1
|
Braun U, Leitges M. A Protein Kinase Cε/Protein Kinase D3 Signalling Axis Modulates RhoA Activity During Cytokinesis. Biomedicines 2025; 13:345. [PMID: 40002758 PMCID: PMC11853137 DOI: 10.3390/biomedicines13020345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 01/20/2025] [Accepted: 01/29/2025] [Indexed: 02/27/2025] Open
Abstract
BACKGROUND Protein kinase D3 (PKD3) is a member of the PKD family that has been implicated in many intracellular signalling pathways. However, defined statements regarding PKD isoform specificity and in vivo functions are rare. METHODS Here, we use PKD3-depleted mouse embryonic fibroblast cells and employ various cell culture-based assays and fluorescence microscopy. RESULTS We show that PKD3 is involved in the regulation of cytokinesis after immortalisation by modulating RhoA activity through a PKCε/PKD3 signalling axis. CONCLUSIONS PKD3 depletion leads to prolonged RhoA activity during cytokinesis, resulting in failed abscission and an increase in the number of multinucleated cells. This identifies a novel, previously unrecognised PKCε/PKD3 pathway involved in the modulation of cytokinesis.
Collapse
Affiliation(s)
| | - Michael Leitges
- Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, 300 Prince Philip Drive, St. John’s, NL A1B 3V6, Canada
| |
Collapse
|
2
|
Potential role for protein kinase D inhibitors in prostate cancer. J Mol Med (Berl) 2023; 101:341-349. [PMID: 36843036 DOI: 10.1007/s00109-023-02298-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 02/01/2023] [Accepted: 02/10/2023] [Indexed: 02/28/2023]
Abstract
Protein kinase D (PrKD), a novel serine-threonine kinase, belongs to a family of calcium calmodulin kinases that consists of three isoforms: PrKD1, PrKD2, and PrKD3. The PrKD isoforms play a major role in pathologic processes such as cardiac hypertrophy and cancer progression. The charter member of the family, PrKD1, is the most extensively studied isoform. PrKD play a dual role as both a proto-oncogene and a tumor suppressor depending on the cellular context. The duplicity of PrKD can be highlighted in advanced prostate cancer (PCa) where expression of PrKD1 is suppressed whereas the expressions of PrKD2 and PrKD3 are upregulated to aid in cancer progression. As understanding of the PrKD signaling pathways has been better elucidated, interest has been garnered in the development of PrKD inhibitors. The broad-spectrum kinase inhibitor staurosporine acts as a potent PrKD inhibitor and is the most well-known; however, several other novel and more specific PrKD inhibitors have been developed over the last two decades. While there is tremendous potential for PrKD inhibitors to be used in a clinical setting, none has progressed beyond preclinical trials due to a variety of challenges. In this review, we focus on PrKD signaling in PCa and the potential role of PrKD inhibitors therein, and explore the possible clinical outcomes based on known function and expression of PrKD isoforms at different stages of PCa.
Collapse
|
3
|
Liu Y, Song H, Yu S, Huang KH, Ma X, Zhou Y, Yu S, Zhang J, Chen L. Protein Kinase D3 promotes the cell proliferation by activating the ERK1/c-MYC axis in breast cancer. J Cell Mol Med 2020; 24:2135-2144. [PMID: 31944568 PMCID: PMC7011155 DOI: 10.1111/jcmm.14772] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Revised: 09/09/2019] [Accepted: 10/01/2019] [Indexed: 12/14/2022] Open
Abstract
Breast cancer is the second leading death cause of cancer death for all women. Previous study suggested that Protein Kinase D3 (PRKD3) was involved in breast cancer progression. In addition, the protein level of PRKD3 in triple‐negative breast adenocarcinoma was higher than that in normal breast tissue. However, the oncogenic mechanisms of PRKD3 in breast cancer is not fully investigated. Multi‐omic data showed that ERK1/c‐MYC axis was identified as a major pivot in PRKD3‐mediated downstream pathways. Our study provided the evidence to support that the PRKD3/ERK1/c‐MYC pathway play an important role in breast cancer progression. We found that knocking out PRKD3 by performing CRISPR/Cas9 genome engineering technology suppressed phosphorylation of both ERK1 and c‐MYC but did not down‐regulate ERK1/2 expression or phosphorylation of ERK2. The inhibition of ERK1 and c‐MYC phosphorylation further led to the lower protein level of c‐MYC and then reduced the expression of the c‐MYC target genes in breast cancer cells. We also found that loss of PRKD3 reduced the rate of the cell proliferation in vitro and tumour growth in vivo, whereas ectopic (over)expression of PRKD3, ERK1 or c‐MYC in the PRKD3‐knockout breast cells reverse the suppression of the cell proliferation and tumour growth. Collectively, our data strongly suggested that PRKD3 likely promote the cell proliferation in the breast cancer cells by activating ERK1‐c‐MYC axis.
Collapse
Affiliation(s)
- Yan Liu
- The Key Laboratory of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China.,Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, China.,Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, China.,The Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, Institute of Life Science, Southeast University, Nanjing, China
| | - Hang Song
- The Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, Institute of Life Science, Southeast University, Nanjing, China.,Shanghai Children's Medical Center, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Shiyi Yu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, China.,The Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, Institute of Life Science, Southeast University, Nanjing, China
| | - Kuo-Hsiang Huang
- The Key Laboratory of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China
| | - Xinxing Ma
- The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, China
| | - Yehui Zhou
- The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, China
| | - Shuang Yu
- The Key Laboratory of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China.,Xuzhou Medical University, Xuzhou, China
| | - Jingzhong Zhang
- The Key Laboratory of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China.,Xuzhou Medical University, Xuzhou, China.,Tianjin Guokeyigong Science and Technology Development Company Limited, Tianjin, China
| | - Liming Chen
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, China.,The Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, Institute of Life Science, Southeast University, Nanjing, China
| |
Collapse
|
4
|
Durand N, Borges S, Storz P. Protein Kinase D Enzymes as Regulators of EMT and Cancer Cell Invasion. J Clin Med 2016; 5:jcm5020020. [PMID: 26848698 PMCID: PMC4773776 DOI: 10.3390/jcm5020020] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 12/15/2015] [Accepted: 01/18/2016] [Indexed: 12/20/2022] Open
Abstract
The Protein Kinase D (PKD) isoforms PKD1, PKD2, and PKD3 are effectors of the novel Protein Kinase Cs (nPKCs) and diacylglycerol (DAG). PKDs impact diverse biological processes like protein transport, cell migration, proliferation, epithelial to mesenchymal transition (EMT) and apoptosis. PKDs however, have distinct effects on these functions. While PKD1 blocks EMT and cell migration, PKD2 and PKD3 tend to drive both processes. Given the importance of EMT and cell migration to the initiation and progression of various malignancies, abnormal expression of PKDs has been reported in multiple types of cancers, including breast, pancreatic and prostate cancer. In this review, we discuss how EMT and cell migration are regulated by PKD isoforms and the significance of this regulation in the context of cancer development.
Collapse
Affiliation(s)
- Nisha Durand
- Department of Cancer Biology, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224, USA.
| | - Sahra Borges
- Department of Cancer Biology, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224, USA.
| | - Peter Storz
- Department of Cancer Biology, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224, USA.
| |
Collapse
|