1
|
Altharawi A. Targeting Toxoplasma gondii ME49 TgAPN2: A Bioinformatics Approach for Antiparasitic Drug Discovery. Molecules 2023; 28:molecules28073186. [PMID: 37049948 PMCID: PMC10096047 DOI: 10.3390/molecules28073186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 03/29/2023] [Accepted: 03/29/2023] [Indexed: 04/07/2023] Open
Abstract
As fewer therapeutic options are available for treating toxoplasmosis, newer antiparasitic drugs that can block TgAPN2 M1 aminopeptidase are of significant value. Herein, we employed several computer-aided drug-design approaches with the objective of identifying drug molecules from the Asinex library with stable conformation and binding energy scores. By a structure-based virtual screening process, three molecules—LAS_52160953, LAS_51177972, and LAS_52506311—were identified as promising candidates, with binding affinity scores of −8.6 kcal/mol, −8.5 kcal/mol, and −8.3 kcal/mol, respectively. The compounds produced balanced interacting networks of hydrophilic and hydrophobic interactions, vital for holding the compounds at the docked cavity and stable binding conformation. The docked compound complexes with TgAPN2 were further subjected to molecular dynamic simulations that revealed mean RMSD for the LAS_52160953 complex of 1.45 Å), LAS_51177972 complex 1.02 Å, and LAS_52506311 complex 1.087 Å. Another round of binding free energy validation by MM-GBSA/MM-PBSA was done to confirm docking and simulation findings. The analysis predicted average MM-GBSA value of <−36 kcal/mol and <−35 kcal/mol by MM-PBSA. The compounds were further classified as appropriate candidates to be used as drug-like molecules and showed favorable pharmacokinetics. The shortlisted compounds showed promising biological potency against the TgAPN2 enzyme and may be used in experimental validation. They may also serve as parent structures to design novel derivatives with enhanced biological potency.
Collapse
Affiliation(s)
- Ali Altharawi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| |
Collapse
|
2
|
Khan MA, Amin A, Farid A, Ullah A, Waris A, Shinwari K, Hussain Y, Alsharif KF, Alzahrani KJ, Khan H. Recent Advances in Genomics-Based Approaches for the Development of Intracellular Bacterial Pathogen Vaccines. Pharmaceutics 2022; 15:pharmaceutics15010152. [PMID: 36678781 PMCID: PMC9863128 DOI: 10.3390/pharmaceutics15010152] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/12/2022] [Accepted: 12/19/2022] [Indexed: 01/04/2023] Open
Abstract
Infectious diseases continue to be a leading cause of morbidity and mortality worldwide. The majority of infectious diseases are caused by intracellular pathogenic bacteria (IPB). Historically, conventional vaccination drives have helped control the pathogenesis of intracellular bacteria and the emergence of antimicrobial resistance, saving millions of lives. However, in light of various limitations, many diseases that involve IPB still do not have adequate vaccines. In response to increasing demand for novel vaccine development strategies, a new area of vaccine research emerged following the advent of genomics technology, which changed the paradigm of vaccine development by utilizing the complete genomic data of microorganisms against them. It became possible to identify genes related to disease virulence, genetic patterns linked to disease virulence, as well as the genetic components that supported immunity and favorable vaccine responses. Complete genomic databases, and advancements in transcriptomics, metabolomics, structural genomics, proteomics, immunomics, pan-genomics, synthetic genomics, and population biology have allowed researchers to identify potential vaccine candidates and predict their effects in patients. New vaccines have been created against diseases for which previously there were no vaccines available, and existing vaccines have been improved. This review highlights the key issues and explores the evolution of vaccines. The increasing volume of IPB genomic data, and their application in novel genome-based techniques for vaccine development, were also examined, along with their characteristics, and the opportunities and obstacles involved. Critically, the application of genomics technology has helped researchers rapidly select and evaluate candidate antigens. Novel vaccines capable of addressing the limitations associated with conventional vaccines have been developed and pressing healthcare issues are being addressed.
Collapse
Affiliation(s)
- Muhammad Ajmal Khan
- Division of Life Science, Center for Cancer Research, and State Key Lab of Molecular Neuroscience, Hong Kong University of Science and Technology, Hong Kong, China
- Correspondence: (M.A.K.); or (H.K.)
| | - Aftab Amin
- Division of Life Science, Center for Cancer Research, and State Key Lab of Molecular Neuroscience, Hong Kong University of Science and Technology, Hong Kong, China
| | - Awais Farid
- Division of Environment and Sustainability, Hong Kong University of Science and Technology, Hong Kong, China
| | - Amin Ullah
- Molecular Virology Laboratory, Department of Microbiology and Biotechnology, Abasyn University, Peshawar 25000, Pakistan
| | - Abdul Waris
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
| | - Khyber Shinwari
- Institute of Chemical Engineering, Department Immuno-Chemistry, Ural Federal University, Yekaterinbiurg 620002, Russia
| | - Yaseen Hussain
- Department of Pharmacy, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan
| | - Khalaf F. Alsharif
- Department of Clinical Laboratory, College of Applied Medical Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Khalid J. Alzahrani
- Department of Clinical Laboratory, College of Applied Medical Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Haroon Khan
- Department of Clinical Laboratory, College of Applied Medical Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
- Correspondence: (M.A.K.); or (H.K.)
| |
Collapse
|
3
|
Alshammari A, Alasmari AF, Alharbi M, Ali N, Muhseen ZT, Ashfaq UA, Ud-din M, Ullah A, Arshad M, Ahmad S. Novel Chimeric Vaccine Candidate Development against Leptotrichia buccalis. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:10742. [PMID: 36078462 PMCID: PMC9518150 DOI: 10.3390/ijerph191710742] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/23/2022] [Accepted: 07/27/2022] [Indexed: 06/15/2023]
Abstract
The misuse of antibiotics in our daily lives has led to the emergence of antimicrobial resistance. As a result, many antibiotics are becoming ineffective. This phenomenon is linked with high rates of mortality and morbidity. Therefore, new approaches are required to address this major health issue. Leptotrichia buccalis is a Gram-negative, rod-shaped bacterium which normally resides in the oral and vaginal cavities. It is an emerging bacterial pathogen which is developing new antibiotic-resistance mechanisms. No approved vaccine is available against this pathogen, which is a cause for growing concern. In this study, an in silico-based, multi-epitopes vaccine against this pathogen was designed by applying reverse vaccinology and immunoinformatic approaches. Of a total of 2193 predicted proteins, 294 were found to be redundant while 1899 were non-redundant. Among the non-redundant proteins, 6 were predicted to be present in the extracellular region, 12 in the periplasmic region and 23 in the outer-membrane region. Three proteins (trypsin-like peptidase domain-containing protein, sel1 repeat family protein and TrbI/VirB10 family protein) were predicted to be virulent and potential subunit vaccine targets. In the epitopes prediction phase, the three proteins were subjected to B- and T-cell epitope mapping; 19 epitopes were used for vaccine design. The vaccine construct was docked with MHC-I, MHC-II and TLR-4 immune receptors and only the top-ranked complex (based on global energy value) was selected in each case. The selected docked complexes were examined in a molecular dynamic simulation and binding free energies analysis in order to assess their intermolecular stability. It was observed that the vaccine binding mode with receptors was stable and that the system presented stable dynamics. The net binding free energy of complexes was in the range of -300 to -500 kcal/mol, indicating the formation of stable complexes. In conclusion, the data reported herein might help vaccinologists to formulate a chimeric vaccine against the aforementioned target pathogen.
Collapse
Affiliation(s)
- Abdulrahman Alshammari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Abdullah F. Alasmari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Metab Alharbi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Nemat Ali
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Ziyad Tariq Muhseen
- Department of Pharmacy, Al-Mustaqbal University College, Hillah, Babylon 51001, Iraq
| | - Usman Ali Ashfaq
- Department of Bioinformatics and Biotechnology, Government College, University Faisalabad, Faisalabad 38000, Pakistan
| | - Miraj Ud-din
- Department of Health and Biological Sciences, Abasyn University, Peshawar 25000, Pakistan
| | - Asad Ullah
- Department of Health and Biological Sciences, Abasyn University, Peshawar 25000, Pakistan
| | - Muhammad Arshad
- Centre of Biotechnology and Microbiology, University of Peshawar, Peshawar 25000, Pakistan
| | - Sajjad Ahmad
- Department of Health and Biological Sciences, Abasyn University, Peshawar 25000, Pakistan
- Department of Computer Science, Virginia Tech, Blacksburg, VA 24061, USA
| |
Collapse
|
4
|
Rida T, Ahmad S, Ullah A, Ismail S, Tahir ul Qamar M, Afsheen Z, Khurram M, Saqib Ishaq M, Alkhathami AG, Alatawi EA, Alrumaihi F, Allemailem KS. Pan-Genome Analysis of Oral Bacterial Pathogens to Predict a Potential Novel Multi-Epitopes Vaccine Candidate. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19148408. [PMID: 35886259 PMCID: PMC9320593 DOI: 10.3390/ijerph19148408] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 07/05/2022] [Accepted: 07/07/2022] [Indexed: 02/08/2023]
Abstract
Porphyromonas gingivalis is a Gram-negative anaerobic bacterium, mainly present in the oral cavity and causes periodontal infections. Currently, no licensed vaccine is available against P. gingivalis and other oral bacterial pathogens. To develop a vaccine against P. gingivalis, herein, we applied a bacterial pan-genome analysis (BPGA) on the bacterial genomes that retrieved a total number of 4908 core proteins, which were further utilized for the identification of good vaccine candidates. After several vaccine candidacy analyses, three proteins, namely lytic transglycosylase domain-containing protein, FKBP-type peptidyl-propyl cis-trans isomerase and superoxide dismutase, were shortlisted for epitopes prediction. In the epitopes prediction phase, different types of B and T-cell epitopes were predicted and only those with an antigenic, immunogenic, non-allergenic, and non-toxic profile were selected. Moreover, all the predicted epitopes were joined with each other to make a multi-epitopes vaccine construct, which was linked further to the cholera toxin B-subunit to enhance the antigenicity of the vaccine. For downward analysis, a three dimensional structure of the designed vaccine was modeled. The modeled structure was checked for binding potency with major histocompatibility complex I (MHC-I), major histocompatibility complex II (MHC-II), and Toll-like receptor 4 (TLR-4) immune cell receptors which revealed that the designed vaccine performed proper binding with respect to immune cell receptors. Additionally, the binding efficacy of the vaccine was validated through a molecular dynamic simulation that interpreted strong intermolecular vaccine-receptor binding and confirmed the exposed situation of vaccine epitopes to the host immune system. In conclusion, the study suggested that the model vaccine construct has the potency to generate protective host immune responses and that it might be a good vaccine candidate for experimental in vivo and in vitro studies.
