence shows that this is basically extinct in humans. Why should such seemingly useful capacity diminish during primate evolution? It has been proposed that this occurs because of the need to retain acquired complex knowledge in stable populations of neurons and their synaptic connections during many decades of human life. In this review, we will assess critically the claim of significant adult neurogenesis in humans and show how current evidence strongly indicates that humans lack this trait. In addition, we will discuss the allegation of many rodent studies that adult neurogenesis is involved in psychiatric diseases and that it is a potential mechanism for human neuron replacement and regeneration. We argue that these reports, which usually neglect significant structural and functional species-specific differences, mislead the general population into believing that there might be a cure for a variety of neuropsychiatric diseases as well as stroke and brain trauma by genesis of new neurons and their incorporation into existing synaptic circuitry.
Collapse
|
2
|
Gault N, Szele FG. Immunohistochemical evidence for adult human neurogenesis in health and disease. WIREs Mech Dis 2021; 13:e1526. [PMID: 34730290 DOI: 10.1002/wsbm.1526] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 02/03/2021] [Accepted: 02/04/2021] [Indexed: 01/19/2023]
Abstract
Postnatal and adult neurogenesis in the subventricular zone and subgranular zone of animals such as rodents and non-human primates has been observed with many different technical approaches. Since most techniques used in animals cannot be used in humans, the majority of human neurogenesis studies rely on postmortem immunohistochemistry. This technique is difficult in human tissue, due to poor and variable preservation of antigens and samples. Nevertheless, a survey of the literature reveals that most published studies provide evidence for childhood and adult neurogenesis in the human brain stem cell niches. There are some conflicting results even when assessing the same markers and when using the same antibodies. Focusing on immunohistochemical studies on post-mortem human sections, we discuss the relative robustness of the literature on adult neurogenesis. We also discuss the response of the subventricular and subgranular zones to human disease, showing that the two niches can respond differently and that the stage of disease impacts neurogenesis levels. Thus, we highlight strong evidence for adult human neurogenesis, discuss other work that did not find it, describe obstacles in analysis, and offer other approaches to evaluate the neurogenic potential of the subventricular and subgranular zones of Homo sapiens. This article is categorized under: Neurological Diseases > Stem Cells and Development Reproductive System Diseases > Stem Cells and Development.
Collapse
Affiliation(s)
| | - Francis G Szele
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford, UK
| |
Collapse
|
3
|
Mendez-David I, Schofield R, Tritschler L, Colle R, Guilloux JP, Gardier AM, Corruble E, Hen R, David DJ. Reviving through human hippocampal newborn neurons. Encephale 2021; 48:179-187. [PMID: 34649711 DOI: 10.1016/j.encep.2021.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 09/02/2021] [Accepted: 09/13/2021] [Indexed: 11/17/2022]
Abstract
Recent contradictory data has renewed discussion regarding the existence of adult hippocampal neurogenesis (AHN) in humans, i.e., the continued production of new neurons in the brain after birth. The present review revisits the debate of AHN in humans from a historical point of view in the face of contradictory evidence, analyzing the methods employed to investigate this phenomenon. Thus, to date, of the 57 studies performed in humans that we reviewed, 84% (48) concluded in favor of the presence of newborn neurons in the human adult hippocampus. Besides quality of the tissue (such as postmortem intervals below 26hours as well as tissue conservation and fixation), considerations for assessing and quantify AHN in the human brain require the use of stereology and toxicological analyses of clinical data of the patient.
Collapse
Affiliation(s)
- I Mendez-David
- CESP, MOODS Team, Inserm, faculté de pharmacie, université Paris-Saclay, 92296 Châtenay-Malabry, France
| | - R Schofield
- CESP, MOODS Team, Inserm, faculté de pharmacie, université Paris-Saclay, 92296 Châtenay-Malabry, France
| | - L Tritschler
- CESP, MOODS Team, Inserm, faculté de pharmacie, université Paris-Saclay, 92296 Châtenay-Malabry, France
| | - R Colle
- CESP, MOODS Team, Inserm, faculté de médecine, université Paris-Saclay, 94275 Le Kremlin-Bicêtre, France; Service hospitalo-universitaire de psychiatrie de Bicêtre, hôpital de Bicêtre, hôpitaux universitaires Paris-Saclay, Assistance publique-Hôpitaux de Paris, 94275 Le Kremlin-Bicêtre, France
| | - J-P Guilloux
- CESP, MOODS Team, Inserm, faculté de pharmacie, université Paris-Saclay, 92296 Châtenay-Malabry, France
| | - A M Gardier
- CESP, MOODS Team, Inserm, faculté de pharmacie, université Paris-Saclay, 92296 Châtenay-Malabry, France
| | - E Corruble
- CESP, MOODS Team, Inserm, faculté de médecine, université Paris-Saclay, 94275 Le Kremlin-Bicêtre, France; Service hospitalo-universitaire de psychiatrie de Bicêtre, hôpital de Bicêtre, hôpitaux universitaires Paris-Saclay, Assistance publique-Hôpitaux de Paris, 94275 Le Kremlin-Bicêtre, France
| | - R Hen
- Department of Psychiatry, Columbia University, New York, NY 10032, USA; Division of Systems Neuroscience, Research Foundation for Mental Hygiene, Inc (RFMH)/New York State Psychiatric Institute (NYSPI), New York, NY 10032, USA; Department of Neuroscience, Columbia University, New York, NY 10032, USA
| | - D J David
- CESP, MOODS Team, Inserm, faculté de pharmacie, université Paris-Saclay, 92296 Châtenay-Malabry, France.
| |
Collapse
|
4
|
Bassett B, Subramaniyam S, Fan Y, Varney S, Pan H, Carneiro AMD, Chung CY. Minocycline alleviates depression-like symptoms by rescuing decrease in neurogenesis in dorsal hippocampus via blocking microglia activation/phagocytosis. Brain Behav Immun 2021; 91:519-530. [PMID: 33176182 DOI: 10.1016/j.bbi.2020.11.009] [Citation(s) in RCA: 108] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 10/12/2020] [Accepted: 11/05/2020] [Indexed: 12/13/2022] Open
Abstract
Clinical studies examining the potential of anti-inflammatory agents, specifically of minocycline, as a treatment for depression has shown promising results. However, mechanistic insights into the neuroprotective and anti-inflammatory actions of minocycline need to be provided. We evaluated the effect of minocycline on chronic mild stress (CMS) induced depressive-like behavior, and behavioral assays revealed minocycline ameliorate depressive behaviors. Multiple studies suggest a role of microglia in depression, revealing that microglia activation correlates with a decrease in neurogenesis and increased depressive-like behavior. The effect of minocycline on microglia activation in different areas of the dorsal or ventral hippocampus in stressed mice was examined by immunohistochemistry. We observed the increase in the number of activated microglia expressing CD68 after exposure to three weeks of chronic stress, whereas no changes in total microglia number were observed. These changes were observed throughout the DG, CA1 and CA2 regions in dorsal hippocampus but restricted to the DG of the ventral hippocampus. In vitro experiments including western blotting and phagocytosis assay were used to investigate the effect of minocycline on microglia activation. Activation of primary microglia by LPS in vitro causes and ERK1/2 activation, enhancement of iNOS expression and phagocytic activity, and alterations in cellular morphology that are reversed by minocycline exposure, suggesting that minocycline directly acts on microglia to reduce phagocytic potential. Our results suggest the most probable mechanism by which minocycline reverses the pathogenic phagocytic potential of neurotoxic M1 microglia, and reduces the negative phenotypes associated with reduced neurogenesis caused by exposure to chronic stress.
Collapse
Affiliation(s)
- Ben Bassett
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA
| | - Selvaraj Subramaniyam
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Yang Fan
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Seth Varney
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA
| | - Hope Pan
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA
| | - Ana M D Carneiro
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA
| | - Chang Y Chung
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA; School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China; Division of Natural Science, Duke Kunshan University, Kunshan 215316, China.