Collapse
Affiliation(s)
- Tehniyat Rida
- Department of Health and Biological Sciences, Abasyn University, Peshawar 25000, Pakistan; (T.R.); (A.U.); (Z.A.); (M.S.I.)
| | - Sajjad Ahmad
- Department of Health and Biological Sciences, Abasyn University, Peshawar 25000, Pakistan; (T.R.); (A.U.); (Z.A.); (M.S.I.)
- Correspondence: (S.A.); (K.S.A.)
| | - Asad Ullah
- Department of Health and Biological Sciences, Abasyn University, Peshawar 25000, Pakistan; (T.R.); (A.U.); (Z.A.); (M.S.I.)
| | - Saba Ismail
- Department of Biological Sciences, National University of Medical Sciences, Rawalpindi 46000, Pakistan;
| | - Muhammad Tahir ul Qamar
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad 38000, Pakistan;
| | - Zobia Afsheen
- Department of Health and Biological Sciences, Abasyn University, Peshawar 25000, Pakistan; (T.R.); (A.U.); (Z.A.); (M.S.I.)
| | - Muhammad Khurram
- Department of Pharmacy, Abasyn University, Peshawar 25000, Pakistan;
| | - Muhammad Saqib Ishaq
- Department of Health and Biological Sciences, Abasyn University, Peshawar 25000, Pakistan; (T.R.); (A.U.); (Z.A.); (M.S.I.)
| | - Ali G. Alkhathami
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha 61481, Saudi Arabia;
| | - Eid A. Alatawi
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk 71491, Saudi Arabia;
| | - Faris Alrumaihi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia;
| | - Khaled S. Allemailem
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia;
- Correspondence: (S.A.); (K.S.A.)
| |
Collapse
|
5
|
Alshammari A, Alharbi M, Alghamdi A, Alharbi SA, Ashfaq UA, Tahir ul Qamar M, Ullah A, Irfan M, Khan A, Ahmad S. Computer-Aided Multi-Epitope Vaccine Design against Enterobacter xiangfangensis. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19137723. [PMID: 35805383 PMCID: PMC9265868 DOI: 10.3390/ijerph19137723] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 06/13/2022] [Accepted: 06/15/2022] [Indexed: 12/22/2022]
Abstract
Antibiotic resistance is a global public health threat and is associated with high mortality due to antibiotics’ inability to treat bacterial infections. Enterobacter xiangfangensis is an emerging antibiotic-resistant bacterial pathogen from the Enterobacter genus and has the ability to acquire resistance to multiple antibiotic classes. Currently, there is no effective vaccine against Enterobacter species. In this study, a chimeric vaccine is designed comprising different epitopes screened from E. xiangfangensis proteomes using immunoinformatic and bioinformatic approaches. In the first phase, six fully sequenced proteomes were investigated by bacterial pan-genome analysis, which revealed that the pathogen consists of 21,996 core proteins, 3785 non-redundant proteins and 18,211 redundant proteins. The non-redundant proteins were considered for the vaccine target prioritization phase where different vaccine filters were applied. By doing so, two proteins; ferrichrome porin (FhuA) and peptidoglycan-associated lipoprotein (Pal) were shortlisted for epitope prediction. Based on properties of antigenicity, allergenicity, water solubility and DRB*0101 binding ability, three epitopes (GPAPTIAAKR, ATKTDTPIEK and RNNGTTAEI) were used in multi-epitope vaccine designing. The designed vaccine construct was analyzed in a docking study with immune cell receptors, which predicted the vaccine’s proper binding with said receptors. Molecular dynamics analysis revealed that the vaccine demonstrated stable binding dynamics, and binding free energy calculations further validated the docking results. In conclusion, these in silico results may help experimentalists in developing a vaccine against E. xiangfangensis in specific and Enterobacter in general.
Collapse
Affiliation(s)
- Abdulrahman Alshammari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (A.A.); (M.A.)
| | - Metab Alharbi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (A.A.); (M.A.)
| | - Abdullah Alghamdi
- Department of Pathology and Laboratory Medicine, Riyadh Security Forces Hospital, Ministry of Interior, Riyadh 11432, Saudi Arabia;
| | | | - Usman Ali Ashfaq
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad 38000, Pakistan;
| | - Muhammad Tahir ul Qamar
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad 38000, Pakistan;
- Correspondence: (M.T.u.Q.); (S.A.)
| | - Asad Ullah
- Department of Health and Biological Sciences, Abasyn University, Peshawar 25000, Pakistan; (A.U.); (A.K.)
| | - Muhammad Irfan
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL 32611, USA;
| | - Amjad Khan
- Department of Health and Biological Sciences, Abasyn University, Peshawar 25000, Pakistan; (A.U.); (A.K.)
| | - Sajjad Ahmad
- Department of Health and Biological Sciences, Abasyn University, Peshawar 25000, Pakistan; (A.U.); (A.K.)
- Correspondence: (M.T.u.Q.); (S.A.)
| |
Collapse
|
6
|
Vaccinomics to Design a Multi-Epitopes Vaccine for Acinetobacter baumannii. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19095568. [PMID: 35564967 PMCID: PMC9104312 DOI: 10.3390/ijerph19095568] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 04/23/2022] [Accepted: 04/28/2022] [Indexed: 12/13/2022]
Abstract
Antibiotic resistance (AR) is the result of microbes’ natural evolution to withstand the action of antibiotics used against them. AR is rising to a high level across the globe, and novel resistant strains are emerging and spreading very fast. Acinetobacter baumannii is a multidrug resistant Gram-negative bacteria, responsible for causing severe nosocomial infections that are treated with several broad spectrum antibiotics: carbapenems, β-lactam, aminoglycosides, tetracycline, gentamicin, impanel, piperacillin, and amikacin. The A. baumannii genome is superplastic to acquire new resistant mechanisms and, as there is no vaccine in the development process for this pathogen, the situation is more worrisome. This study was conducted to identify protective antigens from the core genome of the pathogen. Genomic data of fully sequenced strains of A. baumannii were retrieved from the national center for biotechnological information (NCBI) database and subjected to various genomics, immunoinformatics, proteomics, and biophysical analyses to identify potential vaccine antigens against A. baumannii. By doing so, four outer membrane proteins were prioritized: TonB-dependent siderphore receptor, OmpA family protein, type IV pilus biogenesis stability protein, and OprD family outer membrane porin. Immuoinformatics predicted B-cell and T-cell epitopes from all four proteins. The antigenic epitopes were linked to design a multi-epitopes vaccine construct using GPGPG linkers and adjuvant cholera toxin B subunit to boost the immune responses. A 3D model of the vaccine construct was built, loop refined, and considered for extensive error examination. Disulfide engineering was performed for the stability of the vaccine construct. Blind docking of the vaccine was conducted with host MHC-I, MHC-II, and toll-like receptors 4 (TLR-4) molecules. Molecular dynamic simulation was carried out to understand the vaccine-receptors dynamics and binding stability, as well as to evaluate the presentation of epitopes to the host immune system. Binding energies estimation was achieved to understand intermolecular interaction energies and validate docking and simulation studies. The results suggested that the designed vaccine construct has high potential to induce protective host immune responses and can be a good vaccine candidate for experimental in vivo and in vitro studies.
Collapse
|
7
|
Attar R, Alatawi EA, Aba Alkhayl FF, Alharbi KN, Allemailem KS, Almatroudi A. Immunoinformatics and Biophysics Approaches to Design a Novel Multi-Epitopes Vaccine Design against Staphylococcus auricularis. Vaccines (Basel) 2022; 10:vaccines10050637. [PMID: 35632394 PMCID: PMC9146471 DOI: 10.3390/vaccines10050637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 04/06/2022] [Accepted: 04/14/2022] [Indexed: 02/01/2023] Open
Abstract
Due to the misuse of antibiotics in our daily lives, antimicrobial resistance (AMR) has become a major health problem. Penicillin, the first antibiotic, was used in the 1930s and led to the emergence of AMR. Due to alterations in the microbe’s genome and the evolution of new resistance mechanisms, antibiotics are losing efficacy against microbes. There are high rates of mortality and morbidity due to antibiotic resistance, so addressing this major health issue requires new approaches. Staphylococcus auricularis is a Gram-positive cocci and is capable of causing opportunistic infections and sepsis. S. auricularis is resistant to several antibiotics and does not currently have a licensed vaccine. In this study, we used bacterial pan-genome analysis (BPGA) to study S. auricularis pan-genome and applied a reverse immunology approach to prioritize vaccine targets against S. auricularis. A total of 15,444 core proteins were identified by BPGA analysis, which were then used to identify good vaccine candidates considering potential vaccine filters. Two vaccine candidates were evaluated for epitope prediction including the superoxide dismutase and gamma-glutamyl transferase protein. The epitope prediction phase involved the prediction of a variety of B-Cell and T-cell epitopes, and the epitopes that met certain criteria, such as antigenicity, immunogenicity, non-allergenicity, and non-toxicity were chosen. A multi-epitopes vaccine construct was then constructed from all the predicted epitopes, and a cholera toxin B-subunit adjuvant was also added to increase vaccine antigenicity. Three-dimensional models of the vaccine were used for downward analyses. Using the best-modeled structure, binding potency was tested with MHC-I, MHC-II and TLR-4 immune cells receptors, proving that the vaccine binds strongly with the receptors. Further, molecular dynamics simulations interpreted strong intermolecular binding between the vaccine and receptors and confirmed the vaccine epitopes exposed to the host immune system. The results support that the vaccine candidate may be capable of eliciting a protective immune response against S. auricularis and may be a promising candidate for experimental in vitro and in vivo studies.
Collapse
Affiliation(s)
- Roba Attar
- Department of Biology, Faculty of Science, University of Jeddah, Jeddah 21959, Saudi Arabia;
| | - Eid A. Alatawi
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk 71491, Saudi Arabia;
| | - Faris F. Aba Alkhayl
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia; (F.F.A.A.); (K.N.A.); (K.S.A.)