| |
Collapse
|
5
|
Selective Upregulation by Theanine of Slc38a1 Expression in Neural Stem Cell for Brain Wellness. Molecules 2020; 25:molecules25020347. [PMID: 31952134 PMCID: PMC7024158 DOI: 10.3390/molecules25020347] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 01/09/2020] [Accepted: 01/15/2020] [Indexed: 12/22/2022] Open
Abstract
Theanine is an amino acid abundant in green tea with an amide moiety analogous to glutamine (GLN) rather than glutamic acid (Glu) and GABA, which are both well-known as amino acid neurotransmitters in the brain. Theanine has no polyphenol and flavonoid structures required for an anti-oxidative property as seen with catechins and tannins, which are more enriched in green tea. We have shown marked inhibition by this exogenous amino acid theanine of the uptake of [3H]GLN, but not of [3H]Glu, in rat brain synaptosomes. Beside a ubiquitous role as an endogenous amino acid, GLN has been believed to be a main precursor for the neurotransmitter Glu sequestered in a neurotransmitter pool at glutamatergic neurons in the brain. The GLN transporter solute carrier 38a1 (Slc38a1) plays a crucial role in the incorporation of extracellular GLN for the intracellular conversion to Glu by glutaminase and subsequent sequestration at synaptic vesicles in neurons. However, Slc38a1 is also expressed by undifferentiated neural progenitor cells (NPCs) not featuring a neuronal phenotype. NPCs are derived from a primitive stem cell endowed to proliferate for self-renewal and to commit differentiation to several daughter cell lineages such as neurons, astrocytes, and oligodendrocytes. In vitro culture with theanine leads to the marked promotion of the generation of new neurons together with selective upregulation of Slc38a1 transcript expression in NPCs. In this review, we will refer to a possible novel neurogenic role of theanine for brain wellness through a molecular mechanism relevant to facilitated neurogenesis with a focus on Slc38a1 expressed by undifferentiated NPCs on the basis of our accumulating findings to date.
Collapse
|
6
|
Untangling human neurogenesis to understand and counteract brain disorders. Curr Opin Pharmacol 2019; 50:67-73. [PMID: 31901615 DOI: 10.1016/j.coph.2019.12.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 12/06/2019] [Accepted: 12/10/2019] [Indexed: 11/22/2022]
Abstract
Neurogenesis in the human postnatal brain occurs in two regions, the subventricular zone of the later ventricle and the dentate gyrus of the hippocampus. While it is well accepted that SVZ and hippocampal neurogenesis are active during juvenile stages in human, their contribution during adulthood and ageing as well as pathological states is recently animating the neural stem cell research field. In this review we will discuss recent evidence about the organization of SVZ and hippocampal neurogenic niches, and will report on how human adult neurogenesis may contribute to disease and appears to respond to neurodegeneration. In light of these novel findings, we will discuss how we can target human adult neurogenesis in order to influence brain disease trajectories.
Collapse
|
7
|
Trudler D, Levy‐Barazany H, Nash Y, Samuel L, Sharon R, Frenkel D. Alpha synuclein deficiency increases CD4
+
T‐cells pro‐inflammatory profile in a Nurr1‐dependent manner. J Neurochem 2019; 152:61-71. [DOI: 10.1111/jnc.14871] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 09/05/2019] [Accepted: 09/10/2019] [Indexed: 01/25/2023]
Affiliation(s)
- Dorit Trudler
- Department of Neurobiology George S. Wise Faculty of Life Sciences Tel Aviv University Tel Aviv Israel
- Sagol School of Neuroscience Tel Aviv University Tel Aviv Israel
| | - Hilit Levy‐Barazany
- Department of Neurobiology George S. Wise Faculty of Life Sciences Tel Aviv University Tel Aviv Israel
| | - Yuval Nash
- Department of Neurobiology George S. Wise Faculty of Life Sciences Tel Aviv University Tel Aviv Israel
- Sagol School of Neuroscience Tel Aviv University Tel Aviv Israel
| | - Liron Samuel
- Department of Neurobiology George S. Wise Faculty of Life Sciences Tel Aviv University Tel Aviv Israel
| | - Ronit Sharon
- Faculty of Medicine Biochemistry and Molecular Biology IMRIC The Hebrew University Jerusalem Jerusalem Israel
| | - Dan Frenkel
- Department of Neurobiology George S. Wise Faculty of Life Sciences Tel Aviv University Tel Aviv Israel
- Sagol School of Neuroscience Tel Aviv University Tel Aviv Israel
| |
Collapse
|
8
|
A balanced evaluation of the evidence for adult neurogenesis in humans: implication for neuropsychiatric disorders. Brain Struct Funct 2019; 224:2281-2295. [PMID: 31278571 DOI: 10.1007/s00429-019-01917-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Accepted: 06/25/2019] [Indexed: 12/17/2022]
Abstract
There is a widespread belief that neurogenesis exists in adult human brain, especially in the dentate gyrus, and it is to be maintained and, if possible, augmented with different stimuli including exercise and certain drugs. Here, we examine the evidence for adult human neurogenesis and note important limitations of the methodologies used to study it. A balanced review of the literature and evaluation of the data indicate that adult neurogenesis in human brain is improbable. In fact, in several high-quality recent studies in adult human brain, unlike in adult brains of other species, neurogenesis was not detectable. These findings suggest that the human brain requires a permanent set of neurons to maintain acquired knowledge for decades, which is essential for complex high cognitive functions unique to humans. Thus, stimulation and/or injection of neural stem cells into human brains may not only disrupt brain homeostatic systems, but also disturb normal neuronal circuits. We propose that the focus of research should be the preservation of brain neurons by prevention of damage, not replacement.
Collapse
|
9
|
Pang CCC, Kiecker C, O'Brien JT, Noble W, Chang RCC. Ammon's Horn 2 (CA2) of the Hippocampus: A Long-Known Region with a New Potential Role in Neurodegeneration. Neuroscientist 2018; 25:167-180. [PMID: 29865938 DOI: 10.1177/1073858418778747] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The hippocampus has a critical role in cognition and human memory and is one of the most studied structures in the brain. Despite more than 400 years of research, little is known about the Ammon's horn region cornu ammonis 2 (CA2) subfield in comparison to other subfield regions (CA1, CA3, and CA4). Recent findings have shown that CA2 plays a bigger role than previously thought. Here, we review understanding of hippocampus and CA2 ontogenesis, together with basic and clinical findings about the potential role of this region in neurodegenerative disease. The CA2 has widespread anatomical connectivity, unique signaling molecules, and intrinsic electrophysiological properties. Experimental studies using in vivo models found that the CA2 region has a role in cognition, especially in social memory and object recognition. In models of epilepsy and hypoxia, the CA2 exhibits higher resilience to cell death and hypoxia in comparison with neighboring regions, and while hippocampal atrophy remains poorly understood in Parkinson's disease (PD) and dementia with Lewy bodies (DLB), findings from postmortem PD brain demonstrates clear accumulation of α-synuclein pathology in CA2, and the CA2-CA3 region shows relatively more atrophy compared with other hippocampal subfields. Taken together, there is a growing body of evidence suggesting that the CA2 can be an ideal hallmark with which to differentiate different neurodegenerative stages of PD. Here, we summarize these recent data and provide new perspectives/ideas for future investigations to unravel the contribution of the CA2 to neurodegenerative diseases.