- Department of Pharmaceutical Chemistry and Pharmacognosy, College of Dentistry and Pharmacy, Buraydah Colleges, Buraydah 51418, Saudi Arabia
| | - Khloud Nawaf Alharbi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia; (F.F.A.A.); (K.N.A.); (K.S.A.)
| | - Khaled S. Allemailem
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia; (F.F.A.A.); (K.N.A.); (K.S.A.)
| | - Ahmad Almatroudi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia; (F.F.A.A.); (K.N.A.); (K.S.A.)
- Correspondence:
| |
Collapse
|
8
|
Albutti A. An integrated computational framework to design a multi-epitopes vaccine against Mycobacterium tuberculosis. Sci Rep 2021; 11:21929. [PMID: 34753983 PMCID: PMC8578660 DOI: 10.1038/s41598-021-01283-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 10/25/2021] [Indexed: 12/17/2022] Open
Abstract
Tuberculosis (TB) is a highly contagious disease that mostly affects the lungs and is caused by a bacterial pathogen, Mycobacterium tuberculosis. The associated mortality rate of TB is much higher compared to any other disease and the situation is more worrisome by the rapid emergence of drug resistant strains. Bacillus Calmette-Guerin (BCG) is the only licensed attenuated vaccine available for use in humans however, many countries have stopped its use as it fails to confer protective immunity. Therefore, urgent efforts are required to identify new and safe vaccine candidates that are not only provide high immune protection but also have broad spectrum applicability. Considering this, herein, I performed an extensive computational vaccine analysis to investigate 200 complete sequenced genomes of M. tuberculosis to identify core vaccine candidates that harbor safe, antigenic, non-toxic, and non-allergic epitopes. To overcome literature reported limitations of epitope-based vaccines, I carried out additional analysis by designing a multi-epitopes vaccine to achieve maximum protective immunity as well as to make experimental follow up studies easy by selecting a vaccine that can be easily analyzed because of its favorable physiochemical profile. Based on these analyses, I identified two potential vaccine proteins that fulfill all required vaccine properties. These two vaccine proteins are diacylglycerol acyltransferase and ESAT-6-like protein. Epitopes: DSGGYNANS from diacylglycerol acyltransferase and AGVQYSRAD, ADEEQQQAL, and VSRADEEQQ from ESAT-6-like protein were found to cover all necessary parameters and thus used in a multi-epitope vaccine construct. The designed vaccine is depicting a high binding affinity for different immune receptors and shows stable dynamics and rigorous van der Waals and electrostatic binding energies. The vaccine also simulates profound primary, secondary, tertiary immunoglobulin production as well as high interleukins and interferons count. In summary, the designed vaccine is ideal to be evaluated experimentally to decipher its real biological efficacy in controlling drug resistant infections of M. tuberculosis.
Collapse
Affiliation(s)
- Aqel Albutti
- Department of Medical Biotechnology, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia.
| |
Collapse
|
9
|
Ullah A, Ahmad S, Ismail S, Afsheen Z, Khurram M, Tahir ul Qamar M, AlSuhaymi N, Alsugoor MH, Allemailem KS. Towards A Novel Multi-Epitopes Chimeric Vaccine for Simulating Strong Immune Responses and Protection against Morganella morganii. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:10961. [PMID: 34682706 PMCID: PMC8535705 DOI: 10.3390/ijerph182010961] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/11/2021] [Accepted: 10/13/2021] [Indexed: 12/16/2022]
Abstract
Morganella morganii is one of the main etiological agents of hospital-acquired infections and no licensed vaccine is available against the pathogen. Herein, we designed a multi-epitope-based vaccine against M. morganii. Predicted proteins from fully sequenced genomes of the pathogen were subjected to a core sequences analysis, followed by the prioritization of non-redundant, host non-homologous and extracellular, outer membrane and periplasmic membrane virulent proteins as vaccine targets. Five proteins (TonB-dependent siderophore receptor, serralysin family metalloprotease, type 1 fimbrial protein, flagellar hook protein (FlgE), and pilus periplasmic chaperone) were shortlisted for the epitope prediction. The predicted epitopes were checked for antigenicity, toxicity, solubility, and binding affinity with the DRB*0101 allele. The selected epitopes were linked with each other through GPGPG linkers and were joined with the cholera toxin B subunit (CTBS) to boost immune responses. The tertiary structure of the vaccine was modeled and blindly docked with MHC-I, MHC-II, and Toll-like receptors 4 (TLR4). Molecular dynamic simulations of 250 nanoseconds affirmed that the designed vaccine showed stable conformation with the receptors. Further, intermolecular binding free energies demonstrated the domination of both the van der Waals and electrostatic energies. Overall, the results of the current study might help experimentalists to develop a novel vaccine against M. morganii.
Collapse
Affiliation(s)
- Asad Ullah
- Department of Health and Biological Sciences, Abasyn University, Peshawar 25000, Pakistan; (A.U.); (Z.A.); (M.K.)
| | - Sajjad Ahmad
- Department of Health and Biological Sciences, Abasyn University, Peshawar 25000, Pakistan; (A.U.); (Z.A.); (M.K.)
| | - Saba Ismail
- Department of Biological Sciences, National University of Medical Sciences, Rawalpindi 46000, Pakistan;
| | - Zobia Afsheen
- Department of Health and Biological Sciences, Abasyn University, Peshawar 25000, Pakistan; (A.U.); (Z.A.); (M.K.)
| | - Muhammad Khurram
- Department of Health and Biological Sciences, Abasyn University, Peshawar 25000, Pakistan; (A.U.); (Z.A.); (M.K.)
- Department of Pharmacy, Abasyn University, Peshawar 25000, Pakistan
| | | | - Naif AlSuhaymi
- Department of Emergency Medical Services, Faculty of Health Sciences, AlQunfudah, Umm Al-Qura University, Makkah 21912, Saudi Arabia; (N.A.); (M.H.A.)
| | - Mahdi H. Alsugoor
- Department of Emergency Medical Services, Faculty of Health Sciences, AlQunfudah, Umm Al-Qura University, Makkah 21912, Saudi Arabia; (N.A.); (M.H.A.)
| | - Khaled S. Allemailem
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| |
Collapse
|
10
|
Piel LMW, Durfee CJ, White SN. Proteome-wide analysis of Coxiella burnetii for conserved T-cell epitopes with presentation across multiple host species. BMC Bioinformatics 2021; 22:296. [PMID: 34078271 PMCID: PMC8170629 DOI: 10.1186/s12859-021-04181-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 05/10/2021] [Indexed: 12/29/2022] Open
Abstract
Background Coxiella burnetii is the Gram-negative bacterium responsible for Q fever in humans and coxiellosis in domesticated agricultural animals. Previous vaccination efforts with whole cell inactivated bacteria or surface isolated proteins confer protection but can produce a reactogenic immune responses. Thereby a protective vaccine that does not cause aberrant immune reactions is required. The critical role of T-cell immunity in control of C. burnetii has been made clear, since either CD8+ or CD4+ T cells can empower clearance. The purpose of this study was to identify C. burnetii proteins bearing epitopes that interact with major histocompatibility complexes (MHC) from multiple host species (human, mouse, and cattle). Results Of the annotated 1815 proteins from the Nine Mile Phase I (RSA 493) assembly, 402 proteins were removed from analysis due to a lack of inter-isolate conservation. An additional 391 proteins were eliminated from assessment to avoid potential autoimmune responses due to the presence of host homology. We analyzed the remaining 1022 proteins for their ability to produce peptides that bind MHCI or MHCII. MHCI and MHCII predicted epitopes were filtered and compared between species yielding 777 MHCI epitopes and 453 MHCII epitopes. These epitopes were further examined for presentation by both MHCI and MHCII, and for proteins that contained multiple epitopes. There were 31 epitopes that overlapped positionally between MHCI and MHCII across host species. Of these, there were 9 epitopes represented within proteins containing ≥ 5 total epitopes, where an additional 24 proteins were also epitope dense. In all, 55 proteins were found to contain high scoring T-cell epitopes. Besides the well-studied protein Com1, most identified proteins were novel when compared to previously studied vaccine candidates. Conclusion These data represent the first proteome-wide evaluation of C. burnetii peptide epitopes. Furthermore, the inclusion of human, mouse, and bovine data capture a range of hosts for this zoonotic pathogen plus an important model organism. This work provides new vaccine targets for future vaccination efforts and enhances opportunities for selecting multiple T-cell epitope types to include within a vaccine. Supplementary Information The online version contains supplementary material available at 10.1186/s12859-021-04181-w.
Collapse
Affiliation(s)
| | - Codie J Durfee
- USDA-ARS Animal Disease Research Unit, Pullman, WA, 99164, USA
| | - Stephen N White
- USDA-ARS Animal Disease Research Unit, Pullman, WA, 99164, USA. .,Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA, 99164, USA. .,Center for Reproductive Biology, Washington State University, Pullman, WA, 99164, USA.
| |
Collapse
|
11
|
Comparative genomics of Edwardsiellaictaluri revealed four distinct host-specific genotypes and thirteen potential vaccine candidates. Genomics 2021; 113:1976-1987. [PMID: 33848586 DOI: 10.1016/j.ygeno.2021.04.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 12/31/2020] [Accepted: 04/05/2021] [Indexed: 02/02/2023]
Abstract
Edwardsiella ictaluri has been considered an important threat for catfish aquaculture industry for more than 4 decades and an emerging pathogen of farmed tilapia but only 9 sequenced genomes were publicly available. We hereby report two new complete genomes of E. ictaluri originated from diseased hybrid red tilapia (Oreochromis sp.) and striped catfish (Pangasianodon hypophthalmus) in Southeast Asia. E. ictaluri species has an open pan-genome consisting of 2615 core genes and 5592 pan genes. Phylogenetic analysis using core genome MLST (cgMLST) and ANI values consistently placed E. ictaluri isolates into 4 host-specific genotypes. Presence of unique genes and absence of certain genes from each genotype provided potential biomarkers for further development of genotyping scheme. Vaccine candidates with high antigenic, solubility and secretion probabilities were identified in silico from the core genes. Microevolution within the species is brought about by bacteriophages and insertion elements and possibly drive host adaptation.