Collapse
Affiliation(s)
- Cindy Chi-Ching Pang
- 1 Laboratory of Neurodegenerative Diseases, School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China.,2 Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Clemens Kiecker
- 3 Department of Developmental Neurobiology, King's College London, London, UK
| | - John T O'Brien
- 4 Department of Psychiatry, University of Cambridge School of Clinical Medicine, Cambridge, UK
| | - Wendy Noble
- 2 Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Raymond Chuen-Chung Chang
- 1 Laboratory of Neurodegenerative Diseases, School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China.,5 State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| |
Collapse
|
10
|
Hain EG, Sparenberg M, Rasińska J, Klein C, Akyüz L, Steiner B. Indomethacin promotes survival of new neurons in the adult murine hippocampus accompanied by anti-inflammatory effects following MPTP-induced dopamine depletion. J Neuroinflammation 2018; 15:162. [PMID: 29803225 PMCID: PMC5970532 DOI: 10.1186/s12974-018-1179-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Accepted: 04/25/2018] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Parkinson's disease (PD) is characterized by dopaminergic cell loss and inflammation in the substantia nigra (SN) leading to motor deficits but also to hippocampus-associated non-motor symptoms such as spatial learning and memory deficits. The cognitive decline is correlated with impaired adult hippocampal neurogenesis resulting from dopamine deficit and inflammation, represented in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine hydrochloride (MPTP) mouse model of PD. In the inflammatory tissue, cyclooxygenase (COX) is upregulated leading to an ongoing inflammatory process such as prostaglandin-mediated increased cytokine levels. Therefore, inhibition of COX by indomethacin may prevent the inflammatory response and the impairment of adult hippocampal neurogenesis. METHODS Wildtype C57Bl/6 and transgenic Nestin-GFP mice were treated with MPTP followed by short-term or long-term indomethacin treatment. Then, aspects of inflammation and neurogenesis were evaluated by cell counts using immunofluorescence and immunohistochemical stainings in the SN and dentate gyrus (DG). Furthermore, hippocampal mRNA expression of neurogenesis-related genes of the Notch, Wnt, and sonic hedgehog signaling pathways and neurogenic factors were assessed, and protein levels of serum cytokines were measured. RESULTS Indomethacin restored the reduction of the survival rate of new mature neurons and reduced the amount of amoeboid CD68+ cells in the DG after MPTP treatment. Indomethacin downregulated genes of the Wnt and Notch signaling pathways and increased neuroD6 expression. In the SN, indomethacin reduced the pro-inflammatory cellular response without reversing dopaminergic cell loss. CONCLUSION Indomethacin has a pro-neurogenic and thereby restorative effect and an anti-inflammatory effect on the cellular level in the DG following MPTP treatment. Therefore, COX inhibitors such as indomethacin may represent a therapeutic option to restore adult neurogenesis in PD.
Collapse
Affiliation(s)
- Elisabeth G Hain
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt - Universität zu Berlin and Berlin Institute of Health, Department of Neurology with Experimental Neurology, Charitéplatz 1, 10117, Berlin, Germany.
| | - Maria Sparenberg
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt - Universität zu Berlin and Berlin Institute of Health, Department of Neurology with Experimental Neurology, Charitéplatz 1, 10117, Berlin, Germany
| | - Justyna Rasińska
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt - Universität zu Berlin and Berlin Institute of Health, Department of Neurology with Experimental Neurology, Charitéplatz 1, 10117, Berlin, Germany
| | - Charlotte Klein
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt - Universität zu Berlin and Berlin Institute of Health, Department of Neurology with Experimental Neurology, Charitéplatz 1, 10117, Berlin, Germany
| | - Levent Akyüz
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt - Universität zu Berlin, and Berlin Institute of Health, Institute for Medical Immunology, Augustenburger Platz 1, 13353, Berlin, Germany.,Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt - Universität zu Berlin, and Berlin Institute of Health, Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Augustenburger Platz 1, 13353, Berlin, Germany
| | - Barbara Steiner
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt - Universität zu Berlin and Berlin Institute of Health, Department of Neurology with Experimental Neurology, Charitéplatz 1, 10117, Berlin, Germany
| |
Collapse
|
11
|
Bonato JM, Bassani TB, Milani H, Vital MABF, de Oliveira RMW. Pioglitazone reduces mortality, prevents depressive-like behavior, and impacts hippocampal neurogenesis in the 6-OHDA model of Parkinson's disease in rats. Exp Neurol 2018; 300:188-200. [DOI: 10.1016/j.expneurol.2017.11.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 10/23/2017] [Accepted: 11/15/2017] [Indexed: 12/20/2022]
|
12
|
Abstract
Microglia are brain-resident myeloid cells that mediate key functions to support the CNS. Microglia express a wide range of receptors that act as molecular sensors, which recognize exogenous or endogenous CNS insults and initiate an immune response. In addition to their classical immune cell function, microglia act as guardians of the brain by promoting phagocytic clearance and providing trophic support to ensure tissue repair and maintain cerebral homeostasis. Conditions associated with loss of homeostasis or tissue changes induce several dynamic microglial processes, including changes of cellular morphology, surface phenotype, secretory mediators, and proliferative responses (referred to as an "activated state"). Activated microglia represent a common pathological feature of several neurodegenerative diseases, including Alzheimer's disease (AD). Cumulative evidence suggests that microglial inflammatory activity in AD is increased while microglial-mediated clearance mechanisms are compromised. Microglia are perpetually engaged in a mutual interaction with the surrounding environment in CNS; thus, diverse microglial reactions at different disease stages may open new avenues for therapeutic intervention and modification of inflammatory activities. In this Review, the role of microglia in the pathogenesis of AD and the modulation of microglia activity as a therapeutic modality will be discussed.
Collapse
Affiliation(s)
- Heela Sarlus
- Department of Neurodegenerative Diseases and Gerontopsychiatry, University of Bonn, Bonn, Germany.,Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Bonn, Germany
| | - Michael T Heneka
- Department of Neurodegenerative Diseases and Gerontopsychiatry, University of Bonn, Bonn, Germany.,Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Bonn, Germany.,Department of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| |
Collapse
|
13
|
Distinct Pattern of Microgliosis in the Olfactory Bulb of Neurodegenerative Proteinopathies. Neural Plast 2017; 2017:3851262. [PMID: 28409032 PMCID: PMC5376461 DOI: 10.1155/2017/3851262] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 11/24/2016] [Accepted: 12/28/2016] [Indexed: 12/25/2022] Open
Abstract
The olfactory bulb (OB) shows early neuropathological hallmarks in numerous neurodegenerative diseases, for example, in Alzheimer's disease (AD) and Parkinson's disease (PD). The glomerular and granular cell layer of the OB is characterized by preserved cellular plasticity in the adult brain. In turn, alterations of this cellular plasticity are related to neuroinflammation such as microglia activation, implicated in the pathogenesis of AD and PD, as well as frontotemporal lobe degeneration (FTLD). To determine microglia proliferation and activation we analyzed ionized calcium binding adaptor molecule 1 (Iba1) expressing microglia in the glomerular and granular cell layer, and the olfactory tract of the OB from patients with AD, PD dementia/dementia with Lewy bodies (PDD/DLB), and FTLD compared to age-matched controls. The number of Iba1 and CD68 positive microglia associated with enlarged amoeboid microglia was increased particularly in AD, to a lesser extent in FTLD and PDD/DLB as well, while the proportion of proliferating microglia was not altered. In addition, cells expressing the immature neuronal marker polysialylated neural cell adhesion molecule (PSA-NCAM) were increased in the glomerular layer of PDD/DLB and FTLD cases only. These findings provide novel and detailed insights into differential levels of microglia activation in the OB of neurodegenerative diseases.
Collapse
|
14
|
Dennis CV, Suh LS, Rodriguez ML, Kril JJ, Sutherland GT. Human adult neurogenesis across the ages: An immunohistochemical study. Neuropathol Appl Neurobiol 2016; 42:621-638. [PMID: 27424496 PMCID: PMC5125837 DOI: 10.1111/nan.12337] [Citation(s) in RCA: 185] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 07/08/2016] [Indexed: 12/12/2022]
Abstract
AIMS Neurogenesis in the postnatal human brain occurs in two neurogenic niches; the subventricular zone (SVZ) in the wall of the lateral ventricles and the subgranular zone (SGZ) of the hippocampus. The extent to which this physiological process continues into adulthood is an area of ongoing research. This study aimed to characterize markers of cell proliferation and assess the efficacy of antibodies used to identify neurogenesis in both neurogenic niches of the human brain. METHODS Cell proliferation and neurogenesis were simultaneously examined in the SVZ and SGZ of 23 individuals aged 0.2-59 years, using immunohistochemistry and immunofluorescence in combination with unbiased stereology. RESULTS There was a marked decline in proliferating cells in both neurogenic niches in early infancy with levels reaching those seen in the adjacent parenchyma by 4 and 1 year of age, in the SVZ and SGZ, respectively. Furthermore, the phenotype of these proliferating cells in both niches changed with age. In infants, proliferating cells co-expressed neural progenitor (epidermal growth factor receptor), immature neuronal (doublecortin and beta III tubulin) and oligodendrocytic (Olig2) markers. However, after 3 years of age, microglia were the only proliferating cells found in either niche or in the adjacent parenchyma. CONCLUSIONS This study demonstrates a marked decline in neurogenesis in both neurogenic niches in early childhood, and that the sparse proliferating cells in the adult brain are largely microglia.