Collapse
|
12
|
Keikha M, Karbalaei M. Correlation between the geographical origin of Helicobacter pylori homB-positive strains and their clinical outcomes: a systematic review and meta-analysis. BMC Gastroenterol 2021; 21:181. [PMID: 33879080 PMCID: PMC8056685 DOI: 10.1186/s12876-021-01764-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 04/09/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND In general, all virulence factors of Helicobacter pylori (H. pylori) are involved in its infections. However, recent studies have shown that the homB gene is one of the virulence genes that affects the severity of the clinical results of this bacterium. METHODS The main purpose of this study was to investigate the relationship between the presence of homB gene in H. pylori and the progression of its infection to peptic ulcer and gastric cancer. In the present study, we conducted a systematic search to collect all articles related to the effect of homB-positive strains on clinical outcomes. Finally, 12 eligible studies according to our criteria were included in this meta-analysis and the effect of homB gene on gastric ulcer and gastric cancer diseases was evaluated by summary odds ratio (OR). RESULTS Current results showed that the homB-positive strains significantly increase the risk of peptic ulcer (OR 1.36; 1.07-1.72 with 95% CIs), especially in western countries (OR 1.61; 1.20-2.14 with 95% CIs). Moreover, we observed a positive association between the homB gene and risk of gastric cancer (OR 2.16; 1.37-3.40 with 95% CIs). In addition, based on subgroup analysis, it was found that the presence of this gene in H. pylori strains increases the risk of gastric cancer in the Asian population (OR 3.71; 1.85-7.45 with 95% CIs). CONCLUSIONS Overall, in the present study we found that homB gene is responsible for the progressing of primary infection to severe complications, in particular peptic ulcer in western countries and gastric cancer in Asian countries.
Collapse
Affiliation(s)
- Masoud Keikha
- Department of Microbiology and Virology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohsen Karbalaei
- Department of Microbiology and Virology, School of Medicine, Jiroft University of Medical Sciences, Jiroft, Iran.
| |
Collapse
|
13
|
Palau M, Piqué N, Ramírez-Lázaro MJ, Lario S, Calvet X, Miñana-Galbis D. Whole-Genome Sequencing and Comparative Genomics of Three Helicobacter pylori Strains Isolated from the Stomach of a Patient with Adenocarcinoma. Pathogens 2021; 10:331. [PMID: 33809022 PMCID: PMC7998635 DOI: 10.3390/pathogens10030331] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 03/01/2021] [Accepted: 03/09/2021] [Indexed: 12/28/2022] Open
Abstract
Helicobacter pylori is a common pathogen associated with several severe digestive diseases. Although multiple virulence factors have been described, it is still unclear the role of virulence factors on H. pylori pathogenesis and disease progression. Whole genome sequencing could help to find genetic markers of virulence strains. In this work, we analyzed three complete genomes from isolates obtained at the same point in time from a stomach of a patient with adenocarcinoma, using multiple available bioinformatics tools. The genome analysis of the strains B508A-S1, B508A-T2A and B508A-T4 revealed that they were cagA, babA and sabB/hopO negative. The differences among the three genomes were mainly related to outer membrane proteins, methylases, restriction modification systems and flagellar biosynthesis proteins. The strain B508A-T2A was the only one presenting the genotype vacA s1, and had the most distinct genome as it exhibited fewer shared genes, higher number of unique genes, and more polymorphisms were found in this genome. With all the accumulated information, no significant differences were found among the isolates regarding virulence and origin of the isolates. Nevertheless, some B508A-T2A genome characteristics could be linked to the pathogenicity of H. pylori.
Collapse
Affiliation(s)
- Montserrat Palau
- Secció de Microbiologia, Departament de Biologia, Sanitat i Medi Ambient, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona, Av. Joan XXIII 27-31, 08028 Barcelona, Catalonia, Spain; (M.P.); (N.P.)
| | - Núria Piqué
- Secció de Microbiologia, Departament de Biologia, Sanitat i Medi Ambient, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona, Av. Joan XXIII 27-31, 08028 Barcelona, Catalonia, Spain; (M.P.); (N.P.)
| | - M. José Ramírez-Lázaro
- Digestive Diseases Service, Hospital de Sabadell, Institut Universitari Parc Taulí-UAB, Parc Tauli 1, 08208 Sabadell, Catalonia, Spain; (M.J.R.-L.); (S.L.); (X.C.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Monforte de Lemos 3–5, 28029 Madrid, Community of Madrid, Spain
| | - Sergio Lario
- Digestive Diseases Service, Hospital de Sabadell, Institut Universitari Parc Taulí-UAB, Parc Tauli 1, 08208 Sabadell, Catalonia, Spain; (M.J.R.-L.); (S.L.); (X.C.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Monforte de Lemos 3–5, 28029 Madrid, Community of Madrid, Spain
| | - Xavier Calvet
- Digestive Diseases Service, Hospital de Sabadell, Institut Universitari Parc Taulí-UAB, Parc Tauli 1, 08208 Sabadell, Catalonia, Spain; (M.J.R.-L.); (S.L.); (X.C.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Monforte de Lemos 3–5, 28029 Madrid, Community of Madrid, Spain
| | - David Miñana-Galbis
- Secció de Microbiologia, Departament de Biologia, Sanitat i Medi Ambient, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona, Av. Joan XXIII 27-31, 08028 Barcelona, Catalonia, Spain; (M.P.); (N.P.)
| |
Collapse
|
14
|
Martín-Galiano AJ, Escolano-Martínez MS, Corsini B, de la Campa AG, Yuste J. Immunization with SP_1992 (DiiA) Protein of Streptococcus pneumoniae Reduces Nasopharyngeal Colonization and Protects against Invasive Disease in Mice. Vaccines (Basel) 2021; 9:vaccines9030187. [PMID: 33668195 PMCID: PMC7995960 DOI: 10.3390/vaccines9030187] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/19/2021] [Accepted: 02/19/2021] [Indexed: 11/16/2022] Open
Abstract
Knowledge-based vaccinology can reveal uncharacterized antigen candidates for a new generation of protein-based anti-pneumococcal vaccines. DiiA, encoded by the sp_1992 locus, is a surface protein containing either one or two repeats of a 37mer N-terminal motif that exhibits low interstrain variability. DiiA belongs to the core proteome, contains several conserved B-cell epitopes, and is associated with colonization and pathogenesis. Immunization with DiiA protein via the intraperitoneal route induced a strong IgG response, including different IgG subtypes. Vaccination with DiiA increased bacterial clearance and induced protection against sepsis, conferring 70% increased survival at 48 h post-infection when compared to the adjuvant control. The immunogenic response and survival rates in mice immunized with a truncated DiiA version lacking 119 N-terminal residues were remarkably lower, confirming the relevance of the repeat zone in the immunoprotection by DiiA. Intranasal immunization of mice with the entire recombinant protein elicited mucosal IgG and IgA responses that reduced bacterial colonization of the nasopharynx, confirming that this protein might be a vaccine candidate for reducing the carrier rate. DiiA constitutes an example of how functionally unannotated proteins may still represent promising candidates that can be used in prophylactic strategies against the pneumococcal carrier state and invasive disease.
Collapse
Affiliation(s)
- Antonio J. Martín-Galiano
- Centro Nacional de Microbiología, Instituto de Salud Carlos III (ISCIII), 28220 Madrid, Spain; (M.S.E.-M.); (B.C.); (A.G.d.l.C.)
- Correspondence: (A.J.M.-G.); (J.Y.); Tel.: +34-918223976 (A.J.M.-G.); +34-918223620 (J.Y.)
| | - María S. Escolano-Martínez
- Centro Nacional de Microbiología, Instituto de Salud Carlos III (ISCIII), 28220 Madrid, Spain; (M.S.E.-M.); (B.C.); (A.G.d.l.C.)
| | - Bruno Corsini
- Centro Nacional de Microbiología, Instituto de Salud Carlos III (ISCIII), 28220 Madrid, Spain; (M.S.E.-M.); (B.C.); (A.G.d.l.C.)
| | - Adela G. de la Campa
- Centro Nacional de Microbiología, Instituto de Salud Carlos III (ISCIII), 28220 Madrid, Spain; (M.S.E.-M.); (B.C.); (A.G.d.l.C.)
- Presidencia Consejo Superior de Investigaciones Científicas, 28006 Madrid, Spain
| | - José Yuste
- Centro Nacional de Microbiología, Instituto de Salud Carlos III (ISCIII), 28220 Madrid, Spain; (M.S.E.-M.); (B.C.); (A.G.d.l.C.)
- CIBER de Enfermedades Respiratorias (CIBERES), 28029 Madrid, Spain
- Correspondence: (A.J.M.-G.); (J.Y.); Tel.: +34-918223976 (A.J.M.-G.); +34-918223620 (J.Y.)
| |
Collapse
|
15
|
Khan S, Shaker B, Ahmad S, Abbasi SW, Arshad M, Haleem A, Ismail S, Zaib A, Sajjad W. Towards a novel peptide vaccine for Middle East respiratory syndrome coronavirus and its possible use against pandemic COVID-19. J Mol Liq 2021; 324:114706. [PMID: 33173250 PMCID: PMC7644433 DOI: 10.1016/j.molliq.2020.114706] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 09/05/2020] [Accepted: 11/02/2020] [Indexed: 12/02/2022]
Abstract
Middle East respiratory syndrome coronavirus (MERS-CoV) is an emerging health concern due to its high mortality rate of 35%. At present, no vaccine is available to protect against MERS-CoV infections. Therefore, an in silico search for potential antigenic epitopes in the non-redundant proteome of MERS-CoV was performed herein. First, a subtractive proteome-based approach was employed to look for the surface exposed and host non-homologous proteins. Following, immunoinformatics analysis was performed to predict antigenic B and T cell epitopes that were used in the design of a multi-epitopes peptide. Molecular docking study was carried out to predict vaccine construct affinity of binding to Toll-like receptor 3 (TLR3) and understand its binding conformation to extract ideas about its processing by the host immune system. We identified membrane protein, envelope small membrane protein, non-structural protein ORF3, non-structural protein ORF5, and spike glycoprotein as potential candidates for subunit vaccine designing. The designed multi-epitope peptide then linked to β-defensin adjuvant is showing high antigenicity. Further, the sequence of the designed vaccine construct is optimized for maximum expression in the Escherichia coli expression system. A rich pattern of hydrogen and hydrophobic interactions of the construct was observed with the TLR3 allowing stable binding of the construct at the docked site as predicted by the molecular dynamics simulation and MM-PBSA binding energies. We expect that the panel of subunit vaccine candidates and the designed vaccine construct could be highly effective in immunizing populations from infections caused by MERS-CoV and could possible applied on the current pandemic COVID-19.
Collapse
Affiliation(s)
- Salman Khan
- School of Life Sciences, Lanzhou University, Lanzhou, Gansu 73000, PR China
| | - Bilal Shaker
- School of Integrative Engineering, Chung ANG University, Seoul, South Korea
| | - Sajjad Ahmad
- National Center for Bioinformatics, Quaid-i-Azam University, Islamabad, Pakistan
| | - Sumra Wajid Abbasi
- Department of Biological Sciences, National University of Medical Sciences, the Mall, Rawalpindi 46000, Pakistan
| | - Muhammad Arshad
- Department of Microbiology, Quaid-i-Azam University, Islamabad, Pakistan
| | - Abdul Haleem
- Department of Microbiology, Quaid-i-Azam University, Islamabad, Pakistan
| | - Saba Ismail
- National Center for Bioinformatics, Quaid-i-Azam University, Islamabad, Pakistan
| | - Anita Zaib
- National Center for Bioinformatics, Quaid-i-Azam University, Islamabad, Pakistan
| | - Wasim Sajjad
- Department of Biological Sciences, National University of Medical Sciences, the Mall, Rawalpindi 46000, Pakistan
| |
Collapse
|
16
|
Roszczenko-Jasińska P, Wojtyś MI, Jagusztyn-Krynicka EK. Helicobacter pylori treatment in the post-antibiotics era-searching for new drug targets. Appl Microbiol Biotechnol 2020; 104:9891-9905. [PMID: 33052519 PMCID: PMC7666284 DOI: 10.1007/s00253-020-10945-w] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 09/28/2020] [Accepted: 10/04/2020] [Indexed: 12/14/2022]
Abstract
Abstract Helicobacter pylori, a member of Epsilonproteobacteria, is a Gram-negative microaerophilic bacterium that colonizes gastric mucosa of about 50% of the human population. Although most infections caused by H. pylori are asymptomatic, the microorganism is strongly associated with serious diseases of the upper gastrointestinal tract such as chronic gastritis, peptic ulcer, duodenal ulcer, and gastric cancer, and it is classified as a group I carcinogen. The prevalence of H. pylori infections varies worldwide. The H. pylori genotype, host gene polymorphisms, and environmental factors determine the type of induced disease. Currently, the most common therapy to treat H. pylori is the first line clarithromycin–based triple therapy or a quadruple therapy replacing clarithromycin with new antibiotics. Despite the enormous recent effort to introduce new therapeutic regimens to combat this pathogen, treatment for H. pylori still fails in more than 20% of patients, mainly due to the increased prevalence of antibiotic resistant strains. In this review we present recent progress aimed at designing new anti-H. pylori strategies to combat this pathogen. Some novel therapeutic regimens will potentially be used as an extra constituent of antibiotic therapy, and others may replace current antibiotic treatments. Key points • Attempts to improve eradication rate of H. pylori infection. • Searching for new drug targets in anti-Helicobacter therapies.
Collapse
Affiliation(s)
- Paula Roszczenko-Jasińska
- Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, Univeristy of Warsaw, Miecznikowa 1, 02-096, Warszawa, Poland
| | - Marta Ilona Wojtyś
- Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, Univeristy of Warsaw, Miecznikowa 1, 02-096, Warszawa, Poland.,Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, Univeristy of Warsaw, Pasteura 5, 02-093, Warszawa, Poland
| | - Elżbieta K Jagusztyn-Krynicka
- Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, Univeristy of Warsaw, Miecznikowa 1, 02-096, Warszawa, Poland.
| |
Collapse
|
17
|
Fiuza TS, Lima JPMS, de Souza GA. EpitoCore: Mining Conserved Epitope Vaccine Candidates in the Core Proteome of Multiple Bacteria Strains. Front Immunol 2020; 11:816. [PMID: 32431712 PMCID: PMC7214623 DOI: 10.3389/fimmu.2020.00816] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 04/09/2020] [Indexed: 12/30/2022] Open
Abstract
In reverse vaccinology approaches, complete proteomes of bacteria are submitted to multiple computational prediction steps in order to filter proteins that are possible vaccine candidates. Most available tools perform such analysis only in a single strain, or a very limited number of strains. But the vast amount of genomic data had shown that most bacteria contain pangenomes, i.e., their genomic information contains core, conserved genes, and random accessory genes specific to each strain. Therefore, in reverse vaccinology methods it is of the utmost importance to define core proteins and core epitopes. EpitoCore is a decision-tree pipeline developed to fulfill that need. It provides surfaceome prediction of proteins from related strains, defines core proteins within those, calculate their immunogenicity, predicts epitopes for a given set of MHC alleles defined by the user, and then reports if epitopes are located extracellularly and if they are conserved among the core homologs. Pipeline performance is illustrated by mining peptide vaccine candidates in Mycobacterium avium hominissuis strains. From a total proteome of ~4,800 proteins per strain, EpitoCore predicted 103 highly immunogenic core homologs located at cell surface, many of those related to virulence and drug resistance. Conserved epitopes identified among these homologs allows the users to define sets of peptides with potential to immunize the largest coverage of tested HLA alleles using peptide-based vaccines. Therefore, EpitoCore is able to provide automated identification of conserved epitopes in bacterial pangenomic datasets.
Collapse
Affiliation(s)
- Tayna S. Fiuza
- Bioinformatics Multidisciplinary Environment, Universidade Federal do Rio Grande Do Norte-UFRN, Natal, Brazil
| | - João P. M. S. Lima
- Bioinformatics Multidisciplinary Environment, Universidade Federal do Rio Grande Do Norte-UFRN, Natal, Brazil
- Department of Biochemistry, Universidade Federal do Rio Grande do Norte-UFRN, Natal, Brazil
| | - Gustavo A. de Souza
- Bioinformatics Multidisciplinary Environment, Universidade Federal do Rio Grande Do Norte-UFRN, Natal, Brazil
- Department of Biochemistry, Universidade Federal do Rio Grande do Norte-UFRN, Natal, Brazil
| |
Collapse
|
18
|
Abstract
Since the early days of the genome era, the scientific community has relied on a single 'reference' genome for each species, which is used as the basis for a wide range of genetic analyses, including studies of variation within and across species. As sequencing costs have dropped, thousands of new genomes have been sequenced, and scientists have come to realize that a single reference genome is inadequate for many purposes. By sampling a diverse set of individuals, one can begin to assemble a pan-genome: a collection of all the DNA sequences that occur in a species. Here we review efforts to create pan-genomes for a range of species, from bacteria to humans, and we further consider the computational methods that have been proposed in order to capture, interpret and compare pan-genome data. As scientists continue to survey and catalogue the genomic variation across human populations and begin to assemble a human pan-genome, these efforts will increase our power to connect variation to human diversity, disease and beyond.
Collapse
Affiliation(s)
- Rachel M Sherman
- Department of Computer Science, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, USA.
- Center for Computational Biology, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, USA.
| | - Steven L Salzberg
- Department of Computer Science, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, USA
- Center for Computational Biology, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, USA
- Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Department of Biostatistics, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
19
|
Ismail S, Ahmad S, Azam SS. Vaccinomics to design a novel single chimeric subunit vaccine for broad-spectrum immunological applications targeting nosocomial Enterobacteriaceae pathogens. Eur J Pharm Sci 2020; 146:105258. [DOI: 10.1016/j.ejps.2020.105258] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 01/09/2020] [Accepted: 02/04/2020] [Indexed: 12/21/2022]
|
20
|
Walduck AK, Raghavan S. Immunity and Vaccine Development Against Helicobacter pylori. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1149:257-275. [PMID: 31016627 DOI: 10.1007/5584_2019_370] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Helicobacter pylori is a highly-adapted gastrointestinal pathogen of humans and the immunology of this chronic infection is extremely complex. Despite the availability of antibiotic therapy, the global incidence of H. pylori infection remains high, particularly in low to middle-income nations. Failure of therapy and the spread of antibiotic resistance among the bacteria are significant problems and provide impetus for the development of new therapies and vaccines to treat or prevent gastric ulcer, and gastric carcinoma. The expansion of knowledge on gastric conventional and regulatory T cell responses, and the role of TH17 in chronic gastritis from studies in mouse models and patients have provided valuable insights into how gastritis is initiated and maintained. The development of human challenge models for testing candidate vaccines has meant a unique opportunity to study acute infection, but the field of vaccine development has not progressed as rapidly as anticipated. One clear lesson learned from previous studies is that we need a better understanding of the immune suppressive mechanisms in vivo to be able to design vaccine strategies. There is still an urgent need to identify practical surrogate markers of protection that could be deployed in future field vaccine trials. Important developments in our understanding of the chronic inflammatory response, progress and problems arising from human studies, and an outlook for the future of clinical vaccine trials will be discussed.
Collapse
Affiliation(s)
- Anna K Walduck
- School of Science, RMIT University, Melbourne, VIC, Australia.
| | - Sukanya Raghavan
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
21
|
Yahara K, Lehours P, Vale FF. Analysis of genetic recombination and the pan-genome of a highly recombinogenic bacteriophage species. Microb Genom 2019; 5. [PMID: 31310202 PMCID: PMC6755498 DOI: 10.1099/mgen.0.000282] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Bacteriophages are the most prevalent biological entities impacting on the ecosystem and are characterized by their extensive diversity. However, there are two aspects of phages that have remained largely unexplored: genetic flux by recombination between phage populations and characterization of specific phages in terms of the pan-genome. Here, we examined the recombination and pan-genome in Helicobacter pylori prophages at both the genome and gene level. In the genome-level analysis, we applied, for the first time, chromosome painting and fineSTRUCTURE algorithms to a phage species, and showed novel trends in inter-population genetic flux. Notably, hpEastAsia is a phage population that imported a higher proportion of DNA fragments from other phages, whereas the hpSWEurope phages showed weaker signatures of inter-population recombination, suggesting genetic isolation. The gene-level analysis showed that, after parameter tuning of the prokaryote pan-genome analysis program, H. pylori phages have a pan-genome consisting of 75 genes and a soft-core genome of 10 genes, which includes genes involved in the lytic and lysogenic life cycles. Quantitative analysis of recombination events of the soft-core genes showed no substantial variation in the intensity of recombination across the genes, but rather equally frequent recombination among housekeeping genes that were previously reported to be less prone to recombination. The signature of frequent recombination appears to reflect the host–phage evolutionary arms race, either by contributing to escape from bacterial immunity or by protecting the host by producing defective phages.