Collapse
Affiliation(s)
- C V Dennis
- Discipline of Pathology, Sydney Medical School, University of Sydney, Camperdown, NSW, Australia
| | - L S Suh
- Discipline of Pathology, Sydney Medical School, University of Sydney, Camperdown, NSW, Australia
- Dementia Research Unit, School of Medical Sciences, University of New South Wales, Kensington, NSW, Australia
| | - M L Rodriguez
- Discipline of Pathology, Sydney Medical School, University of Sydney, Camperdown, NSW, Australia
| | - J J Kril
- Discipline of Pathology, Sydney Medical School, University of Sydney, Camperdown, NSW, Australia
| | - G T Sutherland
- Discipline of Pathology, Sydney Medical School, University of Sydney, Camperdown, NSW, Australia
| |
Collapse
|
15
|
Murray HC, Low VF, Swanson ME, Dieriks BV, Turner C, Faull RL, Curtis MA. Distribution of PSA-NCAM in normal, Alzheimer’s and Parkinson’s disease human brain. Neuroscience 2016; 330:359-75. [DOI: 10.1016/j.neuroscience.2016.06.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 06/01/2016] [Accepted: 06/02/2016] [Indexed: 12/25/2022]
|
16
|
Liu H, Song N. Molecular Mechanism of Adult Neurogenesis and its Association with Human Brain Diseases. J Cent Nerv Syst Dis 2016; 8:5-11. [PMID: 27375363 PMCID: PMC4915785 DOI: 10.4137/jcnsd.s32204] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Revised: 04/07/2016] [Accepted: 05/30/2016] [Indexed: 12/19/2022] Open
Abstract
Recent advances in neuroscience challenge the old dogma that neurogenesis occurs only during embryonic development. Mounting evidence suggests that functional neurogenesis occurs throughout adulthood. This review article discusses molecular factors that affect adult neurogenesis, including morphogens, growth factors, neurotransmitters, transcription factors, and epigenetic factors. Furthermore, we summarize and compare current evidence of associations between adult neurogenesis and human brain diseases such as Alzheimer’s disease, Parkinson’s disease, Huntington’s disease, and brain tumors.
Collapse
Affiliation(s)
- He Liu
- Department of Biology, Morosky College of Health Professions and Sciences, Gannon University, Erie, PA, USA
| | - Ni Song
- Division of Health Sciences & Workforce Technology, Lamar State College-Orange, Orange, TX, USA
| |
Collapse
|
17
|
Transplanted Neural Stem Cells: Playing a Neuroprotective Role by Ceruloplasmin in the Substantia Nigra of PD Model Rats? OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2015:618631. [PMID: 26146528 PMCID: PMC4469843 DOI: 10.1155/2015/618631] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2015] [Revised: 05/15/2015] [Accepted: 05/17/2015] [Indexed: 01/23/2023]
Abstract
Although mounting evidence suggests that ceruloplasmin (CP) deficiency and iron deposition are pivotal factors responsible for exacerbating demise of dopaminergic neurons in the substantia nigra (SN) of the Parkinsonism and neural stem cells (NSCs) are believed to be excellent candidates for compensating the lost dopaminergic neurons, there are few researches to explore the change of CP expression and of iron deposition in the pathological microenvironment of SN after NSCs transplantation and the ability of grafted NSCs to differentiate directionally into dopaminergic neurons under the changed homeostasis. With substantia nigral stereotaxic technique and NSCs transplantation, we found that tyrosine hydroxylase and CP expression decreased and iron deposition increased in the lesioned SN after 6-OHDA administration compared with control, while tyrosine hydroxylase and CP expression increased and iron deposition decreased after NSCs transplantation compared to 6-OHDA administration alone. Only a small number of embedding NSCs are able to differentiate into dopaminergic neurons. These results suggest that grafted NSCs have an influence on improving the content of CP expression, which may play a neuroprotective role by decreasing iron deposition and ameliorating damage of dopaminergic neurons and possibly underline the iron-related common mechanism of Parkinson's disease and Wilson's disease.