Collapse
Affiliation(s)
- Koji Yahara
- Antimicrobial Resistance Research Center, National Institute of Infectious Diseases, 4-2-1 Aobacho, Higashimurayama, Tokyo 189-0002, Japan
| | - Philippe Lehours
- French National Reference Center for Campylobacters and Helicobacters, Bordeaux, France.,University of Bordeaux, INSERM, UMR1053 Bordeaux Research in Translational Oncology, BaRITOn, 33076 Bordeaux, France
| | - Filipa F Vale
- Host-Pathogen Interactions Unit, Research Institute for Medicines (iMed-ULisboa), Faculdade de Farmácia da Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
22
|
Liu J, Zeng Q, Wang M, Cheng A, Liu M, Zhu D, Chen S, Jia R, Zhao XX, Wu Y, Yang Q, Zhang S, Liu Y, Yu Y, Zhang L, Chen X. Comparative genome-scale modelling of the pathogenic Flavobacteriaceae species Riemerella anatipestifer in China. Environ Microbiol 2019; 21:2836-2851. [PMID: 31004458 DOI: 10.1111/1462-2920.14635] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 04/17/2019] [Indexed: 12/14/2022]
Abstract
Riemerella anatipestifer (RA) is a gram-negative bacterium that has a high potential to infect waterfowl. Although more and more genomes of RA have been generated comparaed to genomic analysis of RA still remains at the level of individual species. In this study, we analysed the pan-genome of 27 RA virulent isolates to reveal the intraspecies genomic diversity from various aspects. The multi-locus sequence typing (MLST) analysis suggests that the geographic origin of R. anatipestifer is Guangdong province, China. Results of pan-genome analysis revealed an open pan-genome for all 27 species with the sizes of 2967 genes. We identified 387 genes among 555 unique genes originated by horizontal gene transfer. Further studies showed 204 strain-specific HGT genes were predicted as virulent proteins. Screening the 1113 core genes in RA through subtractive genomic approach, 70 putative vaccine targets out of 125 non-cytoplasmic proteins have been predicted. Further analysis of these non A. platyrhynchos homologous proteins predicted that 56 essential proteins as drug target with more interaction partners were involved in unique metabolic pathways of RA. In conclusion, the present study indicated the essence and the diversity of RA and also provides useful information for identification of vaccine and drugs candidates in future.
Collapse
Affiliation(s)
- Jibin Liu
- Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, 611130, China
| | - Qiurui Zeng
- School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025, China
| | - Mingshu Wang
- Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, 611130, China.,Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Anchun Cheng
- Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, 611130, China.,Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Mafeng Liu
- Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, 611130, China.,Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Dekang Zhu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, 611130, China.,Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Shun Chen
- Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, 611130, China.,Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Renyong Jia
- Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, 611130, China.,Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Xin-Xin Zhao
- Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, 611130, China.,Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Ying Wu
- Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, 611130, China.,Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Qiao Yang
- Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, 611130, China.,Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Shaqiu Zhang
- Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, 611130, China.,Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Yunya Liu
- Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, 611130, China.,Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Yanling Yu
- Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, 611130, China.,Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Ling Zhang
- Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, 611130, China.,Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Xiaoyue Chen
- Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, 611130, China.,Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| |
Collapse
|
23
|
Tongtawee T, Wattanawongdon W, Simawaranon T. Effects of periodontal therapy on eradication and recurrence of Helicobacter pylori infection after successful treatment. J Int Med Res 2019; 47:875-883. [PMID: 30616462 PMCID: PMC6381484 DOI: 10.1177/0300060518816158] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
OBJECTIVES This study aimed to evaluate the effects of periodontal therapy on the efficacy of Helicobacter pylori eradication and on the recurrence of infection after eradication. METHODS We conducted a prospective randomized trial on 698 gastric H. pylori-infected patients, of whom 347 received gastric H. pylori treatment alone and 342 received gastric H. pylori treatment plus periodontal therapy. The presence of H. pylori and associated virulence genes were detected by real-time polymerase chain reaction. RESULTS After eradication of gastric H. pylori infection, the recurrence of gastric H. pylori was significantly lower in the gastric H. pylori treatment plus periodontal therapy group than in the group receiving gastric H. pylori treatment alone (OR 0.67; 95% CI 0.45 to 0.99), whereas the eradication rate was not significantly different (OR 0.87; 95% CI 0.68 to 0.98). There was a close relationship between the presence of H. pylori in saliva and its presence in the stomach. CONCLUSIONS The oral cavity is an important reservoir for gastric H. pylori infection. Adjunctive periodontal therapy could enhance the efficiency of H. pylori treatment and reduce the recurrence of gastric H. pylori infection.
Collapse
Affiliation(s)
- Taweesak Tongtawee
- 1 Department of Surgery, Institute of Medicine, Suranaree University of Technology, Nakhon Ratchasima, Thailand.,2 Suranaree University of Technology Hospital, Nakhon Ratchasima, Thailand
| | - Wareeporn Wattanawongdon
- 1 Department of Surgery, Institute of Medicine, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| | - Theeraya Simawaranon
- 1 Department of Surgery, Institute of Medicine, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| |
Collapse
|
24
|
Ain QU, Ahmad S, Azam SS. Subtractive proteomics and immunoinformatics revealed novel B-cell derived T-cell epitopes against Yersinia enterocolitica: An etiological agent of Yersiniosis. Microb Pathog 2018; 125:336-348. [PMID: 30273644 DOI: 10.1016/j.micpath.2018.09.042] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 01/17/2018] [Accepted: 09/27/2018] [Indexed: 01/19/2023]
Abstract
Yersinia enterocolitica is the third most common cause of gastrointestinal manifestations in Europe. Statistically, every year the pathogen accounts for 640 hospitalizations, 117,000 illnesses, and 35 deaths in the United States. The associated mortality rate of the pathogen is 50% and is virtually resistant to penicillin G, ampicillin and cephalotin. The development of new and effective therapeutic procedures is urgently needed to counter the multi-drug-resistant phenotypes imposed by the said pathogen. Based on subtractive reverse vaccinology and immunoinformatics approaches, we have successfully predicted novel antigenic peptide vaccine candidates against Y. enterocolitica. The pipeline revealed two isoforms of ompC family; meoA (ompC) and ompC2 as promising vaccine targets. Protein-protein interactions elaborated the involvement of target candidates in the major biological pathways of the pathogen. The predicted 9-mer B-cell derived T-cell epitope of proteins are found to be virulent, antigenic, non-allergic, surface exposed and conserved in all nine completely sequenced strains of the pathogen. Molecular docking predicts deep and stable binding of the epitopes in the binding pocket of the most predominant allele in human population-the DRB1*0101. These epitopes of target proteins could provide the foundation for the development of an epitope-driven vaccine against Y. enterocolitica.
Collapse
Affiliation(s)
- Qurat Ul Ain
- Computational Biology Lab, National Center of Bioinformatics (NCB), Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Sajjad Ahmad
- Computational Biology Lab, National Center of Bioinformatics (NCB), Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Syed Sikander Azam
- Computational Biology Lab, National Center of Bioinformatics (NCB), Quaid-i-Azam University, Islamabad, 45320, Pakistan.
| |
Collapse
|
25
|
Pasala C, Chilamakuri CSR, Katari SK, Nalamolu RM, Bitla AR, Umamaheswari A. An in silico study: Novel targets for potential drug and vaccine design against drug resistant H. pylori. Microb Pathog 2018; 122:156-161. [DOI: 10.1016/j.micpath.2018.05.037] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 05/19/2018] [Accepted: 05/22/2018] [Indexed: 02/08/2023]
|
26
|
Servetas SL, Kim A, Su H, Cha JH, Merrell DS. Comparative analysis of the Hom family of outer membrane proteins in isolates from two geographically distinct regions: The United States and South Korea. Helicobacter 2018; 23:e12461. [PMID: 29315985 DOI: 10.1111/hel.12461] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND Helicobacter pylori encodes numerous outer membrane proteins (OMPs), but only a few have been characterized in depth. Deletion, duplication, and allelic variation of many of the H. pylori OMPs have been reported, which suggests that these proteins may play key roles in host adaptation. Herein, we characterize the variation observed within the Hom family of OMPs in H. pylori obtained from two geographically distinct populations. MATERIALS AND METHODS PCR genotyping of the hom genes was carried out using clinical isolates from South Korea and the United States. A combination of statistical, phylogenetic, and protein modeling analyses was conducted to further characterize the hom variants. RESULTS Variations in the closely related hom genes, homA and homB, occur in regions that are predicted to encode environmentally exposed loops. A similar phenomenon is true for homCS as compared to homCL . Conversely, little variation was observed in homD. Certain variants of the Hom family of proteins were more prominent in isolates from the Korean population as compared to isolates from the United States. CONCLUSION En masse, our data show that the homA, homB, and homC profiles vary based upon the geographic origin of the strain; however, the fourth member of the hom family, homD, is more highly conserved. Additionally, protein topology modeling showed that many of the less well-conserved regions between homA and homB and between homCS and homCL corresponded to predicted environmentally exposed loops, suggesting that the divergence of the Hom family may be due to host adaptation/pressure.
Collapse
Affiliation(s)
- Stephanie L Servetas
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Aeryun Kim
- Department of Oral Biology, Oral Science Research Center, BK21 Plus Project, Yonsei University College of Dentistry, Seoul, Korea.,Department of Applied Life Science, The Graduate School, Yonsei University, Seoul, Korea
| | - Hanfu Su
- Department of Oral Biology, Oral Science Research Center, BK21 Plus Project, Yonsei University College of Dentistry, Seoul, Korea.,Department of Applied Life Science, The Graduate School, Yonsei University, Seoul, Korea.,Microbiology and Molecular Biology Laboratory, Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Stomatology Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jeong-Heon Cha
- Department of Oral Biology, Oral Science Research Center, BK21 Plus Project, Yonsei University College of Dentistry, Seoul, Korea.,Department of Applied Life Science, The Graduate School, Yonsei University, Seoul, Korea.,Microbiology and Molecular Biology Laboratory, Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Stomatology Hospital of Guangzhou Medical University, Guangzhou, China
| | - D Scott Merrell
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| |
Collapse
|
27
|
Genome sequencing and analysis of Alcaligenes faecalis subsp. phenolicus MB207. Sci Rep 2018; 8:3616. [PMID: 29483539 PMCID: PMC5827749 DOI: 10.1038/s41598-018-21919-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 02/08/2018] [Indexed: 11/12/2022] Open
Abstract
Bacteria within the genus Alcaligenes, exhibit diverse properties but remain largely unexplored at genome scale. To shed light on the genome structure, heterogeneity and traits of Alcaligenes species, the genome of a tannery effluent isolated Alcaligenes faecalis subsp. phenolicus MB207 was sequenced and assembled. The genome was compared to the whole genome sequences of genus Alcaligenes present in the National Centre for Biotechnology Information database. Core, pan and species specific gene sequences i.e. singletons were identified. Members of this genus did not portray exceptional genetic heterogeneity or conservation and out of 5,166 protein coding genes from pooled genome dataset, 2429 (47.01%) contributed to the core, 1193 (23.09%) to singletons and 1544 (29.88%) to accessory genome. Secondary metabolite forming apparatus, antibiotic production and resistance was also profiled. Alcaligenes faecalis subsp. phenolicus MB207 genome consisted of a copious amount of bioremediation genes i.e. metal tolerance and xenobiotic degrading genes. This study marks this strain as a prospective eco-friendly bacterium with numerous benefits for the environment related research. Availability of the whole genome sequence heralds an opportunity for researchers to explore enzymes and apparatus for sustainable environmental clean-up as well as important compounds/substance production.
Collapse
|
28
|
Muñoz-Ramírez ZY, Mendez-Tenorio A, Kato I, Bravo MM, Rizzato C, Thorell K, Torres R, Aviles-Jimenez F, Camorlinga M, Canzian F, Torres J. Whole Genome Sequence and Phylogenetic Analysis Show Helicobacter pylori Strains from Latin America Have Followed a Unique Evolution Pathway. Front Cell Infect Microbiol 2017; 7:50. [PMID: 28293542 PMCID: PMC5328995 DOI: 10.3389/fcimb.2017.00050] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 02/10/2017] [Indexed: 12/21/2022] Open
Abstract
Helicobacter pylori (HP) genetics may determine its clinical outcomes. Despite high prevalence of HP infection in Latin America (LA), there have been no phylogenetic studies in the region. We aimed to understand the structure of HP populations in LA mestizo individuals, where gastric cancer incidence remains high. The genome of 107 HP strains from Mexico, Nicaragua and Colombia were analyzed with 59 publicly available worldwide genomes. To study bacterial relationship on whole genome level we propose a virtual hybridization technique using thousands of high-entropy 13 bp DNA probes to generate fingerprints. Phylogenetic virtual genome fingerprint (VGF) was compared with Multi Locus Sequence Analysis (MLST) and with phylogenetic analyses of cagPAI virulence island sequences. With MLST some Nicaraguan and Mexican strains clustered close to Africa isolates, whereas European isolates were spread without clustering and intermingled with LA isolates. VGF analysis resulted in increased resolution of populations, separating European from LA strains. Furthermore, clusters with exclusively Colombian, Mexican, or Nicaraguan strains were observed, where the Colombian cluster separated from Europe, Asia, and Africa, while Nicaraguan and Mexican clades grouped close to Africa. In addition, a mixed large LA cluster including Mexican, Colombian, Nicaraguan, Peruvian, and Salvadorian strains was observed; all LA clusters separated from the Amerind clade. With cagPAI sequence analyses LA clades clearly separated from Europe, Asia and Amerind, and Colombian strains formed a single cluster. A NeighborNet analyses suggested frequent and recent recombination events particularly among LA strains. Results suggests that in the new world, H. pylori has evolved to fit mestizo LA populations, already 500 years after the Spanish colonization. This co-adaption may account for regional variability in gastric cancer risk.
Collapse
Affiliation(s)
- Zilia Y Muñoz-Ramírez
- Laboratorio de Biotecnología y Bioinformática Genómica, ENCB, Instituto Politécnico Nacional Ciudad de México, Mexico
| | - Alfonso Mendez-Tenorio
- Laboratorio de Biotecnología y Bioinformática Genómica, ENCB, Instituto Politécnico Nacional Ciudad de México, Mexico
| | - Ikuko Kato
- Department of Oncology and of Pathology, Wayne State University School of Medicine Detroit, MI, USA
| | - Maria M Bravo
- Grupo de Investigación en Biología del Cáncer, Instituto Nacional de Cancerologia Bogota, Colombia
| | - Cosmeri Rizzato
- Dipartmento di Ricerca Traslazionale e Nuove Tecnologie in Medicina e Chirurgia, Università di Pisa Pisa, Italy
| | - Kaisa Thorell
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet Stockholm, Sweden
| | - Roberto Torres
- Laboratorio de Biotecnología y Bioinformática Genómica, ENCB, Instituto Politécnico Nacional Ciudad de México, Mexico
| | | | - Margarita Camorlinga
- Unidad de Investigacion en Enfermedades Infecciosas, IMSS Ciudad de México, Mexico
| | - Federico Canzian
- Genomic Epidemiology Group, German Cancer Research Center (DKFZ) Heidelberg, Germany
| | - Javier Torres
- Unidad de Investigacion en Enfermedades Infecciosas, IMSS Ciudad de México, Mexico
| |
Collapse
|
29
|
Zawilak-Pawlik A, Zakrzewska-Czerwińska J. Recent Advances in Helicobacter pylori Replication: Possible Implications in Adaptation to a Pathogenic Lifestyle and Perspectives for Drug Design. Curr Top Microbiol Immunol 2017; 400:73-103. [PMID: 28124150 DOI: 10.1007/978-3-319-50520-6_4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
DNA replication is an important step in the life cycle of every cell that ensures the continuous flow of genetic information from one generation to the next. In all organisms, chromosome replication must be coordinated with overall cell growth. Helicobacter pylori growth strongly depends on its interaction with the host, particularly with the gastric epithelium. Moreover, H. pylori actively searches for an optimal microniche within a stomach, and it has been shown that not every microniche equally supports growth of this bacterium. We postulate that besides nutrients, H. pylori senses different, unknown signals, which presumably also affect chromosome replication to maintain H. pylori propagation at optimal ratio allowing H. pylori to establish a chronic, lifelong infection. Thus, H. pylori chromosome replication and particularly the regulation of this process might be considered important for bacterial pathogenesis. Here, we summarize our current knowledge of chromosome and plasmid replication in H. pylori and discuss the mechanisms responsible for regulating this key cellular process. The results of extensive studies conducted thus far allow us to propose common and unique traits in H. pylori chromosome replication. Interestingly, the repertoire of proteins involved in replication in H. pylori is significantly different to that in E. coli, strongly suggesting that novel factors are engaged in H. pylori chromosome replication and could represent attractive drug targets.
Collapse
Affiliation(s)
- Anna Zawilak-Pawlik
- Department of Microbiology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Ul. Weigla 12, 53-114, Wrocław, Poland.
| | - Jolanta Zakrzewska-Czerwińska
- Department of Microbiology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Ul. Weigla 12, 53-114, Wrocław, Poland
- Department of Molecular Microbiology, Faculty of Biotechnology, University of Wrocław, Ul. Joliot-Curie 14A, 50-383, Wrocław, Poland
| |
Collapse
|
30
|
van Vliet AHM. Use of pan-genome analysis for the identification of lineage-specific genes of Helicobacter pylori. FEMS Microbiol Lett 2016; 364:fnw296. [PMID: 28011701 DOI: 10.1093/femsle/fnw296] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 09/08/2016] [Accepted: 12/22/2016] [Indexed: 12/23/2022] Open
Abstract
The human bacterial pathogen Helicobacter pylori has a highly variable genome, with significant allelic and sequence diversity between isolates and even within well-characterised strains, hampering comparative genomics of H. pylori In this study, pan-genome analysis has been used to identify lineage-specific genes of H. pylori A total of 346 H. pylori genomes spanning the hpAfrica1, hpAfrica2, hpAsia2, hpEurope, hspAmerind and hspEAsia multilocus sequence typing (MLST) lineages were searched for genes specifically overrepresented or underrepresented in MLST lineages or associated with the cag pathogenicity island. The only genes overrepresented in cag-positive genomes were the cag pathogenicity island genes themselves. In contrast, a total of 125 genes were either overrepresented or underrepresented in one or more MLST lineages. Of these 125 genes, alcohol/aldehyde-reducing enzymes linked with acid resistance and production of toxic aldehydes were found to be overrepresented in African lineages. Conversely, the FecA2 ferric citrate receptor was missing from hspAmerind genomes, but present in all other lineages. This work shows the applicability of pan-genome analysis for identification of lineage-specific genes of H. pylori, facilitating further investigation to allow linkage of differential distribution of genes with disease outcome or virulence of H. pylori.
Collapse
Affiliation(s)
- Arnoud H M van Vliet
- School of Veterinary Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey GU2 7AD, UK
| |
Collapse
|
31
|
Comparative Genomics of H. pylori and Non-Pylori Helicobacter Species to Identify New Regions Associated with Its Pathogenicity and Adaptability. BIOMED RESEARCH INTERNATIONAL 2016; 2016:6106029. [PMID: 28078297 PMCID: PMC5203880 DOI: 10.1155/2016/6106029] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 09/17/2016] [Accepted: 10/11/2016] [Indexed: 01/05/2023]
Abstract
The genus Helicobacter is a group of Gram-negative, helical-shaped pathogens consisting of at least 36 bacterial species. Helicobacter pylori (H. pylori), infecting more than 50% of the human population, is considered as the major cause of gastritis, peptic ulcer, and gastric cancer. However, the genetic underpinnings of H. pylori that are responsible for its large scale epidemic and gastrointestinal environment adaption within human beings remain unclear. Core-pan genome analysis was performed among 75 representative H. pylori and 24 non-pylori Helicobacter genomes. There were 1173 conserved protein families of H. pylori and 673 of all 99 Helicobacter genus strains. We found 79 genome unique regions, a total of 202,359bp, shared by at least 80% of the H. pylori but lacked in non-pylori Helicobacter species. The operons, genes, and sRNAs within the H. pylori unique regions were considered as potential ones associated with its pathogenicity and adaptability, and the relativity among them has been partially confirmed by functional annotation analysis. However, functions of at least 54 genes and 10 sRNAs were still unclear. Our analysis of protein-protein interaction showed that 30 genes within them may have the cooperation relationship.