Collapse
|
18
|
Doorn KJ, Brevé JJP, Drukarch B, Boddeke HW, Huitinga I, Lucassen PJ, van Dam AM. Brain region-specific gene expression profiles in freshly isolated rat microglia. Front Cell Neurosci 2015; 9:84. [PMID: 25814934 PMCID: PMC4357261 DOI: 10.3389/fncel.2015.00084] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 02/23/2015] [Indexed: 12/30/2022] Open
Abstract
Microglia are important cells in the brain that can acquire different morphological and functional phenotypes dependent on the local situation they encounter. Knowledge on the region-specific gene signature of microglia may hold valuable clues for microglial functioning in health and disease, e.g., Parkinson's disease (PD) in which microglial phenotypes differ between affected brain regions. Therefore, we here investigated whether regional differences exist in gene expression profiles of microglia that are isolated from healthy rat brain regions relevant for PD. We used an optimized isolation protocol based on a rapid isolation of microglia from discrete rat gray matter regions using density gradients and fluorescent-activated cell sorting. Application of the present protocol followed by gene expression analysis enabled us to identify subtle differences in region-specific microglial expression profiles and show that the genetic profile of microglia already differs between different brain regions when studied under control conditions. As such, these novel findings imply that brain region-specific microglial gene expression profiles exist that may contribute to the region-specific differences in microglia responsivity during disease conditions, such as seen in, e.g., PD.
Collapse
Affiliation(s)
- Karlijn J Doorn
- Department Structural and Functional Plasticity of the Nervous System, Center for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam Amsterdam, Netherlands ; Neuroscience Campus Amsterdam, Department Anatomy and Neurosciences, VU University Medical Center Amsterdam, Netherlands
| | - John J P Brevé
- Neuroscience Campus Amsterdam, Department Anatomy and Neurosciences, VU University Medical Center Amsterdam, Netherlands
| | - Benjamin Drukarch
- Neuroscience Campus Amsterdam, Department Anatomy and Neurosciences, VU University Medical Center Amsterdam, Netherlands
| | - Hendrikus W Boddeke
- Section Medical Physiology, Department of Neuroscience, University Medical Centre Groningen Groningen, Netherlands
| | - Inge Huitinga
- Neuroimmunology Group, Netherlands Institute for Neuroscience, Institute of the Royal Netherlands Academy of Arts and Sciences Amsterdam, Netherlands
| | - Paul J Lucassen
- Department Structural and Functional Plasticity of the Nervous System, Center for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam Amsterdam, Netherlands
| | - Anne-Marie van Dam
- Department Structural and Functional Plasticity of the Nervous System, Center for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam Amsterdam, Netherlands
| |
Collapse
|
19
|
Proliferation in the Alzheimer hippocampus is due to microglia, not astroglia, and occurs at sites of amyloid deposition. Neural Plast 2014; 2014:693851. [PMID: 25215243 PMCID: PMC4157009 DOI: 10.1155/2014/693851] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Accepted: 06/23/2014] [Indexed: 01/19/2023] Open
Abstract
Microglia and astrocytes contribute to Alzheimer's disease (AD) etiology and may mediate early neuroinflammatory responses. Despite their possible role in disease progression and despite the fact that they can respond to amyloid deposition in model systems, little is known about whether astro- or microglia can undergo proliferation in AD and whether this is related to the clinical symptoms or to local neuropathological changes. Previously, proliferation was found to be increased in glia-rich regions of the presenile hippocampus. Since their phenotype was unknown, we here used two novel triple-immunohistochemical protocols to study proliferation in astro- or microglia in relation to amyloid pathology. We selected different age-matched cohorts to study whether proliferative changes relate to clinical severity or to neuropathological changes. Proliferating cells were found across the hippocampus but never in mature neurons or astrocytes. Almost all proliferating cells were colabeled with Iba1+, indicating that particularly microglia contribute to proliferation in AD. Proliferating Iba1+ cells was specifically seen within the borders of amyloid plaques, indicative of an active involvement in, or response to, plaque accumulation. Thus, consistent with animal studies, proliferation in the AD hippocampus is due to microglia, occurs in close proximity of plaque pathology, and may contribute to the neuroinflammation common in AD.
Collapse
|