Collapse
|
32
|
Flint A, Stintzi A, Saraiva LM. Oxidative and nitrosative stress defences of Helicobacter and Campylobacter species that counteract mammalian immunity. FEMS Microbiol Rev 2016; 40:938-960. [PMID: 28201757 PMCID: PMC5091033 DOI: 10.1093/femsre/fuw025] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 03/29/2016] [Accepted: 07/02/2016] [Indexed: 12/18/2022] Open
Abstract
Helicobacter and Campylobacter species are Gram-negative microaerophilic host-associated heterotrophic bacteria that invade the digestive tract of humans and animals. Campylobacter jejuni is the major worldwide cause of foodborne gastroenteritis in humans, while Helicobacter pylori is ubiquitous in over half of the world's population causing gastric and duodenal ulcers. The colonisation of the gastrointestinal system by Helicobacter and Campylobacter relies on numerous cellular defences to sense the host environment and respond to adverse conditions, including those imposed by the host immunity. An important antimicrobial tool of the mammalian innate immune system is the generation of harmful oxidative and nitrosative stresses to which pathogens are exposed during phagocytosis. This review summarises the regulators, detoxifying enzymes and subversion mechanisms of Helicobacter and Campylobacter that ultimately promote the successful infection of humans.
Collapse
Affiliation(s)
- Annika Flint
- Ottawa Institute of Systems Biology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada
| | - Alain Stintzi
- Ottawa Institute of Systems Biology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada
| | - Lígia M. Saraiva
- Instituto de Tecnologia Química e Biológica, NOVA, Av. da República, 2780-157 Oeiras, Portugal
| |
Collapse
|
33
|
Hassan A, Naz A, Obaid A, Paracha RZ, Naz K, Awan FM, Muhmmad SA, Janjua HA, Ahmad J, Ali A. Pangenome and immuno-proteomics analysis of Acinetobacter baumannii strains revealed the core peptide vaccine targets. BMC Genomics 2016; 17:732. [PMID: 27634541 PMCID: PMC5025611 DOI: 10.1186/s12864-016-2951-4] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 07/19/2016] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Acinetobacter baumannii has emerged as a significant nosocomial pathogen during the last few years, exhibiting resistance to almost all major classes of antibiotics. Alternative treatment options such as vaccines tend to be most promising and cost effective approaches against this resistant pathogen. In the current study, we have explored the pan-genome of A. baumannii followed by immune-proteomics and reverse vaccinology approaches to identify potential core vaccine targets. RESULTS The pan-genome of all available A. baumannii strains (30 complete genomes) is estimated to contain 7,606 gene families and the core genome consists of 2,445 gene families (~32 % of the pan-genome). Phylogenetic tree, comparative genomic and proteomic analysis revealed both intra- and inter genomic similarities and evolutionary relationships. Among the conserved core genome, thirteen proteins, including P pilus assembly protein, pili assembly chaperone, AdeK, PonA, OmpA, general secretion pathway protein D, FhuE receptor, Type VI secretion system OmpA/MotB, TonB dependent siderophore receptor, general secretion pathway protein D, outer membrane protein, peptidoglycan associated lipoprotein and peptidyl-prolyl cis-trans isomerase are identified as highly antigenic. Epitope mapping of the target proteins revealed the presence of antigenic surface exposed 9-mer T-cell epitopes. Protein-protein interaction and functional annotation have shown their involvement in significant biological and molecular processes. The pipeline is validated by predicting already known immunogenic targets against Gram negative pathogen Helicobacter pylori as a positive control. CONCLUSION The study, based upon combinatorial approach of pan-genomics, core genomics, proteomics and reverse vaccinology led us to find out potential vaccine candidates against A. baumannii. The comprehensive analysis of all the completely sequenced genomes revealed thirteen putative antigens which could elicit substantial immune response. The integration of computational vaccinology strategies would facilitate in tackling the rapid dissemination of resistant A.baumannii strains. The scarcity of effective antibiotics and the global expansion of sequencing data making this approach desirable in the development of effective vaccines against A. baumannii and other bacterial pathogens.
Collapse
Affiliation(s)
- Afreenish Hassan
- Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), H-12, Islamabad, Pakistan
| | - Anam Naz
- Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), H-12, Islamabad, Pakistan
| | - Ayesha Obaid
- Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), H-12, Islamabad, Pakistan
| | - Rehan Zafar Paracha
- Research Center for Modeling and Simulation (RCMS), National University of Sciences and Technology (NUST), H-12, Islamabad, Pakistan
| | - Kanwal Naz
- Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), H-12, Islamabad, Pakistan
| | - Faryal Mehwish Awan
- Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), H-12, Islamabad, Pakistan
| | - Syed Aun Muhmmad
- Institute of Molecular Biology and Biotechnology, Bahauddin Zakariya University, Multan, Pakistan
| | - Hussnain Ahmed Janjua
- Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), H-12, Islamabad, Pakistan
| | - Jamil Ahmad
- Research Center for Modeling and Simulation (RCMS), National University of Sciences and Technology (NUST), H-12, Islamabad, Pakistan
- Department of Computer Science and Information Technology, Stratford University, Falls Church, VA 22043 USA
| | - Amjad Ali
- Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), H-12, Islamabad, Pakistan
| |
Collapse
|
34
|
Szkaradkiewicz A, Karpiński TM, Linke K, Majewski P, Rożkiewicz D, Goślińska-Kuźniarek O. Expression of cagA, virB/D Complex and/or vacA Genes in Helicobacter pylori Strains Originating from Patients with Gastric Diseases. PLoS One 2016; 11:e0148936. [PMID: 26866365 PMCID: PMC4750868 DOI: 10.1371/journal.pone.0148936] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 01/24/2016] [Indexed: 12/17/2022] Open
Abstract
In order to better understand pathogenicity of Helicobacter pylori, particularly in the context of its carcinogenic activity, we analysed expression of virulence genes: cagA, virB/D complex (virB4, virB7, virB8, virB9, virB10, virB11, virD4) and vacA in strains of the pathogen originating from persons with gastric diseases. The studies were conducted on 42 strains of H. pylori isolated from patients with histological diagnosis of non-atrophic gastritis—NAG (group 1, including subgroup 1 containing cagA+ isolates and subgroup 2 containing cagA- strains), multifocal atrophic gastritis—MAG (group 2) and gastric adenocarcinoma—GC (group 3). Expression of H. pylori genes was studied using microarray technology. In group 1, in all strains of H. pylori cagA+ (subgroup 1) high expression of the gene as well as of virB/D was disclosed, accompanied by moderate expression of vacA. In strains of subgroup 2 a moderate expression of vacA was detected. All strains in groups 2 and 3 carried cagA gene but they differed in its expression: a high expression was detected in isolates of group 2 and its hyperexpression in strains of group 3 (hypervirulent strains). In both groups high expression of virB/D and vacA was disclosed. Our results indicate that chronic active gastritis may be induced by both cagA+ strains of H. pylori, manifesting high expression of virB/D complex but moderate activity of vacA, and cagA- strains with moderate expression of vacA gene. On the other hand, in progression of gastric pathology and carcinogenesis linked to H. pylori a significant role was played by hypervirulent strains, manifesting a very high expression of cagA and high activity of virB/D and vacA genes.
Collapse
Affiliation(s)
- Andrzej Szkaradkiewicz
- Department of Medical Microbiology, University of Medical Sciences in Poznań, Wieniawskiego 3, Str., 61–712, Poznań, Poland
- * E-mail:
| | - Tomasz M. Karpiński
- Department of Medical Microbiology, University of Medical Sciences in Poznań, Wieniawskiego 3, Str., 61–712, Poznań, Poland
| | - Krzysztof Linke
- Department of Gastroenterology, Human Nutrition and Internal Diseases, University of Medical Sciences in Poznań, Przybyszewskiego 49, Str., 60–355, Poznań, Poland
| | - Przemysław Majewski
- Department of Clinical Pathomorphology, University of Medical Sciences in Poznań, Przybyszewskiego 49, Str., 60–355, Poznań, Poland
| | - Dorota Rożkiewicz
- Department of Paediatric Infectious Diseases, Medical University of Białystok, University Children’s Hospital, Waszyngtona 17, Str., 15–274, Białystok, Poland
| | - Olga Goślińska-Kuźniarek
- Department of Medical Microbiology, University of Medical Sciences in Poznań, Wieniawskiego 3, Str., 61–712, Poznań, Poland
| |
Collapse
|
35
|
Walduck A, Andersen LP, Raghavan S. Inflammation, Immunity, and Vaccines for Helicobacter pylori Infection. Helicobacter 2015; 20 Suppl 1:17-25. [PMID: 26372820 DOI: 10.1111/hel.12252] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
During the last year, a variety of studies have been published that increases our understanding of the basic mechanisms of immunity and inflammation in Helicobacter pylori infection and progression to gastric cancer. Innate immune regulation and epithelial cell response were covered by several studies that contribute with new insights in the host response to H. pylori infection. Also, the adaptive immune response to H. pylori and particularly the role of IL-22 have been addressed in some studies. These advances may improve vaccine development where new strategies have been published. Two major studies analyzed H. pylori genomes of 39 worldwide strains and looked at the protein profiles. In addition, multi-epitope vaccines for therapeutic use have been investigated. Studies on different adjuvants and delivery systems have also given us new insights. This review presents articles from the last year that reveal detailed insight into immunity and regulation of inflammation, the contribution of immune cells to the development of gastric cancer, and understanding mechanisms of vaccine-induced protection.
Collapse
Affiliation(s)
- Anna Walduck
- Health Innovations Research Institute, School of Applied Sciences RMIT University, Bundoora, Melbourne, Vic., Australia
| | - Leif P Andersen
- Department of Infection Control, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Sukanya Raghavan
- Department of Microbiology and Immunology, Institute for Biomedicine, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|